Skip to Content

DHS Century Month Codes

New 5

Etape 7 : Ajustement d’une droite, et estimation de la complétude (c)

Pour estimer la complétude de l’enregistrement des décès par rapport à la population, on commence par tracer un graphique représentant les points d’abscisse : d(x+) et d’ordonnées : b(x+) – r(x+) + i(x+). On calcule les coefficients de la droite liant les deux séries de points par régression orthogonale, selon la formule suivante :

b= σ y σ x = 1 n1 i=1 n ( y i μ y ) 2 1 n1 i=1 n ( x i μ x ) 2

et

a= μ y b μ x

b représente la pente de la droite, et a l’ordonnée à l’origine. La série des ordonnées yi représente les points: b(x+) - r(x+) + i(x+), la série des abscisses xi représente les points d(x+), et les variables

μ y

et  

μ x

  représentent, respectivement, les moyennes des deux séries.

Lorsque l’on a tracé la droite de régression, on observe la position des points par rapport à la droite, ainsi que les résidus, de manière à décider quel est le meilleur intervalle d’âge à garder pour calculer la complétude de l’enregistrement des décès. La manière de le faire est discutée plus en détail plus loin, mais on considère qu’il faut exclure les points dont les résidus sont supérieurs à 1% en valeur absolue. Après exclusion des points aberrants, une nouvelle droite est ajustée, et on calcule de nouvelles valeurs de a et b. n règle générale, on recommande de ne pas terminer à un âge qui se termine par zéro dans les populations qui font preuve d’une forte attraction des chiffres ronds.

New 6

New 3

Etape 7 : Ajustement d’une droite, et estimation de la complétude (c)

Pour estimer la complétude de l’enregistrement des décès par rapport à la population, on commence par tracer un graphique représentant les points d’abscisse : d(x+) et d’ordonnées : b(x+) – r(x+) + i(x+). On calcule les coefficients de la droite liant les deux séries de points par régression orthogonale, selon la formule suivante :

b= σ y σ x = 1 n1 i=1 n ( y i μ y ) 2 1 n1 i=1 n ( x i μ x ) 2

et

a= μ y b μ x

b représente la pente de la droite, et a l’ordonnée à l’origine. La série des ordonnées yi représente les points: b(x+) - r(x+) + i(x+), la série des abscisses xi représente les points d(x+), et les variables

μ y

et  

μ x

  représentent, respectivement, les moyennes des deux séries.

 

Lorsque l’on a tracé la droite de régression, on observe la position des points par rapport à la droite, ainsi que les résidus, de manière à décider quel est le meilleur intervalle d’âge à garder pour calculer la complétude de l’enregistrement des décès. La manière de le faire est discutée plus en détail plus loin, mais on considère qu’il faut exclure les points dont les résidus sont supérieurs à 1% en valeur absolue. Après exclusion des points aberrants, une nouvelle droite est ajustée, et on calcule de nouvelles valeurs de a et b. n règle générale, on recommande de ne pas terminer à un âge qui se termine par zéro dans les populations qui font preuve d’une forte attraction des chiffres ronds.

New 4

New 1

Etape 7 : Ajustement d’une droite, et estimation de la complétude (c)

Pour estimer la complétude de l’enregistrement des décès par rapport à la population, on commence par tracer un graphique représentant les points d’abscisse : d(x+) et d’ordonnées : b(x+) – r(x+) + i(x+). On calcule les coefficients de la droite liant les deux séries de points par régression orthogonale, selon la formule suivante :

b= σ y σ x = 1 n1 i=1 n ( y i μ y ) 2 1 n1 i=1 n ( x i μ x ) 2

etx

a= μ y b μ x

et

μ x

représentent, respectivement, les moyennes des deux séries.

New 1 end

Application de la méthode

D’un point de vue purement technique, on pourrait appliquer cette méthode à des données présentées par année d’âge, mais ce type de données est sujet à de fortes erreurs sur l’âge, si bien que, en pratique, on travaille le plus souvent avec des données présentées par groupe d’âge de 5 ans. Comme la plupart des données disponibles sont publiées selon ce format, la feuille de calcul correspondante est organisée pour travailler avec des groupes d’âge quinquennaux classiques. Il faut remarquer que John Blacker (Blacker 1988) a montré que ces groupes d’âge classiques sont sensibles aux préférences pour les chiffres ronds ; dans ce cas on pourra adapter la méthode pour travailler avec des groupes d’âge quinquennaux différents, centrés sur les chiffres qui font l’objet de l’attraction (12-17, 18-21 etc.), plutôt qu’avec des groupes d’âge commençant par ces chiffres (15-19, 20-24, etc.).

Etape 1: Lorsque ce nombre n’est pas immédiatement disponible, estimer le nombre de décès déclarés au cours de la période entre les deux estimations de population

Dans le cas où l’on dispose de données de l’état civil par année de calendrier, l’ajustement consiste à répartir proportionnellement les décès de la première et de la dernière année. On les répartit proportionnellement à la fraction de l’année couverte après le premier recensement et avant le second recensement. Sauf si la distribution des décès par âge change très rapidement au cours de l’année, cette approximation n’aura pas d’effet notable sur les résultats.

Dans le cas où l’on ne dispose pas des décès entre les deux enquêtes, mais si l’intervalle tombe entre deux périodes pour lesquelles on a de telles données (par exemple dans le cas où chaque recensement inclut la question sur les décès des douze derniers mois dans le ménage), alors on peut utiliser la feuille de calcul suivante : Estimating deaths. Cette feuille de calcul permet d’estimer le nombre de décès entre deux instants donnés d’après les décès qui se sont produits au-cours de deux périodes les encadrant. Pour utiliser cette feuille de calcul, on a besoin du nombre de décès répartis par groupes d’âge quinquennaux pour les deux périodes, les dates de début et de fin de chaque période, ainsi que les dates de début et de fin de la période au cours de laquelle on veut estimer le nombre de décès.

Etape 2: Cumuler la population, les décès et les migrants vers les plus jeunes âges

Pour calculer les taux partiels de natalité, mortalité (et migration), on doit cumuler les effectifs de population, le nombre de décès (et le nombre de migrations nettes), pour les âges au-delà de x. Ainsi, dans le cas de la population, on utilise la formule suivante :

N(x+)= y=x A5 5 N y + N A

A désigne l’âge au début du groupe d’âge ouvert. On utilise des formules équivalentes pour calculer les décès cumulés au-delà de l’âge x, soit D(x+). On peut faire de même pour les migrations nettes (même si cela est peu probable), et cumuler leur nombre au-delà de l’âge x, soit NM(x+). Lorsque le nombre de migrants est inconnu, on laisse cette colonne en blanc (ou bien on fixe les effectifs à zéro), et la méthode s’utilise en prenant en compte cette omission, comme cela est expliqué plus loin.

Etape 3: Calcul des personnes-années vécues, PYL(x+)

Pour calculer les taux partiels de natalité et de mortalité (ainsi que les taux partiels de migration nette s’ils sont disponibles), on doit calculer les personnes-années vécues au risque. On utilise pour cela la formule suivante :

PYL(x+)=( t 2 t 1 ) ( N x ( t 1 )× N x ( t 2 ) ) 1 2

t1 est la date du premier recensement, et t2 la date du second recensement.

Etape 4: Calcul du nombre de personnes qui atteignent leur x-ème anniversaire, N(x)

Le nombre de personnes qui atteignent leur x-ème anniversaire (c’est à dire ceux arrivent, ou sont ‘nés’, dans le groupe d’âge x+) dans la population se calcule comme la moyenne géométrique des effectifs de la cohorte au temps t1 et t2 divisé par 5, multiplié par la durée de la période entre les deux recensements, exprimée en années, selon la formule suivante :

N(x)= t 5 ( 5 N x5 ( t 1 )× 5 N x ( t 2 ) ) 1 2

Etape 5 : Calcul des taux partiels de natalité et de mortalité, b(x+) et d(x+), et de croissance r(x+), corrigés des migrations, i(x+)

Les taux partiels de natalité et de mortalité se calculent selon les formules suivantes :

b(x+)= N(x) PYL(x+)
d(x+)= D(x+) PYL(x+)

Alors, le taux partiel de croissance, moins le taux partiel de migration, se calcule selon la formule suivante:

r(x+)nm(x+)= N x ( t 2 ) N x ( t 1 )NM(x+) PYL(x+)

Etape 6 : Représentation graphique de b(x+) - r(x+) + nm(x+) en fonction de d(x+), et examen visuel pour décider de l’intervalle d’âge sur lequel on ajustera une droite

On commence en prenant pour âge minimal l’âge de 50 ans, et pour âge maximal A-1, où A est l’âge du début de l’intervalle ouvert. On examine ensuite le graphique, et on décide de l’intervalle d’âge sur lequel on ajustera une droite. Lorsque l’exagération des âges au décès est plus forte que celle des âges des survivants dans la population, les points situés à droite du graphique (qui représentent les âges élevés) vont tendre à baisser progressivement avec l’âge en-dessous de la droite. Ceci indique qu’il faut rechercher un âge maximal plus faible, de proche en proche tous les 5 ans, jusqu’à ce que l’effet soit éliminé. De plus, si la valeur des résidus est trop forte aux âges extrêmes (par exemple s’ils excèdent 1%), alors l’âge maximal devra être abaissé, pour éviter que ces points erronés influencent la pente de la droite ajustée. Mais si l’exagération de l’âge est la même pour la population et pour les décès, alors ceci n’aura pas d’influence sur la pente ni sur l’estimation de la complétude de la déclaration des décès ; par contre, les taux de mortalité par âge seront sous-estimés à ces âges élevés.

Lorsque les points placés sur le graphique correspondants aux âges jeunes (c’est-à-dire la partie gauche du graphique), surtout aux âges entre 15 et 30 ans, dévient notablement de la ligne droite, et si l’on n’a pas introduit de données sur les migrations, ceci indique probablement qu’il y a un niveau important de migrations (sauf s’il y a une couverture du recensement différentielle selon l’âge). Dans ce cas, il convient d’augmenter l’âge minimal du début de l’intervalle utilisé pour ajuster la droite à 30 ou 35 ans, selon celui qui produit le meilleur ajustement aux données.

Etape 7 : Ajustement d’une droite, et estimation de la complétude (c)

Pour estimer la complétude de l’enregistrement des décès par rapport à la population, on commence par tracer un graphique représentant les points d’abscisse : d(x+) et d’ordonnées : b(x+) – r(x+) + i(x+). On calcule les coefficients de la droite liant les deux séries de points par régression orthogonale, selon la formule suivante :

b= σ y σ x = 1 n1 i=1 n ( y i μ y ) 2 1 n1 i=1 n ( x i μ x ) 2

et

a= μ y b μ x

***TEMP

b représente la pente de la droite, et a l’ordonnée à l’origine. La série des ordonnées yi représente les points: b(x+) - r(x+) + i(x+), la série des abscisses xi représente les points d(x+), et les variables  

μ y
 

 et  

μ x

représentent, respectivement, les moyennes des deux séries.

***TEMP

Lorsque l’on a tracé la droite de régression, on observe la position des points par rapport à la droite, ainsi que les résidus, de manière à décider quel est le meilleur intervalle d’âge à garder pour calculer la complétude de l’enregistrement des décès. La manière de le faire est discutée plus en détail plus loin, mais on considère qu’il faut exclure les points dont les résidus sont supérieurs à 1% en valeur absolue. Après exclusion des points aberrants, une nouvelle droite est ajustée, et on calcule de nouvelles valeurs de a et b. En règle générale, on recommande de ne pas terminer à un âge qui se termine par zéro dans les populations qui font preuve d’une forte attraction des chiffres ronds.

On calcule alors la complétude de l’enregistrement des décès, c, d’après les valeurs de a et de b, comme suit. Comme:

a= ln( k 1 / k 2 ) t 2 t 1

et

b= ( k 1 k 2 ) 1 2 c

 

k 1 k 2 = e a( t 2 t 1 )

on fait alors l’hypothèse que le maximum de k1 et k2 =1. Si  

k 1 k 2 <1

, on suppose que k2 = 1 , et donc :  

k 1 = e a( t 2 t 1 )

  et si  

k 1 k 2 >1

, on suppose que k1 = 1, et donc : 

k 2 = e a( t 2 t 1 )

 et 

c= ( k 1 k 2 ) 1 2 b

.

 

Exemple

xxx

ccc

Exemple 2

 

The Century-Month Code system provides an easy way of working with data coded by month and year, and is the primary way in which dates are coded in Demographic and Health Surveys. A good description is available in the Guide to DHS Statistics (Rutstein and Rojas 2003). The CMC reduces all months to a code taking the value of 1 in January 1900, 2 in February 1900, 13 in January 1901 etc. The conversion of a month and year to a CMC is done by means of the relation:

CMC(month,year)=12(year1900)+month

Likewise, to reverse the process,

Year = 1900+ int( CMC1 12 )

and

Month = CMC12(Year1900)

The CMC for February 2011, then would be 12*(2011 - 1900) + 2= 1333, while the year associated with a CMC of 1267 would be given by year = 1900 + int(1266/12) = 2005, and the month would be July (7), i.e. July 2005.

References

Rutstein, Shea and Guillermo Rojas. 2003. Guide to DHS Statistics. Calverton, MD: ORC Macro.