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Introduction

Tools for Demographic Estimation is the result of a project, 
funded by the United Nations Population Fund (UNFPA) 
and run under the auspices of the International Union for 
the Scientific Study of Population (IUSSP), to bring together 
in one place, and in a user-friendly style, key methods used 
by demographers everywhere to measure demographic 
parameters from limited and defective data.

The idea for Tools for Demographic Estimation first arose at 
a joint IUSSP/UNFPA meeting on ‘Applied and Technical 
Demographic Training in Developing Countries’ held in 
The Hague in March 2009, where concern was expressed 
that the training of demographers in the use and application 
of indirect estimation techniques was waning at almost 
every academic institution around the globe. 

Several factors have contributed to this state of affairs. 
First, changing global population priorities, notably the 
revised agenda adopted by the International Conference on 
Population and Development held in Cairo in 1994, had 
altered the funding landscape, with more resources being 
devoted to the emergent fields of reproductive and sexual 
health rather than the technical demography required to 
study patterns of growth and to manage population increase. 
Associated with this, the cohort of demographers who had 
been trained in the classical methods and techniques was 
ageing rapidly and few younger demographers were being 
trained in either the science or the craft of demographic 
estimation from limited and defective data. 

Second, the Demographic and Health Surveys programme 
(DHS), associated with the collection of full birth histories 
and attendant direct estimation methods for fertility and 
mortality, has created the impression that the tools and 
techniques for estimating mortality and fertility from census 
or other survey data were no longer as important as they had 
been in the past. While there can be no doubt that the DHS 
has contributed enormously to, and helped reshape, the 
discipline of demography, the growing marginalization of 
demographic analysis of census data and other demographic 
materials limits our ability to understand demographic 

dynamics in developing countries. The role of the census 
in providing a sampling frame for demographic surveys is 
often forgotten. Moreover, the typical sample size of most 
DHS means that precise estimates from such surveys are 
seldom available at spatial resolutions smaller than regions 
or provinces, while the information collected on relatively 
rare events (such as adult deaths) is usually too sparse to 
permit the derivation of robust estimates. 

Third, in most parts of the developing world (sub-
Saharan Africa being the notable exception), improvements 
in systems of vital registration and the collection of 
demographic data in censuses mean that the existing 
techniques of demographic estimation from limited and 
defective data are regarded as obsolete. It is certainly the case 
that in countries with complete and accurate registration 
of vital events and a series of reliable censuses, direct and 
continuous estimation of demographic parameters becomes 
possible. In many low-income and middle-income countries, 
however, neither condition yet prevails and so it remains 
important to evaluate critically the quality of registration-
based statistics and cross-check them against census-based 
questions on fertility and mortality.

A further reason for the decline in the priority accorded 
to the teaching of indirect techniques of demographic 
estimation is the natural evolution of populations where 
even in the poorest countries, fertility is falling after several 
decades of mortality improvement. The age distributions 
of these populations are thus far from the theoretical stable 
or even quasi-stable population model so that many of 
the techniques based on such models and first formally 
published by the UN Population Division (1967) are clearly 
outmoded. This demise of so-called stable population analysis 
led some analysts to prefer the DHS-style direct estimation 
methods over the whole suite of methods developed initially 
by Ansley J Coale and William Brass, authors of the early 
United Nations volumes.

In many instances, direct demographic estimation from 
census, survey, or vital registration data remains impossible 
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or problematic. This implies a continuing need for census-
based and other indirect estimates. The 2009 meeting further 
noted that the canonical manual for demographic estimation 
from census data, Manual X (UN Population Division 
1983), was more than a quarter of a century old and that 
several new methods and techniques had been developed 
since its publication. Two other manuals have been prepared 
since, Estimating Demographic Parameters from Census Data 
(Sloggett, Brass, Eldridge et al. 1994) and Methods for 
Estimating Adult Mortality (UN Population Division 2002) 
but neither attempted a full and comprehensive revision and 
update of Manual X.

The meeting at The Hague therefore resolved that a project 
be initiated to revise and update Manual X. Following a 
competitive call for proposals evaluated by the IUSSP, a 
consortium of demographers based at the University of 
Cape Town and the London School of Hygiene & Tropical 
Medicine and independent demographers associated with 
Harvard University was awarded the contract to develop the 
material. Tools for Demographic Estimation is the result. 

The material presented here follows in a direct line of 
descent from Manual X and the rationale underpinning the 
work is fundamentally the same – to set out the methods 
for estimating demographic parameters from limited or 
defective data. We therefore strongly urge users of Tools for 
Demographic Estimation to read the introductory chapter 
to Manual X (available on the UN Population Division 
website) both for its description of the need for and history 
of indirect estimation methods, and for its discussion of the 
limitations of reference works of this kind. 

Tools for Demographic Estimation differs from its 
precursors in several important respects. The differences 
stem in part from the enormous increases in computing 
power available to analysts since the time Manual X was 
published. They also reflect advances in approaches to 
demographic estimation, new methods, and the evolution 
of insights into how well different methods work, and under 
what conditions. Thus, the methods described in Tools for 
Demographic Estimation and the earlier manuals are not 
the same. A number of methods that have been developed 
since the publication of Manual X are presented here for the 
first time. Other methods that were presented in Manual X 
have been excluded on the grounds that they have since 
been found to work poorly or that more refined or newer 
methods render them obsolete. 

Second, unlike its precursors, Tools for Demographic 

Estimation is primarily an electronic, web-based, resource. 
The print version represents the material on the project’s 
website (demographicestimation.iussp.org) at the date of 
printing. The website, however, is designed to be dynamic, 
updated and changing over time. It follows that, whenever 
possible, the reader’s primary point of reference should be 
the website, rather than the print version of the manual. The 
website, hosted by the IUSSP, is freely and readily accessible 
to anyone on registration.

Third, the website includes downloadable spreadsheets 
that implement the methods described, so as to facilitate their 
application and use. The decision to implement the methods 
using spreadsheets rather than in the form of downloadable 
executable programmes (such as, for example, MortPak) is 
intended to ensure a maximum degree of transparency. The 
formulae and calculations are visible to the end-user, and the 
spreadsheets can be modified by users if they do not exactly 
match the data available. The spreadsheets are in Microsoft 
Excel format but have been designed to be compatible 
with other open-source spreadsheet applications. Only in 
exceptional circumstances have Excel-specific facilities (such 
as Solver) been employed. 

A fourth difference from earlier manuals on indirect 
estimation is that while Tools for Demographic Estimation 
adopts much the same approach as its precursors in 
providing step-by-step descriptions on how to apply the 
methods covered, a greater degree of emphasis has been 
placed on setting out the assumptions underlying each of 
the methods, as well as the situations and conditions under 
which the methods may be contra-indicated, or may produce 
unreliable results. To assist users interested in understanding 
how the methods work, we have endeavoured to present the 
mathematical derivation of the methods in as accessible a 
style as possible.

Fifth, Tools for Demographic Estimation incorporates 
material on the assessment and measurement of migration 
using census data, an area not covered at all in Manual X, 
and last described in a work of this kind in Manual VI (UN 
Population Division 1970).

Despite these advances, the present work suffers from 
many of the same limitations as its precursors. In presenting 
each method separately, the bigger picture associated with 
demographic estimation from limited and defective data 
is all too often lost. A significant component of this kind 
of demographic work lies in piecing together a puzzle 
composed of demographic parameters from multiple 
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methods and sources into a coherent, internally-consistent 
whole. Demographic estimation of the kind presented 
here is, ultimately, as much a craft as it is a science. 
Where possible, we have sought to give a sense of the craft 
involved. To facilitate and encourage the careful application 
of the methods described here, the website also includes 
discussion forums, which we hope will provide a vehicle for 
discussion of the results from applications of the methods 
presented, for suggestions for modifications or corrections 
to existing methods, and for proposals for new approaches 
to demographic estimation from limited and defective data. 

Tools for Demographic Estimation has been a work long in 
preparation. The editors record their gratitude to the many 
people and organisations that have helped bring the project 
to fruition. We note the contributions of Ralph Hakkert 

(UNFPA) and Mary Ellen Zuppan (IUSSP) in securing 
funding for and overseeing the project; of the anonymous 
reviewers appointed by the IUSSP who offered extensive and 
useful comments on the initial draft of the material; of the 
web designer (Charles Oertel) and book designer (Jo-Anne 
Friedlander); and of the proof-reader (Debbie Budlender). 
We are also exceedingly grateful to those responsible for 
the UN Manuals as well as the Statistical Institute for Asia 
and the Pacific for waiving copyright and allowing us to 
reproduce material from those resources where necessary. 

Tom Moultrie, Rob Dorrington, Allan Hill,  
Kenneth Hill, Ian Timæus and Basia Zaba
Cape Town, July 2013
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Chapter 1  General assessment of age and sex data
Tom A Moultrie

INTRODUCTION
“In a perfect world, data would always be complete, accurate, 
current, pertinent, and unambiguous. In the real world, 
data are generally flawed on some or all of these dimensions” 
(Feeney 2003: 190). The task of evaluating and assessing 
data is an essential part of identifying the nature, direction, 
magnitude and likely significance of these flaws. While the 
primary point at which data evaluation and assessment takes 
place is immediately after the data have been processed, 
data evaluation and assessment are recursive activities – at 
each analytical stage, the user of demographic data should 
consider the results produced with a sceptical eye, alert to 
possible indications of error or bias introduced by the data 
into the results.

Here we set out the essential investigations that should 
be carried out as a matter of course before embarking on 
a process of demographic analysis. The basic principles 
for performing demographic evaluation and assessment 
have barely changed in the last half-century. Accordingly, 
aspects of the material presented in this chapter have been 
drawn from the United Nations’ Manual II: Methods of 
Appraisal of Quality of Basic Data for Population Estimates 
(UN Population Branch 1955), updated and modified as 
appropriate, as well as from another, more recent, guide 
to the evaluation of census data, the United States Census 
Bureau’s guide, Evaluating Censuses of Population and 
Housing (US Bureau of the Census 1985). The latter work 
provides a comprehensive and useful guide to the subject; in 
particular, Chapters 4 and 5 are strongly recommended to 
all analysts setting out on a process of data assessment and 
evaluation of demographic data.

The next section explains why it is necessary to evaluate 
demographic statistics. It also provides a high-level overview 
of the principles and practices involved.

The need for appraisal of demographic 
statistics
Population statistics, like all other demographic statistics, 
whether they are obtained by enumeration, registration, or 
other means, are subject to error. The errors may be large 
or small, depending on the obstacles to accurate recording 
which are present in the area concerned, the methods used 
in compiling the data, and the relative efficiency with which 
the methods are applied. The importance of the errors, given 
their magnitude, depends on the uses to which the data are 
put. Some applications are valid even if the statistics are 
subject to fairly large errors; other applications require more 
accurate data. When dealing with any given problem, it is 
important to know whether the data are accurate enough to 
provide an acceptably accurate answer.

For population estimates, evaluation of the census or 
registration statistics on which the estimates are based is 
doubly important. In the first place, an investigation of the 
accuracy of the base data is a prerequisite to any attempt 
at determining the reliability of the estimates. Errors 
of estimation result both from inaccuracies in the basic 
population statistics and from errors in the assumptions 
involved in deriving the estimates (for example, in the 
assumed population changes between the date of the latest 
statistics and the date to which the estimate applies). Both 
sources of error must be taken into account if the degree 
of confidence that may be placed in the estimate is to be 
known. Second, where an investigation into the accuracy 
of the base data has revealed errors, the direction and 
magnitude of which can be estimated, it is possible to 
make explicit or implicit compensating adjustments, as the 
estimates of population are prepared. It is often the case, too, 
that reasonably reliable demographic measures (for example, 
fertility rates) can be derived, even when the underlying data 
are unreliable on some dimensions.

The purpose here is to describe the basic methods for 
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appraising the accuracy of those aspects of the census data 
most commonly used as a basis for current population 
estimates and future population projections. It is assumed 
that the results have been compiled from at least one census, 
and that the analyst is faced with the problem of determining 
the accuracy of the census and other population data, but is 
not in a position to re-enumerate the whole population or 
repeat any major part of the census undertaking.

It is not possible to consider in every detail all the possible 
information which, in a given country, can be utilized for 
an appraisal of its demographic data. For example, survey 
data may provide estimates of demographic parameters that 
would be valuable in evaluating the quality of data from 
a census. Hence, the examples presented here should be 
regarded as illustrations of methods and the results should 
not be taken as definitive evaluations of the quality of the 
particular data employed.

The results of the tests described in this manual are of 
various kinds. Sometimes, a test will reveal only that statistics 
are either “probably reasonably accurate” or “suspect”; if 
they are “suspect” further intensive investigation is required 
before a definite judgment can be made. Other tests will 
not only indicate that errors are present, but also lead to an 
estimate of the direction and probable extent of the error. 
In the latter case, it is desirable to adjust or correct the 
faulty statistics and to revise the estimates based on them. 
The description of procedures to be used in the revision of 
estimates, however, is outside the scope of this manual.

The distinction that is often drawn in demographic texts 
between coverage errors (introduced through differential 
enumeration across regions, ethnic groups, ages etc. leading 
to the data set being unrepresentative of the statistical whole 
it is meant to represent) and content errors (introduced 
through respondent or enumerator error, or misreporting) 
is not particularly helpful in determining strategies for data 
assessment. In many instances flaws in the data may not be 
attributable solely to one or the other kind of error. How-
ever, in seeking to explain and understand the errors iden-
tified, it is useful to consider where in the census process 
the error may have been introduced. Doing so assists in the 
determination of appropriate remedial courses of action to 
correct the data if possible. The description of such remedies 
is again outside the scope of this manual.

Background documentation that 
should be sought
The process of conducting a census is arduous and compli-
cated – it has been claimed, for example, that the decennial 
census conducted in the United States is the largest and most 
complex peacetime undertaking of the Federal Government 
(National Research Council 2004). The same is probably 
true in any other country conducting a census. To assist with 
the task, recommended standards and procedures have been 
drafted by the United Nations Statistics Division. Many of 
the relevant manuals are available online: the two of great-
est interest to demographers analysing and evaluating the 
quality of census data are the Principles and Recommenda-
tions for Population and Housing Censuses, Revision 2 (UN 
Statistics Division 2008) and the Handbook on Population 
and Housing Census Editing, Revision 1 (UN Statistics Di-
vision 2010a). The former offers guidance on the logistics 
of conducting a census, from planning all the way through 
to dissemination; the latter deals with the post-enumeration 
handling of the data in preparation for release.

The nature and quality of the demographic data available 
varies greatly between countries. Population censuses are 
undertaken with varying frequency and accuracy, and vital 
registration data contain widely divergent levels of detail, 
and vary hugely in quality between and within countries. 
Migration across national boundaries may be relatively 
important or not. Consequently, different methods have 
to be employed in different situations for the appraisal of 
the accuracy of statistics, and it is therefore not possible to 
consider all the detailed tests to which every conceivable 
kind of data on the subjects covered here can be submitted. 
The methods presented here may, therefore, not always be 
directly applicable to a specific problem; modifications must 
be identified to suit particular requirements.

Where possible the analyst should seek to obtain as much 
relevant information as possible from the agency responsible 
for conducting the census or survey regarding operational 
practices and difficulties experienced, as well as the policies 
and practices adopted for cleaning and editing the data 
prior to release. Where a post-enumeration study has been 
conducted, information on this should also be obtained.

In addition to data sources that may not be in the public 
domain, the quality of the insights gained into the nature of 
the data will depend on the ability of the analyst to bring to 
bear on the data as much potentially relevant material, not 
only demographic, but also social, economic, historical and 
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political information as possible. As a simple example (more 
on which below), the dramatic decline in adult survival 
probabilities in the late 1990s indicated by the data from 
the 1992 and 2002 Zimbabwean Censuses can be explained 
in large measure by the effects of HIV/AIDS on adult 
mortality at that time.

Types of testing procedures
Whether one is dealing with census data, vital statistics, 
or records of migration, the same basic types of testing 
procedures are applicable. This similarity arises from the fact 
that demographic phenomena are interrelated both among 
themselves and with other social and economic phenomena. 
Some of these relationships are direct and necessary. For 
example, the increase in population during a given interval 
is precisely determined by the numbers of births, deaths, and 
net migratory movements occurring in that interval. Other 
relationships are less precise and less definite. For example, 
in some countries, an economic depression is likely to result 
in a declining, and prosperity in a rising, birth rate, but the 
exact amount by which the birth rate will change cannot 
be inferred even from detailed knowledge of the economic 
situation.

The basic types of possible testing procedures can be 
summarized as follows:
a)  consistency checks, based on one or more censuses;
b) � comparison of observed data with a theoretically 

expected configuration, for example the use of balancing 
equations and population projection models;

c) � comparison of data observed in one country with those 
observed elsewhere;

d) � comparison with similar data obtained for non-
demographic purposes; and

e) � direct checks (re-enumeration of samples of the popula-
tion etc.).
The first type of checking procedure examines the 

consistency of the data, either internally (for example, does 
the distribution of the population by age and/or sex conform 
to expectations), or externally by means of comparison 
with earlier data from the same country. Demographic 
transition theory leads us to expect that – typically – birth 
rates and death rates (and hence population growth rates) 
will decline in a coherent, orderly fashion, without major 
discontinuities. (The exception is the likelihood that, at 
the very start of the transition, birth rates may rise). In the 
absence of clearly identifiable exogenous factors (e.g. war, 

famine or epidemics), deviations and departures from this 
orderliness therefore strongly suggest problems in the data.

Comparisons of the second type have changed significantly 
over the years. Historically, the most common tests of this 
type were to compare the data against those implied by a 
stable-population equivalent of the country in question. 
With the onset of fertility decline in almost every country in 
the world, the assumptions necessary for comparisons of this 
type to produce meaningful results have become increasingly 
invalid. Contemporary comparisons of this sort now more 
frequently seek to compare male and female mortality rates 
and sex ratios by age with those that would be anticipated 
in contexts similar to those of the source of the data being 
investigated. In addition, comparison with the results of 
model outputs (for example, the United Nations’ World 
Population Prospects or the US Census Bureau’s projections) 
can be used to highlight possible inconsistencies in the data.

“Balancing equations” can also be applied to test the 
consistency of the increase in population shown by two 
enumerations at different dates, using the increase shown 
by statistics of the various elements of population change – 
births, deaths, and migration – during the interval. If all 
the data were accurate, the two measures of increase (or 
decrease) should be balanced. Aside from population 
totals, the test can also be applied to sex and age groups 
and other categories of population that are identifiable in 
the statistics. Furthermore, by rearranging and re-defining 
the components of this equation, separate appraisals can be 
made regarding the accuracy of birth, death and migration 
statistics.

The third type of test relies on prior knowledge of a 
country that is expected to be demographically similar to 
the country of interest. This may, for example, be a neigh-
bouring country. However, great care must be taken if this 
approach is to be adopted to ensure that the similarities 
between the two countries are sufficiently great (not only 
demographically, but also socially, economically, culturally 
etc.) to permit the extrapolation of data from one demo-
graphic setting to another.

The second and third types of check are similar. The 
demographic changes observed in another country where 
conditions are presumed to be similar can sometimes be 
substituted for a theoretically expected configuration. In 
both cases, the comparisons will differ, whether by a large 
or a small amount. The essence of the test then rests on 
the answer to the question: Can the difference between 
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the observed and expected values be explained by historical 
events or current conditions in the country, the data of 
which are being tested? If not, then it must be concluded 
that the observed data are “suspect”. Further investigation 
may yield an explanation of the difference, or it may furnish 
clear indications that the “suspect” data are indeed in error. 
Very often this kind of method is applied as a preliminary 
step, to suggest along what lines further testing should be 
undertaken.

The fourth type of test relies on the availability of admin-
istrative or other social statistics that may shed light on the 
demography of the country of interest. Estimates of the sizes 
of different components of a national population might be 
obtained from voters’ registers, school enrolment statistics, 
select populations such as Demographic Surveillance Sites 
(DSSs), etc. If such estimates differ from the population 
census data, the question arises whether there is a satisfac-
tory explanation for the difference. Given the dependency 
on the specifics of the local data available, and the nature 
of the comparisons that might be drawn, tests of this type 
are not discussed further here. However, care must be taken 
not to assume these alternative sources are necessarily better 
than the census being checked.

Finally, direct checks involve a field investigation, such as 
a post-enumeration survey. The advantage of a direct check 
consists in the fact that the individual persons enumerated, 
or the individual events registered, can be identified, so that 
not only the consistency of totals, but the specific errors of 
omission or double-counting come to light. Direct checks 
in the form of a post-enumeration survey also allow for the 
correction of the enumerated population for an estimated 
undercount.

The first four types of testing procedure give an indication 
only of relative accuracy as both sets of data may be subject 
to error. If several testing procedures are applied, or if 
there is a strong presumption that one set of data used in 
the comparison is highly accurate, the evidence so secured 
provides a strong indication that the data being tested are 
inaccurate. In many other instances, the comparison may 
only reveal that at least one, if not both, sets of data are in 
error.

The investigations described below concentrate on the 
first and second types of test. (Direct checks are discussed 
briefly elsewhere, in the section on post-estimation 
consistency checks). Wherever possible, specific examples 
are included. The data for these examples have been drawn 

from the census data held at IPUMS (Minnesota Population 
Center 2010). However, only a fraction of the data and 
knowledge available in each country was used in working 
out these examples. Many more relevant data, some of them 
not published anywhere, exist in these countries.

A final observation before proceeding to the description 
of the various tests described here: most (although not all) of 
the tests can be applied at smaller geographical subdivisions, 
with the caveat that migration plays an increasingly signifi-
cant role in determining the size and shape of populations 
at smaller levels of disaggregation. Here, too, we expect to 
find “orderly” patterns of population change, both within 
the same subdivision in successive intercensal periods, and 
among different subdivisions in any period. Any dissimilari-
ties should be explicable in terms of known conditions. As 
a practical matter it is well known that there may be con-
siderable diversity in the rates of population change among 
the various parts of any nation. Accordingly, the problem 
becomes one of trying to distinguish between changes which 
are explainable in terms other than errors in the statistics 
and those which are not.

Preliminary checks
Before trying to assess the quality of the data the analyst 
should:
•	 Review the census enumeration procedures and informa-

tion on the quality of performance, including ascertain-
ing whether a post-enumeration survey was done, and 
whether the data should be weighted and, if so, how. 
Where possible, access to unedited, or only lightly-edited 
data should be sought, along with the manuals and algo-
rithms used to edit the data.

•	 Ascertain how the data were collated into machine-
readable form. Manual entry has the limitations of being 
slow; optical scanning – a technique adopted for many 
censuses in the 2000 and subsequent rounds of censuses – 
offers a faster processing time than manual capture, but is 
subject to numerous other faults (for example, difficulties 
in distinguishing 1s and 7s in many scripts), as well as 
problems associated with scanning the last pages of census 
forms, which may have become contaminated with dirt.

•	 Compare the census figures with any available data from 
non-demographic sources which relate to the numbers of 
the population or parts thereof.

•	 Compare the population distribution as revealed by 
the census findings to known characteristics of the 
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subdivisions; for example, the population density of rural 
areas should be less than that of urban areas.

•	 Compare the head and household counts (along with the 
average number of people per household and number of 
single-person households) at a national and regional level, 
and by urban/rural subdivisions to see if they make sense.
The degree of accuracy in a count of the total number 

of people in a country is directly related to the accuracy 
with which the entire census operation is conducted. The 
head count may be either more or less accurate than the 
enumeration of constituents of the population, such as by 
age or marital-status groups, but if all the census procedures 
are of poor quality and the characteristics of the population 
have not been accurately determined there is little likelihood 
that the head count will be correct. Indeed, one of the ways 
of appraising the quality of the head count consists of 
analysing the accuracy of data on various characteristics of 
the population. This analysis may not only reveal evidence of 
inaccurate classification of the individuals enumerated, but 
also may reveal a tendency to omit certain categories of the 
population. Special efforts should be made to appraise the 
completeness of the census counts in those areas or among 
those population groups which are known to be subject to 
conditions unfavourable for census taking. For example, 
there has been a long tradition of omission of very young 
children in censuses conducted across sub-Saharan Africa.

A detailed description of the factors which contribute to 
the completeness of a census count is beyond the scope of 
this manual. These factors are comprehensively discussed in 
many standard demographic texts (e.g. Shryock and Siegel 
(1976); UN Population Branch (1955)).

Missing and edited data
It is improbable that each and every respondent answered 
questions on both age and sex. If there are no missing data 
for these variables, the data have almost certainly been 
edited. Not all editing is bad. However, since a crucial part of 
determining the overall reliability of a data set hinges on the 
internal coherence of the age-sex structure of the population, 
it is preferable to be able to determine which data variables 
have been cleaned or edited as well as to be able to evaluate 
the rules applied to effect such changes. Sometimes this is 
indicated through inclusion of edit-flag variables, which 
may also indicate the types of editing and imputation that 
have been used for that particular variable. If this is the case, 
the distributions of the edited data according to the method 

used to derive the final data can highlight flaws or anomalies 
in the edit rules. Where possible, access to the unedited 
and uncleaned (or only very lightly edited/cleaned) data is 
desirable. Unfortunately, few countries release data with edit 
flags let alone provide access to a version of the data before 
editing took place.

The proportion of the data on any given variable that has 
been subjected to editing or imputation is also important. 
If too great a proportion of the data has been ‘put’ there by 
means of editing or imputation, the resulting distribution 
will reflect the assumptions underlying the rules used to edit 
the data rather than, necessarily, reality.

Where data on age are missing for some of the 
population, a decision needs to be made as to how to treat 
these records. Simply removing them from the analysis is 
not recommended: doing so reduces the absolute size of the 
population, and assumes that the age distribution of those 
people whose ages are missing is the same as that of those 
whose ages are not. If this is believed to be the case, missing 
ages in tables should be apportioned in accordance with the 
age distribution of the population whose ages are known. 
Thus (and analysing the data separately by sex, if required), 
if we define Nx to be the enumerated population aged x, and 
Nm to be the enumerated population with missing age, we 
would apportion these cases to individual ages:
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However, if strong grounds exist to believe that the 
missing ages are clustered in a portion of the population, 
the apportionment should be modified to take this into 
account. For example, it may often be reasonable to assume 
that respondents would know the ages of children below a 
certain age, say 20.

When confronted with the need to apportion data on two 
dimensions (e.g. age and region), the approach set out by 
Arriaga in US Census Bureau (1997) should be followed. 
The method requires iteratively scaling the columns and then 
the rows to sum to the desired marginal totals. Convergence 
typically happens after a few iterations. The accompanying 
spreadsheet (see website) implements this approach and can 
handle up to 20 rows and 30 columns.
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Checks based on the availability of 
data from a single census
The checks based on only one census should be done as a 
matter of course for all censuses, regardless of the availability 
of data from earlier censuses or surveys. These checks provide 
the basic insights into the demographic data collected in the 
census, and rest, largely, on evaluating the consistency and 
orderliness of the data by age and sex.

Age- and sex- distributions
Given the centrality of age and sex in determining all three 
components of demographic change, investigations of the 
distributions of the population by age and sex are funda-
mental to any process of data assessment and evaluation. 
Investigations of this type can provide essential information 
on:
•	 the age and sex structure of the population;
•	 differential coverage or omission;
•	 the accuracy of reported ages, as well as the presence of 

digit preference; and
•	 whether the data have been subjected to editing or not.

Population pyramids and other graphical assessments
The drawing of population pyramids is not recommended 
as a tool for assessing the quality of demographic data, 
although they are useful for a number of other applications, 
and animated population pyramids are a useful instructional 
tool for demonstrating how populations change over time; 
cf. the examples of Canada or Germany). Historically, 
population pyramids were used to get a sense of the overall 
population structure as enumerated in the census. Although 
the graphing of rudimentary population pyramids in Excel 
is relatively straightforward, the correct formatting of them 
is laborious. More significantly, visual assessment of the data 
is difficult when the age-sex data are presented in this form. 
The same information (and more) can be far more readily 
provided simply by graphing the enumerated population 
by age and sex on the same pair of axes instead. The first 
assessment of the data should be done by single years of age, 
after which one can progress to examination of the five-year 
age distributions.

Identification of heaping on age
One of the benefits of graphing the population by single 
years of age and sex is that occurrences of data heaping by 
age are made visible from the start. Visual assessment of age 

heaping is probably as good an indication of age heaping 
as those of derived measures such as Myers’ Blended Index, 
Whipple’s Index or the United Nations Age-Sex Accuracy 
Index. These indices can be useful for comparative purposes 
but the scales of the indices are indicative at best, and the 
added information gained from the index over a simple 
graphical assessment often does not justify their use. The 
US Census Bureau’s manual reaches a similar conclusion: 
“While these procedures are useful as summary measures 
or for comparative purposes, they generally do not provide 
any insight into patterns of error in the data that cannot be 
obtained through graphical and ratio analyses of the data.” 
(US Bureau of the Census 1985: 140)

Heaping usually – but not always – takes the form of 
concentrations of the age distribution of the population on 
ages ending in 0 or 5. Depending on how the age variable 
in the census is collected or derived, heaping may occur on 
other ages, too. For example, if age at the census is derived 
from the respondent’s reported month and year of birth, 
heaping may occur on reported years of birth ending in 0 or 
5 (1920; 1925, etc.); the associated heaping by years of age in 
completed years will depend on the census date. In addition, 
other forms of heaping may not be readily apparent – for 
example that occasioned by mass registration at one point in 
time, or events of major historical significance – leading to 
preferences for ages ending on 0 or 5 on that date.

Given the expectation of orderly demographic change 
in the absence of significant exogenous events, a smooth 
progression in the numbers of people enumerated at each 
age is expected. In developing countries where fertility has 
remained high, one would expect the population size to 
decrease monotonically by age. If the absolute number of 
births has been declining in recent years, one would expect 
to find fewer children at younger ages than at slightly older 
ages.

One limitation of graphing of the population by age and 
sex is that distortions and error in the data at older ages 
will be obscured by the (much) larger population sizes 
at younger ages. Ratios or relative rates can be used to 
explore possible distortions and errors for older ages. If no 
comparator data are available, then the higher age ranges 
should be considered separately.

Age ratios
While heaping on particular ages are generally more easily 
identified graphically than through calculated measures, the 
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calculation of age ratios can provide a useful indication of 
possible undercounts or displacements between age groups. 
The age ratio for a given age group is the ratio of twice the 
population in that age group to the sum of the population 
in each of the adjacent age groups. Algebraically,
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On the presumption that population change is roughly linear 
between age groups, the ratio should be fairly close to 100. 
Deviations from 100, in the absence of plausible exogenous 
factors (e.g. migration; past calamities affecting particular 
age groups) are indicative of undercount or displacement 
errors in the data.

An aberration in the population numbers in any one 
particular age group (either real, or arising from an error in 
the data) is likely to cause disturbances in the age ratios for 
the age groups on either side. If one age group is particularly 
small, this will result in the age ratio for that age group being 
below one, with spikes in the adjacent groups.

Sex ratios
A second class of checks is to assess the sex ratios in the 
population, both generally and at each age. The overall sex 
ratio (SR) is the ratio of the number of males per 100 females 
in the population. This ratio can then be disaggregated by 
age as follows:
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where i
n xN  represents the enumerated population of sex i 

(i = m or f ) between ages x and x + n.
Since female mortality is typically lower than male 

mortality in most populations, the sex ratio should reflect 
this mortality differential. In developed countries, the sex 
ratio at birth (SRAB, the number of male children born 
per 100 female children) is typically around 105, while in 
sub-Saharan Africa, it appears to be closer to 100 (Garenne 
2004). Values of the SRAB, derived (for example) from 
the sex of the last reported birth in the census or vital 
registration data, outside this range are indicative of sex-
selective abortion, infanticide, or reporting problems.

In the absence of significant net migration, the overall 
ratio reflects the relative mortality of females and males. 
Provided there are no specific reasons why female mortality 
might be higher than that of males (e.g. sex-specific foetal 

selection; infanticide of female babies; very high maternal 
mortality; or widespread neglect of women as discussed by 
Sen (1992)) one would expect the overall sex ratio to be 
slightly less than 100. Given the differences between male 
and female mortality, particularly at older ages, the exact 
magnitude of the overall ratio will be strongly conditioned 
by the age structure of the population, being lower for older 
populations, and higher for younger populations.

Between birth and late middle-age (around 45 in 
developing countries; 60 or older in developed countries) 
the sex ratio typically should decline only slowly unless there 
is significant net migration. Thereafter, the sex ratio tends to 
fall rapidly as male mortality begins to greatly exceed female 
mortality. A common departure from this pattern is visible 
in countries with high levels of sex-selective labour migration 
among young adults. If large numbers of young men are 
living outside the country at the time of enumeration, this 
will reveal itself in a sharp decrease in the sex ratios, followed 
by a gradual recovery among older men as these labour 
migrants return home.

Concluding comments
An integrated assessment of the quality of the data collected 
in a census and survey must seek to explain – with as 
few assumptions as possible – the features observed in 
the data. In this regard, the analyst must be alert to well-
documented problems found with census data on age and 
sex – the undercount of young men of working age, and the 
exaggeration of ages that is frequently found in countries 
with some form of social welfare such as a state old-age 
pension. Finally, if there has been significant immigration, it 
may be useful to analyse the local-born population separately 
from the entire population; no comparable exploration is 
available for emigration, unless data by age, sex and country 
of birth are available for key destination countries.

Example
The accompanying spreadsheet (see website) gives data from 
the 11.35 per cent sample from the 2001 Census of Nepal, 
held by IPUMS (Minnesota Population Center 2010). The 
data appear to have been subject to some kind of editing or 
cleaning, as there are no cases of missing age or sex in the 
data. The analyst should seek to determine the nature and 
extent of any such edits.

As suggested above, we begin by graphing the enumerated 
population by single year of age and sex (Figure 1.1).
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Visual inspection of the left-hand panel immediately 
highlights the extreme digit preference for ages ending in 0 
and 5 in these data. By way of example, the population of 
both males and females enumerated at age 30 is more than 
three times the population aged either 29 or 31. Heaping is 
also visible on ages ending in 2 and 8. Digit preference is less 
marked for the population aged less than 30, although this 
is in part due to the heaping visible on other ages (8, 12 and 
18). Clearly the reporting of individual ages is not robust in 
these data.

Also strongly evident in these data is the sharp fall-off 
in the enumerated population under the age of 5, with the 
enumerated population aged 1 being approximately two-
thirds of that aged 5. It is unlikely that fertility has fallen by 
that magnitude in such a short period of time, and hence 
the initial presumption must be that young children were 
differentially undercounted in that census. Misreporting of 
children’s ages – resulting in an over-statement of the num-
ber of children aged 5–9 might also have contributed to the 
shortfall of younger children.

Plotting the same age distribution in five-year age groups 
to smooth the data (right-hand panel of Figure 1.1) provides 
further insights. Again, the sharp fall-off in the population 
aged under 5 is visible, but visual comparison of the popula-
tion aged 5–9 with that aged 10–14 suggests the possibility 
that there may have been some under-enumeration of chil-
dren aged 5–9 too. This calls into question the possibility 
that there may have been large-scale transference of children 
aged 0–4 into the 5–9 age group. Finally, the age ratios for 
five-year age groups are shown in Figure 1.2.

The age ratios are generally close to 1 for both sexes, 
except at the youngest ages (indicating some omission of 
children aged 0–4, as well as a lesser degree of displacement 
of children into the 5–9 age group). The fall-off in the age 
ratios at the oldest ages is to be expected given the rapid 
increase in mortality at those ages.

In the absence of additional information, the age and 
sex distributions cannot be analysed further, but the analyst 
may wish to compare the relevantly aged population against 
administrative data indicating the numbers of children 

Figure 1.1  Age and sex structure, by single and grouped ages, 
Nepal, 2001 Census
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enrolled in school, or compare the administratively reported 
births 5–9 and 10–14 years prior to the census. A comparison 
can also be made against the estimated population aged 5–9 
derived by applying estimates of fertility rates from the mid-
1990s to the estimated female population at about that time.

A second characteristic of the data that may require further 
investigation is the relative populations of males and females 
by age group. In aggregate the sex ratio of the enumerated 
census population is 100.5 men per 100 women. There is a 
noticeable surfeit of enumerated males until age 20. Between 
ages 20 and 40 there would appear to be more females than 
males. This could be the consequence of (male) labour 
out-migration, or a differential undercount of young adult 
men. The analyst should seek to find explanations for this 
phenomenon. However, (male) labour out-migration could 
plausibly account for some of the shortfall; the enumerated 
surfeit of men between the ages of 40 and 60 coincides with 
the ages at which men are most likely to return from work 
abroad, although this cannot account for the sex ratio rising 
above unity. One explanation might be that the sociological 

phenomena (sex-selective abortion; female infanticide) 
described by Sen (1992) in India might apply equally in 
Nepal.

Considering Figure 1.3, two features of the sex ratios by 
single years of age (left-hand panel) stand out. First, they 
are quite erratic, falling sharply from age 60 onwards at ages 
ending in 0 and 5. This suggests that ages of men were less 
likely to be heaped on those digits, and more likely to be 
heaped for women. Second, in addition to the deficit of men 
between the ages of 20 and 40 identified earlier, judging 
from the fact that the sex ratios remain above (or very close 
to) unity until the oldest ages, there would also appear to 
be a shortage of women over the age of 40 in the census. 
Again, the applicability of Sen’s hypothesis to Nepal should 
be investigated.

The data presented by five-year age groups (right-hand 
panel of Figure 1.3) is smoother, but nonetheless reaffirms 
the analysis above.

Further insights into the nature and quality of the age and 
sex data from the 2001 Nepal Census can be gained from a 

Figure 1.2  Age ratios by sex and five-year age groups, Nepal, 
2001 Census
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comparison of these data with the United Nations Population 
Division’s most recent estimates for the country in 2001 
(UN Population Division 2011). These estimates stand in 
marked contrast to the census data. The most effective way 
to show the differences is to plot the ratio of the enumerated 
population (by age and sex) to the UN Population Division’s 
estimated population for 2001 (Figure 1.4).

Ratios above the age of 90 are not shown as they are 
even more extreme – rising to 9.7 (for males) and 8.6 (for 
females). If they were shown, they would mask the differ-
ences at younger ages.

While the UN estimates primarily reflect the assump-
tions that went into them, the huge discrepancies between 
the two sets of estimates require careful investigation. Up 
until age 15, the ratios for males and females follow almost 
identical trends. However, the enumerated population of 
males and females at age 0–4 is some 30 per cent lower than 
that estimated by the UN, while that at 10–14 is within two 
or three per cent. At older ages, the patterns by sex diverge 
markedly: the number of women between the ages of 15 

and 55 differs between the two data sources by an almost-
constant five per cent.

Relative to the UN projections, there appears to be exten-
sive age exaggeration at older ages, especially amongst men.

The comparison of the sex ratios by age calculated from 
the 2001 Census data, and those estimated for 2001 by the 
UN Population Division (Figure 1.5) also reveals noticeable 
differences. Further work is certainly required to understand 
what may account for the widely divergent accounts of the 
demographic structure in this country.

Checks based on multiple censuses
In addition to the checks described in the previous section, 
the availability of additional sets of data from earlier censuses 
(and vital registration systems) makes other investigations 
possible.

It is often difficult to determine whether irregularities 
revealed by the evaluation of the age and sex structure of 
a population in a single census are due mainly to errors in 
the data or to real peculiarities of the population structure. 

Figure 1.3  Sex ratios by single and grouped ages, Nepal, 2001 
Census
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When the results of two or more successive censuses are 
available, it is often possible to clear up these uncertainties 
even without the use of any more elaborate techniques than 
were described in the preceding section. For example, if the 
age statistics from the 2008 Census of Cambodia were at 
hand, the possibility of explaining certain irregularities in 
the 1998 data as the results of birth deficits or deaths in the 
period of the Khmer Rouge’s rule in the late 1970s would 
be greatly clarified. If the 2008 figures should show the same 
peculiarities in the age groups ten years higher, but not in 
the same age groups in which they appeared in 1998, there 
would be a strong basis for concluding that these peculiarities 
reflected the true figures, rather than enumeration errors. 
Still more definite information regarding errors can be 
obtained where data from two or more censuses at intervals 
of a few years are available, by using balancing equations or 
analogous calculations with the data for particular cohorts – 
comparing, for example, the numbers reported at ages 10–
14 in an earlier census with those reported at ages 20–24 in 
a census ten years later. Where data from a series of three or 

more censuses are available, the returns may be linked in this 
manner over the entire series. For the purpose of explaining 
the techniques, however, it is sufficient to consider examples 
of the use of data from two censuses.

Again, the guiding principle to be followed in comparing 
the results from two or more successive censuses is that 
population changes normally proceed in an orderly manner. 
When such an orderly pattern is not observed, the deviations 
should be explainable in terms of known events, such as 
the curtailment of immigration, the occurrence of famine, 
or some other event. Deviations from the pattern which 
cannot be so explained constitute a warning of possible 
errors; and the presumption of error is greatly strengthened 
if the results of other tests are found to point in the same 
direction. In some countries it may be possible to apply 
these tests to the various ethnic groups separately, if age 
and sex data are tabulated for such groups and if data are 
available on immigration and emigration of these groups (or 
if the groups in question are not substantially affected by 
international migration).

Figure 1.4  Ratio by age and sex of enumerated population in 
2001 to UN Population Division World Population Prospects 
(2011) estimates for 2001, Nepal
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Checks making specific use of multiple censuses are, for 
the most part, based on (and in some cases, are) methods 
used to measure adult mortality – in other words, the assess-
ment of the consistency of the data is a by-product of the 
methods to estimate adult mortality. This chapter describes 
some of these based on the data that are likely to be available.

Evaluation of intercensal growth rates
The growth rate, r, is defined as
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where N(t1) is the total population at time t1, and similarly 
for N(t2).

If the country’s population changes only through natural 
increase, it is very unlikely to have an average annual rate 
of growth exceeding 3.5 per cent. A rate at this level would 
be the result of a high birth rate (say 45 or more per 1,000) 

and a very low death rate (say 10 or less per 1,000). Further, 
it is only in unusual circumstances that the population of 
a developing country would be likely to decline without 
heavy emigration. In fact, nearly all observed rates of natural 
increase in modern times have been in the range from zero 
to 3.5 per cent. In a few developed countries, according to 
the 2010 World Population Prospects, natural growth is 
negative. If, in any given country, the rate of population 
change approaches or exceeds these limits without large-
scale immigration or emigration, the question must be 
raised as to whether there is some explanation for such an 
unusual rate, or whether the census counts were in error.

With some information, however approximate, regarding 
the conditions of mortality and fertility in the country, the 
limits of the likely rate of growth may be defined more 
closely.

If population counts are available for three or more 
successive censuses it becomes possible to make a more 
accurate evaluation by comparing successive rates of growth. 
Again, the same principle is followed, namely, that the 

Figure 1.5  Sex ratios by age group from the enumerated 
population in 2001 and the UN Population Division World 
Population Prospects (2011) estimates for 2001, Nepal



CHAPTER 1 GENERAL ASSESSMENT OF AGE AND SEX DATA  |  15

pattern of population growth should be regular except in so 
far as it can be shown that changes in the circumstances may 
have led to departures from the pattern.

Further, provided the censuses are undercounted to the 
same extent, the estimate of r is correct. Thus tracking r can 
provide an indication of relative undercount between pairs 
of data.

Cohort survival ratios
Any particular age group can be defined as a cohort: for 
example, boys under 5 years of age, women 50 to 54 years, 
or all persons 10 to 19 years of age, at a given census date. If 
a second census is taken exactly one decade later, the surviving 
members of each cohort will be exactly ten years older at the 
time of the second census. However, their numbers will be 
reduced by deaths and they may be increased or reduced by the 
balance of immigration and emigration. Ordinarily, mortality 
is the main factor; if the migration balance is negligible, the 
change in numbers can be used to compute a survival ratio 
analogous to that of a life table. Computed for one cohort only, 
such a survival ratio often reveals little, if anything, about the 
accuracy of the statistics. However, a patently absurd result 
would give clear evidence of error. For example, an increase 
in the numbers of a cohort, from one census to another, is 
obviously impossible, unless there has been a substantial 
amount of immigration. Similarly, even under conditions of 
very high mortality, it is unlikely that a cohort aged anywhere 
between 5 and 60 years at the beginning, will be reduced by 
one-half within a decade.

More accurate judgement is possible if the survival ratios 
are compared for cohorts of each sex at different ages. 
Survival ratios are functions of age-specific death rates, 
and, like these, generally conform to more or less the same 
pattern of variation from age to age whether mortality is 
high or low. The rate of survival increases after the earliest 
years of childhood and usually attains its maximum around 
age 10; thereafter it declines, at first very gradually, but 
more and more rapidly as advanced ages are attained. 
Also, at most or all ages females usually have a somewhat 
higher rate of survival than do males of the same age. If the 
hypothetical survival ratios computed for different cohorts 
deviate significantly from this pattern, and if no explanation 
(such as migration) can be found, inaccuracy in the statistics 
must be suspected.

Under what conditions can such comparisons of cohorts 
in successive censuses be made most meaningfully? One 

condition is either the absence of substantial net immigration 
or emigration or full knowledge about the age and sex 
composition of the migrants. A second condition, analogous 
to the first, is that of constant boundaries. If the country’s 
boundaries have changed between the two censuses so that 
considerable numbers of people have been added to or 
subtracted from the population, the age and sex composition 
of these people must be known, if the cohort analysis is to 
give an accurate indication of the accuracy of the statistics. 
A third condition is that the population covered by the two 
censuses must be the same. For example, if the entire male 
population is enumerated in one census, but the military 
is excluded at the second, the age cohorts involving the 
military cannot be compared without a suitable adjustment, 
unless the number of the military is negligible. If nationals 
living abroad are included in one census, and excluded from 
another, and if the numbers involved are large, especially if 
they are concentrated in any particular age or sex groups, 
this type of analysis is invalidated.

In the case of a country where immigration is substantial, 
under certain circumstances a cohort can be compared 
at two censuses even if migration data are lacking. If the 
native-born population (that is to say, persons born in the 
country) are known not to have emigrated in significant 
numbers, comparisons of the two censuses can be limited 
to that population.

Survival ratios can be calculated over any age span and 
time interval, provided one has data by single years of age 
for at least one of the pair of censuses. With the decennial 
programme of censuses recommended by the United 
Nations, a ten-year span of ages is typical.

Method
Cohort survival ratios (CSR) measure the proportion of 
people enumerated at age x to x + n at time t, nNx(t), in the 
first census, who are still alive and enumerated in a second 
census a years later when they are aged x+a to x+n+a at time 
t + a, nNx + a(t + a). Thus

( )( )
( )

n x a
n x

n x

N t aCSR a
N t
+ +

= .

For graphical presentation, these estimates can be located at 

the mid-point of the intersurvey period (i.e. at time 
2
nt + ) 

and at the midpoint of the ages at that time, 
2

a nx +
+ .
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A plot of these cohort survival ratios offers easy and rapid 
insights into the quality of the data at hand, although the 
standard caveat still applies; a curious sequence of cohort 
survival ratios indicates that something may have gone amiss 
with the data, but does not indicate whether the fault lies 
with the first, the second or both censuses.

Where data from a third census are available, however, 
it may be that the cohort survival rates derived from the 
first two censuses appear reasonable, while those derived 
from the second and third appear problematic. In this case, 
one would proceed by assuming that the fault lies with the 
enumeration in the third census, and not the second.

Finally, if one has an appropriate life table at one’s 
disposal, one could derive a further ratio by dividing the 
Cohort Survival Ratio into the equivalent ratio implied by 
the life table, resulting in a ratio of ratios at each age

( ) ( )n x a n x
n x

n x a n x

N t a N t
R

L L
+

+

+
= .

If the census suffered no error, the age structure of the 
enumerated population was identical to that described 
by the life table, and the mortality experience was exactly 
that indicated by the life table (all three strong conditions), 

the ratio would take the value of 1. Departures from unity 
would indicate either error in the data, or an inappropriate 
choice of life table. Further, under these conditions and in 
the absence of migration, ratios less than unity would imply 
an under-enumeration in the second census relative to the 
first and vice versa.

Example
Censuses in Zimbabwe were conducted exactly 10 years 
apart (the official Census date being 18 August) in 1982, 
1992 and 2002. Tabulations of the enumerated population 
by age and sex are available from the Demographic Year-
books on the UN Statistics Division Website (the 1997 
Historical Supplement and the 2008 Yearbook were used). 
The tabulations are shown in Table 1.1. The data present 
the population aged under 1 and aged 1–4 separately; 
these populations are kept distinct for the purpose of more 
accurately understanding the population dynamics given 
the rapid changes in mortality in the first few years of life.

Provided there are no grounds for believing that records 
with missing ages are not concentrated disproportionately 
in certain age groups, the first step is to apportion the 
(proportionately relatively small) number of cases where age 

1982 1992 2002
Age Male Female Male Female Male Female

0 133,070 136,960 167,552 169,064 170,054 170,277
1–4 510,260 528,390 621,411 626,664 668,008 667,730
5–9 612,760 619,300 821,319 832,469 764,453 769,247

10–14 529,750 518,740 724,905 731,846 754,587 757,657
15–19 390,160 412,610 615,728 632,510 736,686 766,890
20–24 290,380 364,200 466,837 523,060 564,034 658,873
25–29 243,420 281,060 335,713 376,495 473,984 513,793
30–34 185,400 206,760 280,066 326,299 369,836 360,291
35–39 147,920 170,170 229,360 259,555 235,692 268,797
40–44 142,050 139,530 174,266 189,509 194,702 239,727
45–49 116,490 110,390 145,437 143,441 165,437 191,168
50–54 111,780 90,880 133,261 147,339 128,029 173,229
55–59 67,400 60,800 94,713 86,729 98,417 112,498
60–64 76,850 65,260 95,510 84,213 94,447 99,420
65–69 38,810 38,860 51,202 50,902 64,301 67,851
70–74 29,810 30,500 58,279 62,479 60,311 62,464
75+ 39,410 46,760 52,026 68,403 71,950 92,311

Unknown 7,900 6,680 15,952 18,034 19,252 25,254
TOTAL 3,673,620 3,827,850 5,083,537 5,329,011 5,634,180 5,997,477

Table 1.1  Population of Zimbabwe by age 
and sex, 1982, 1992 and 2000 Censuses
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is missing in proportion to the population size in each age 
group from 0 to 75+. In the 1982 Census, the proportion 
of the population with unknown age was 0.19 per cent; this 
doubled to 0.38 per cent in the 2002 Census. The resulting 
distributions are shown in Table 1.2.

In keeping with the principles outlined earlier, the basic 
age and sex characteristics of the population are investigated 
first. The unavailability of data by single years of age means 
that this aspect of the data quality cannot be investigated. 
The age and sex distributions of the Zimbabwean population 
from the three censuses are shown in Figure 1.6.

In all three censuses there is a clear surfeit of women 
between the ages of 15 and (at least) 35. This is almost 
certainly a product of labour migration of young men to 
neighbouring countries, most obviously South Africa. There 
would appear to have been a sizeable underenumeration of 
the population under the age of 5 in the 1992 Census – the 
population in that age group is less than that then aged 5–9, 
unlike the adjacent censuses.

Age and sex ratios from the three censuses are shown 
in Figure 1.7. The age ratios in the 60–64 age group are 
particularly high in all three censuses, and the excess 
population at that age contributes to the very low age ratios 
in the 55–59 and 65–69 age groups. The sex ratios start off 

close to 100, and fall rapidly after age 15 in each census, 
probably indicating migration of young men. Of greater 
concern is the rise in the sex ratios between ages 35 and 55 
to levels far in excess of 100 in the 1982 Census. This almost 
certainly reflects some undercount of women. Sex ratios at 
the oldest ages are still very high, probably reflecting age 
exaggeration among older men.

The highly erratic age and sex ratios do not inspire a great 
deal of confidence in the quality of the data.

Next, cohort survival rates are derived as above, for each 
sex separately since patterns and level of mortality differ for 
males and females. Since the population aged 0–4 in 1992, 
for example, would be aged 10–14 in 2002, we assume that 
the survival rate for this cohort applies (roughly) to people 
aged 7½ at the midpoint between the censuses in August 
1997. Cohort survival rates are not estimated for the very 
young, or for the open interval. The results are presented 
graphically in Figure 1.8.

The top left panel shows the cohort survival rates between 
the 1982 and 1992 Censuses by sex; the bottom left panel 
shows the equivalent data from the 1992 and 2002 Censuses. 
There was an evident undercount of children of both sexes 
as well as women up until around the age of 20 in the 1982 
Census (or, improbably, high levels of child in-migration 

1982 1992 2002
Age Male Female Male Female Male Female

0 133,357 137,199 168,079 169,638 170,637 170,997
1–4 511,360 529,314 623,367 628,792 670,298 670,554
5–9 614,081 620,383 823,904 835,296 767,074 772,500

10–14 530,892 519,647 727,187 734,331 757,174 760,861
15–19 391,001 413,331 617,666 634,658 739,212 770,133
20–24 291,006 364,837 468,307 524,836 565,968 661,659
25–29 243,945 281,551 336,770 377,773 475,609 515,966
30–34 185,800 207,121 280,948 327,407 371,104 361,815
35–39 148,239 170,467 230,082 260,436 236,500 269,934
40–44 142,356 139,774 174,815 190,152 195,370 240,741
45–49 116,741 110,583 145,895 143,928 166,004 191,976
50–54 112,021 91,039 133,680 147,839 128,468 173,962
55–59 67,545 60,906 95,011 87,023 98,754 112,974
60–64 77,016 65,374 95,811 84,499 94,771 99,840
65–69 38,894 38,928 51,363 51,075 64,521 68,138
70–74 29,874 30,553 58,462 62,691 60,518 62,728
75+ 39,495 46,842 52,190 68,635 72,197 92,701

TOTAL 3,673,620 3,827,850 5,083,537 5,329,011 5,634,180 5,997,477

Table 1.2  Adjusted population of 
Zimbabwe by age and sex, 1982, 1992 and 
2002 Censuses
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between 1982 and 1992), as indicated by the survival ratios 
greater than one.

While both left-hand panels show (broadly) a pattern of 
decreasing survival ratios (increasing mortality) by age, the 
data are far from consistent either by sex or by age. It is 
unlikely, for example, that the survival ratios for men will be 
greater than those for women of the same age. There is also a 
very curious spike in both intercensal periods in the survival 
ratios of women aged 40–44 in first period to 50–54 in the 
next. This should be investigated further.

The two right-hand panels depict the cohort survival ratios 
over time, for men and women separately. They indicate a 
pattern of substantially increased mortality in Zimbabwe 
over the two ten-year periods. While the erratic nature of 
the survival ratios indicates the relatively poor quality of the 
data, this increase is almost certainly attributable largely to 
the effect of HIV/AIDS among adults in the country in the 
second period, in conjunction with the rapidly worsened 
socio-economic conditions that prevailed in the country to-
wards the turn of the century, which almost certainly fuelled 

extensive out-migration of younger adults. The apparent in-
crease in mortality among children and young adults seen in 
the two right-hand panels is almost certainly largely attrib-
utable to the poor enumeration of this population in 1982.

Post-enumeration surveys
A post-enumeration survey (PES) uses the logic of 
capture-recapture techniques to estimate the proportion 
of the population that was not enumerated at the time of 
the census. This is done by returning to sample sites to 
readminister a second, short, questionnaire to all households 
which should have been enumerated in that site, after which 
households and individuals captured in this survey are 
matched, wherever possible, with those from the census. This 
procedure should give a concrete estimate of the magnitude 
of the undercount which can be compared to and contrasted 
with that implied by, for example, an analytical population 
projection. The results from the PES, then, can be used to 
scale up (“weight”) the enumerated data to compensate for 
the undercount.

Figure 1.6  Age and sex distribution of the Zimbabwean 
population, 1982, 1992 and 2002 Censuses
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A PES is thus potentially extremely useful. However, 
the two key assumptions underlying the use of capture-
recapture techniques are that the probabilities of being 
found in the census and the PES are independent of each 
other; and that it is possible to identify the same individual 
unambiguously in both data sets. The first assumption is 
unlikely to hold in human populations – certain groups 
who avoid being counted in a census (illegal immigrants, 
for example), are likely also to avoid a PES. In this sense, the 
PES gives information only on those known to have been 
missed in the census; it tells nothing of those not known to 
have been missed. The second assumption is also unlikely to 
hold, particularly in settings with high population mobility 
or if the interval between the census and the PES is long.

The principles and best practice associated with the 
conduct of a PES are documented in a 2010 manual (UN 
Statistics Division 2010b).

Where a PES is conducted, ideally the analyst will have 
access to the report on the PES so as to understand any 
deficiencies in that study. The ability of the PES to provide 

finely-grained insights into the data collected in the census is 
directly related to the size of the PES as well as to the delay 
between the census date and the date of the PES. Given the 
time and cost constraints, the sample size of a PES is typically 
much smaller than a full census. Accordingly estimates of an 
undercount have to be made at a fairly coarse level. Thus, for 
example, in the 2001 South African Census, the estimates 
of the undercount were made using only broad age groups, 
sex, population group, province, and enumerator area geo-
type (urban, rural, formal, informal). In turn, this means 
that the population is assumed to be equally undercounted 
within each group defined by the five characteristics above. 
Hence, at granularities finer than those used to determine 
the undercount, the resulting estimate of the count may not 
be reliable.

Insights into the magnitude of the adjustments made, 
and the extent of the undercount, can be gained from an 
evaluation of the weights provided with the data. If the raw 
data made available from a census are unadjusted by a PES, 
then the data weights will reflect the sampling fraction: in a 

Figure 1.7  Age ratios and sex ratios, Zimbabwe 1982, 1992 and 
2002 Censuses
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random 10 per cent sample drawn from a full census, each 
record would be deemed to be representative of 10 people, 
and hence carry a weight of 10. Where a PES has been 
conducted, the excess of the weight over the sampling 
fraction reveals the undercount. Analytically,

1

1
1

1

sample fraction
weight

undercount
sample fraction

undercount
weight

−

−

=
−

= − .

Hence, if for a particular record, the weight is 11.8 in a ten 
per cent sample (i.e. a sample fraction of 0.1), this implies 
an adjustment in respect of an undercount of 15.3 per cent 
(1 – (1/0.1)/11.8).

Where estimates of the undercount have not been provided 
with the data, applying this last formula to the weights 
provided to different groups within the population allows 
the analyst to reverse-engineer the estimated undercounts to 
a fairly high degree of accuracy.

Figure 1.8  Cohort survival ratios by age and sex, 1992 and 2002 
Zimbabwean Censuses
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Chapter 2  Introduction to fertility analysis
Tom A Moultrie

In most settings and in the long term, fertility is the single 
most important determinant of population dynamics and 
growth. This chapter gives an overview of the classes of 
methods available for the measurement of fertility. The 
methods themselves are described in other chapters.

Sources of data
Broadly speaking, data for the measurement of fertility come 
from three sources.

The first of these is information collected as part of an 
ongoing vital registration system. For the most part, the 
registration of births in developing countries is incomplete: 
parents often lack incentives to register births; babies who 
die shortly after birth may not be registered either as a birth 
or as a death; and late registration of births (for example, 
when the child attains school-going age) may mean that 
there is a delay of several years before all the survivors of the 
cohort born in a given year have their births registered.

The second source of data is the answers to questions on 
fertility collected in a census. These questions are typically 
asked of all women of childbearing age (12, or 15 and older, 
often with an upper age limit of 49). Due to the complexity 
of the census exercise, and the need to attempt to enumerate 
every individual, it is not feasible to ask detailed questions 
on fertility. In practice, the census questions seek summary 
information about lifetime fertility (the number of children 
ever born, and still alive) and fertility in a narrowly defined 
period of time before the census. From the latter, demog-
raphers seek to estimate current fertility rates. Due to the 
abridged nature of the questions asked, the scope for internal 
validation and cross-checking of the answers given is limited.

Furthermore, as described in greater detail in the section 
on the evaluation of fertility data, data on fertility collected 
in censuses commonly suffer from two errors. First, data 
on lifetime fertility tend to be increasingly poorly reported 
with increasing age of the mother. Often the omissions 

are of children who have died or who are no longer living 
with the mother. Second, data on recent fertility tend to be 
systematically underreported by all women (similar to the 
widespread under-enumeration of the youngest children in 
the household head-count). Over-enumeration of recent 
births is also a possibility, occasioned by misunderstandings 
related to the reference period used, or shifting of the most 
recent births into the reference period. The methods used 
to estimate fertility from census data explicitly seek to take 
these errors into account.

Third, as well as asking these summary questions on 
fertility, surveys often collect a detailed birth history from 
mothers. Such histories ask about each child’s date of birth, 
vital status (whether the child is still living) and – if the 
child is dead – date of death. The data obtained can be used 
to make detailed estimates of fertility. On the downside, 
however, the effort expended on such detailed data collection 
frequently limits the sample sizes of the investigations. In 
such cases, variability in the estimated rates, and the inability 
to investigate finely-grained spatial or other differentials in 
fertility are an inherent weakness of this approach.

Classes of methods to estimate 
fertility
The methods available to estimate fertility are closely aligned 
with the type of data available.

Direct estimation
Three possible approaches to measuring fertility directly 
exist, depending on the data available.

The first approach uses data from a vital registration 
system in conjunction with estimates of the population by 
age and sex (from a population register, for example, or from 
mid-year population estimates). If data for the numerator 
and denominator are both complete and unbiased, and the 
denominator appropriately reflects the population exposed 
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to risk of giving birth by age, the calculation of fertility rates 
is straightforward.

The second approach makes use of the full birth history 
data collected in a survey and the various validation checks 
that can be built into the survey instrument. Detailed 
information on the birth of each child, as well as the mother’s 
age, is obtained. Accordingly, the age of the mother at the 
birth of each child can be determined exactly, and births and 
exposure-to-risk can be allocated to particular calendar years 
or other time periods. This approach is described in greater 
detail in the chapter on direct estimation of fertility from 
survey data (Chapter 12).

The third approach uses the summary fertility measures 
routinely collected in censuses to estimate recent fertility. 
Methods for doing so are described in Chapter 5. Of course, 
if the data suffer from the common problem of under-
reporting of recent births in censuses, the resulting estimates 
of fertility will be too low.

Indirect estimation
Indirect estimation of fertility makes use of the direct 
estimates of fertility derived from the summary information 
on recent births, but – recognizing that recent births tend to 
be misreported in censuses – uses information on the lifetime 
fertility of younger women reported in the same census to 
adjust the direct estimates. The earliest such method is the 
Brass P/F method, first set out by Brass (1964). The method 
was written up in Manual X (UN Population Division 
1983), along with a number of variants for extending the 
method depending on exactly what data are available. A 
brief description of the P/F method is given in Chapter 6. 
A refinement to the P/F method – the relational Gompertz 
model – was mentioned in passing in Manual X but much of 
the development of the relational Gompertz model occurred 
after Manual X was published. This manual presents several 
extensions to the relational Gompertz model (the basic 
version of which is presented in Chapter 7) that emulate the 
extensions to the P/F method presented in Manual X. These 
include extensions to situations where:

•	 Lifetime and current fertility data from more than one 
census are available, and the analyst is seeking to estimate 
fertility for the intercensal period – the synthetic relational 
Gompertz model (Chapter 10).

•	 Only data on lifetime fertility are available – from two 
censuses or surveys conducted either five or 10 years 
apart – making it necessary to estimate fertility from 
the increments in parities. This is the parity increment 
method discussed in Chapter 11.

•	 Data on lifetime fertility are available from two censuses, 
along with information on births in the intercensal 
period from, for example, a vital registration system. This 
approach (presented in Chapter 14) allows one to assess 
the completeness of the data on registered births.
In this manual all methods of fertility estimation that 

make use of the P/F ratio method are recast here to use the 
relational Gompertz model.

Further analysis of fertility
Finally, there are several other methods that may shed light 
on fertility trends and dynamics.

Using census data, one can calculate both conventional 
and projected parity progression ratios. These measures 
indicate the propensity of women in a population to bear 
further children contingent on the number of children that 
they have already borne. Projected parity progression ratios 
indicate the possible future evolution of parity progression 
for younger women, taking into account current fertility and 
the women’s childbearing history to date. These measures 
are presented in Chapter 8.

Second, methods exist (Chapter 13) for the calculation 
of cohort-period fertility rates from detailed birth history 
data. These rates not only provide information on trends in 
fertility, but can also be used to assess the quality of the birth 
history data.

Finally, there are methods for estimating fertility measures 
based on reverse survival of the enumerated population of 
children and adults (Chapter 9).

All the above-mentioned methods are described and dis-
cussed in this manual.



CHAPTER 2 INTRODUCTION TO FERTILITY ANALYSIS  |  27
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Chapter 3  Assessment of parity data
Tom A Moultrie

The first type of question on fertility asked in censuses 
concerns women’s lifetime fertility. It asks about their total 
number of live births. In order to reduce underreporting of 
dead or absent children (who are usually a larger proportion 
of children born to older women than younger women) and 
guard against underreporting of girls, the questions are often 
structured as a series of six questions about the number of 
sons and daughters:
•	 born alive and living with the mother;
•	 born alive but living elsewhere; and
•	 born alive but now deceased.

Total children born and surviving
The total of the answers to the questions relating to living 
children, present and absent, provides the total number of 
children born and surviving. Adding the reported numbers 
of children dead gives the total number of children ever born 
to the woman. When summing these individual answers, 
care must be taken not to treat error or missing value codes 
as legitimate responses. For example, if a missing value is 
coded as ‘9’, the procedure for deriving measures of the total 
children ever born, surviving and dead must make sure to 
exclude these codes.

Tabulations of the numbers of children reported in re-
sponse to these questions are often truncated at some rela-
tively high number (e.g. 9+). When this is the case, the only 
plausible assumption is that women in that category have 
had the number of children defined by the lower bound of 
the interval. The resulting errors are generally small, even in 
the case of extremely high fertility, unless the truncation is 
applied to the total children ever born, rather than to the 
separate categories of co-resident, absent, and dead sons and 
daughters.

Implausible parities
In evaluating the quality of data on lifetime fertility, the ana-
lyst should be alert to improbable and implausible parities 
relative to the age of the mother. Especially at young ages, a 
small number of women reporting excessively high numbers 
of children ever born can have a material effect on the esti-
mated mean children ever born. Such errors can result from 
misreporting, or manual or automatic mis-capturing of the 
data. A useful rule of thumb is to limit the maximum number 
of live births that a women may have had to one birth every 
18 months from the age of 12, rounding down to the next 
integer. Using this rubric, by exact age 20 (the end point of 
the 15–19 age group), a woman might have had a maximum 
of 5 children; by exact age 25 (closing the 20–24 age group), 
8. If the reported number of lifetime births exceeds this maxi-
mum, the recorded value should be recoded as ‘missing’.

Assessment of enumerator errors
Another common error in the recording of lifetime fertility 
is caused by the failure of the enumerator to record responses 
of ‘zero’ on the census form, leaving the relevant space 
blank instead. It is impossible to be sure whether a blank 
means that the enumerator omitted to ask the question or 
record the response or whether it indicates zero. This error is 
usually more common in the data on younger women, who 
are more likely to be childless or answer zero to some of the 
six questions above. The error in some cases occurs because 
the enumerator assumes that the question is not relevant for 
younger women, or feels uncomfortable about asking it. A 
specific adjustment to the data, the el-Badry correction, is 
often indicated in this case. However, if in every age group 
the number of women with unstated parity is low (as a guide, 
less than 2 per cent of the total), then this reporting error is 
unlikely to have a material impact on the derived average 
parities and these cases can be ignored in further calculations. 
This is the same as making the explicit assumption that 
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women with unstated parity have the same average parity as 
women in the same age group whose parity is known.

Proportions of women childless
The proportions of women who are childless should be 
calculated by age group of mother. The proportions should 
decline sharply with age. In most cases there should be 
around 3–10 per cent of women remaining childless in the 
oldest age-group, reflecting underlying levels of primary 
sterility and voluntary childlessness. In low fertility countries 
the proportion of childless women aged 45–49 may be even 
higher. Proportions of childless at older ages that exceed 
10 per cent should be investigated further, as this may 
indicate significant errors in the data.

Average parities
A key indication of the consistency of data on women’s 
lifetime fertility is a credible pattern of average numbers of 
children alive and dead by age group of mother. In general, 
one would expect average parities (the average total number 
of co-resident, absent and dead children born to women) 
to increase steadily with age. The shape of the distribution 
by age should be sigmoid, with slightly flatter sections 
at the beginning and end, reflecting lower fertility at the 
youngest and oldest ages at which women bear children. 
Significant parity increments in these age groups – that is, 
large increases in average parities between successive age 
groups – are unlikely.

One would also expect average numbers of living children, 
dead children and the proportion of children dead each to 
rise with age.

A second check is to compare the observed average parities 
with results from Demographic and Health Surveys (DHS), 
or from earlier censuses and other surveys. In this regard, 
one can compare the average parities for real birth cohorts of 
women. Thus if two censuses are conducted a decade apart, 
the average parities of women aged x to x + 4 in the earlier 
census can be compared with those of women aged x + 10 
to x + 14 in the second. Average parities should not only 
increase monotonically with age within each census, but 
the cohorts should also show a reasonable parity increment 
between censuses.

If one has data on women aged 50 and over, one can 
make direct comparisons of the consistency of the average 
parities of women who have completed their childbearing – 
for example, by comparing the average parities of women 

aged 45–49 in one census with those of women aged 55–59 
in a second census conducted a decade later. In making 
comparisons of this sort, and especially with comparisons 
involving older women, one should be alert to the possibility 
that mortality might differ according to the number of 
children a woman has had, either directly or because high 
fertility and socio-economic status may be correlated. This 
may hinder the ability to draw definitive conclusions about 
the trend in lifetime fertility.

A further refinement suggested by Feeney (1991) that is 
possible where there is information on the average parities of 
women who have completed their childbearing, is to locate 
these parities approximately in time and plot them. The 
approximate time location is derived by assuming that the 
average parities refer to a point time defined by subtracting 
the mid-point of each age group from the census date and 
assuming that all births in each cohort occurred at some 
mean age of childbearing, m. Thus, assuming m = 27.5 for 
example, if a census was conducted in 1960, the average 
parities of women aged 50–54 would refer (approximately) 
to 1960 – 52.5 + 27.5, or 1935.

The average parity of women of a given age x, Px, is 
calculated by dividing the total number of children ever 
born to women aged x at the census date by the number of 
women aged x at the census:
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where Nx,j is the number of women aged x and of parity 
j in the population, and omega () is the upper limit of 
the parities recorded in the population after excluding 
numerical values assigned as error codes in the data. In five-
year age groups, the average parity of women in each age 
group is given by
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for x = 15, 20,…, 45.

For ease of exposition of many methods, average parities 
in five-year age groups, 15–19, 20–24,… are often indexed 
as P(i), i = 1, 2…, where P(1) refers to the 15–19 age group, 
P(2) the 20–24 age group etc.



32  |  FERTILITY EVALUATION OF SUMMARY FERTILITY DATA FROM CENSUSES

Comparison with other estimates of average parities
Where other fertility data are available for the same country 
at a roughly similar point in time, the estimates should be 
compared. Where the estimates diverge to any great degree, 
efforts should be made to understand why this might be 
the case, although it will often be impossible to conclude 
definitively which of the data sets is deficient.

Comparison with total fertility
As a final check, the average parity for the 45–49 age group 
should be compared with the estimated total fertility (TF) 
derived from the data on recent fertility. If fertility has 
been constant for a long time, and the data were accurately 
reported, the two measures should be very close since period 
and cohort fertility would be equal under these conditions. 
If fertility has been falling, the average parity of older women 

should be greater than TF. As errors of underreporting of 
recent fertility will artificially depress TF, while omission 
of older women’s births will artificially depress the average 
parity in that group, it is important to ensure that both 
measures are plausible. One method of doing this uses the 
relational Gompertz model to examine the fertility and 
parity distributions and their implied relationship.

Example: Assessment of data on lifetime 
fertility
The example below uses the data from the 2008 Census of 
Cambodia distributed by IPUMS. The data (weighted, to 
compensate for the fact that the IPUMS data represent only 
a microsample of the full data) are presented in Table 3.1.

The italicized cell counts represent implausible parities 
according to the rule-of-thumb set out earlier. The values 

Age group of mother
Parity 15–19 20–24 25–29 30–34 35–39 40–44 45–49 Total

0 743,190 426,760 191,720 58,530 46,650 36,050 28,780 1,531,680
1 29,560 167,810 142,720 44,310 34,530 25,790 21,740 466,460
2 4,240 78,410 171,450 90,990 79,080 51,980 36,680 512,830
3 1,200 16,940 82,960 84,220 98,640 67,690 48,190 399,840
4 830 4,020 26,870 48,510 79,480 70,400 56,190 286,300
5 430 1,340 6,910 21,010 49,250 56,980 51,500 187,420
6 270 630 2150 8,710 26,020 37,070 41,420 116,270
7 120 380 630 3,410 12,530 23,730 29,680 70,480
8 80 200 400 1,000 5,450 12,180 18,320 37,630
9 60 100 120 350 2410 6,030 10,040 19,110
10 40 120 140 190 1090 3,120 5,660 10,360
11 50 0 70 70 360 1,420 2,010 3,980
12 20 50 20 30 170 670 1,350 2,310
13 10 10 0 10 60 270 410 770
14 0 10 10 0 10 60 190 280
15 0 0 10 0 20 90 150 270
16 0 0 0 0 0 10 30 40
17 0 0 0 0 0 10 30 40
18 0 0 0 0 0 0 20 20
19 0 0 0 0 0 0 10 10
20 0 0 0 20 0 0 0 20

Unknown 220 380 250 290 130 210 120 1,600
TOTAL 780,320 697,160 626,430 361,650 435,880 393,760 352,520 3,647,720

Table 3.1  Total children ever born by age group of mother, 
Cambodia, 2008 Census
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in these cells are summed and this total is added to the 
total number of women in each age group whose parity was 
missing in Table 3.1. The original values are then set to zero, 
resulting in the distribution shown in Table 3.2.

The proportion of women whose parity is unknown 
after making this adjustment is shown in the third last row 
of Table 3.2. In every age group, the proportion of women 
for whom parity data are missing is trivial. Although the 
proportion is somewhat higher in younger than in older age 
groups, even in the 15–19 age group only 0.11 per cent of 
women’s parities are unknown or implausible. An el-Badry 
correction is therefore unnecessary and the unknown cases 
can be excluded from the calculation of average parities, 

thereby implicitly assuming that women with implausible or 
missing data have the same average parities as other women of 
the same age. (The data presented here were chosen because 
an el-Badry correction is not required. Chapter 4 (describing 
the el-Badry correction) presents data from another country 
whose parity data are not of as good quality.)

The proportion of women reported to be childless, shown 
in the second last line of Table 3.2, declines rapidly with age: 
by age 40, less than 10 per cent of women are still child-
less. As expected, this proportion falls only slightly further 
between the last two age groups: not many women start their 
childbearing after age 40. The proportion of women aged 
45–49 who are childless (8.2 per cent) is relatively high. The 

Age group of mother
Parity 15–19 20–24 25–29 30–34 35–39 40–44 45–49 Total

0 743,190 426,760 191,720 58,530 46,650 36,050 28,780 1,531,680
1 29,560 167,810 142,720 44,310 34,530 25,790 21,740 466,460
2 4,240 78,410 171,450 90,990 79,080 51,980 36,680 512,830
3 1,200 16,940 82,960 84,220 98,640 67,690 48,190 399,840
4 830 4,020 26,870 48,510 79,480 70,400 56,190 286,300
5 430 1,340 6,910 21,010 49,250 56,980 51,500 187,420
6 0 630 2150 8,710 26,020 37,070 41,420 116,000
7 0 380 630 3,410 12,530 23,730 29,680 70,360
8 0 200 400 1,000 5,450 12,180 18,320 37,550
9 0 0 120 350 2410 6,030 10,040 18,950
10 0 0 140 190 1090 3,120 5,660 10,200
11 0 0 70 70 360 1,420 2,010 3,930
12 0 0 20 30 170 670 1,350 2,240
13 0 0 0 10 60 270 410 750
14 0 0 0 0 10 60 190 260
15 0 0 0 0 20 90 150 260
16 0 0 0 0 0 10 30 40
17 0 0 0 0 0 10 30 40
18 0 0 0 0 0 0 20 20
19 0 0 0 0 0 0 10 10
20 0 0 0 0 0 0 0 0

Unknown 870 670 270 310 130 210 120 2,580
TOTAL 780,320 697,160 626,430 361,650 435,880 393,760 352,520 3,647,720

Proportion missing 0.111% 0.096% 0.043% 0.086% 0.030% 0.053% 0.034%
Proportion childless 95.24% 61.21% 30.61% 16.18% 10.70% 9.16% 8.16%
Average parities 0.0604 0.5833 1.4382 2.4035 3.1670 3.8126 4.3184

Table 3.2  Total children ever born by age group of mother after 
correcting for implausible parities, Cambodia, 2008 Census
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average parities suggest very low levels of fertility in teen-
age girls, with lifetime fertility increasing to 4.3 children 
per woman in the 45–49 age group. A plot of the average 
parities has a sigmoid shape, with the largest parity incre-
ments occurring to women in their 20s and early 30s, the 
ages where fertility is expected to be highest (Figure 3.1).

Figure 3.1 also shows the average parities by age group 
according to the 2005 and 2010 Cambodian Demographic 
and Health Surveys (available from the www.statcompiler.com 
DHS website). The average parities reported in the Census 
and the 2010 survey are very similar. However, two features 
suggest one should be wary of concluding that this implies 
that they are accurate. First, given the timing of the three 
enquiries, the data from the census should lie approximately 
half-way between the estimates from the two DHSs. This is 

not the case. Second, it can be seen that the average parity of 
women aged 40–44 in the 2005 DHS is a little higher (by 
0.2 of a child) than that of women aged 45–49 in the 2010 
DHS. While fertility is low among women in their late 40s 
in Cambodia, and random error cannot be discounted, this 
result should encourage a little scepticism about the data. 
However, overall, the average parities from the two DHSs 
are not fundamentally at odds with those indicated by the 
2008 Census.
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Figure 3.1  Average parities by age group, Cambodia, 2008 
Census, 2005 DHS and 2010 DHS
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Chapter 4  The el-Badry correction
Tom A Moultrie

Description of the method
The el-Badry correction is a method for correcting errors 
in data on children ever born caused by the enumerator or 
respondent failing to record answers of ‘zero’ to questions 
on lifetime fertility and, instead, leaving the response blank. 
When this occurs, during data processing the response is 
coded as ‘missing’ or ‘unknown’, even though it was evident to 
the enumerator at the time of data collection that the correct 
answer was ‘zero’. The method apportions the number of 
women whose parity is recorded as ‘missing’ between those 
whose parity is regarded as being truly unknown, and those 
women who should have been recorded as childless but 
whose responses were left blank. It does this apportionment 
at an aggregate level and not on an individual basis.

Data required AND Assumptions
The method requires the number of children ever born, 
classified by age group of mother, including the count of 
women with missing data (i.e., where the field was left 
blank or contained an out-of-range code or a code for not 
answered or refused).

The method assumes that a constant proportion of 
women at each age truly did not state their lifetime fertility 
(i.e. parity) at the time of data collection. The balance of 
the women with unreported parities is assumed to be 
erroneously recorded as not stated when the women are, in 
fact, childless.

Caveats and warnings
The method relies on the existence of a linear relationship 
between the proportions of women whose parity is not 
stated, and that of women reported to be childless. If such 
a linear relationship is observed, the adjusted denominator 
used to calculate average parities should exclude those 
women whose parity (after correction) is still regarded as 
unknown. This reflects the implicit assumption that these 

women’s parity distribution is no different from those of 
women of the same age whose parity is known.

Where the data indicate that a correction is needed 
because of the large proportion of missing parity information 
but the method cannot be applied (for example, due to 
unavailability of data by age, or violation of the assumption 
of linearity), women of unknown parity should be included 
in the denominator used to determine average parities. This 
implicitly assumes that the parity of all such women is zero 
(i.e. that all women of unknown parity are childless). This 
will, of course, result in under-estimated average parities, as 
not all women of unknown parity are indeed childless.

Application of method
We define Ni = 5Na for a = 15, 20,…,45 and i = a/5–2, to be 
the number of women in age group i in the population. 
Thus, N1 represents the number of women aged 15–19 in 
the population. We define Ni , j to be the number of women 
in age group i of parity j, and Ni,u to be the number of 
women in age group i whose parity is unknown.

Step 1: Determine the proportion of women in each age 
group whose parity is a) unknown; and b) reported as zero
Extract a table of reported children ever born ( j ) by 
women’s age group (i ) from the census data to obtain

 
Ni, j. 

For each age group missing data on parity (i.e. blank fields 
and invalid codes) should be combined with codes for parity 
not stated to produce Ni,u. The proportion of women in age 
group i with parity unknown is then

U
N
Ni

i u

i

= , .

The proportion of women in age group i who are reportedly 
childless (i.e. are of parity zero) is given by
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If the Ui are small (less than 2 per cent in each age group), 
it is not worth applying the correction. In such a situation, 
average parities should be determined by assuming that the 
parity distribution of women with not stated parity is the 
same as that of women whose parity is known, by omitting 
the women with unstated parities from the denominator of 
the calculation. Thus, if Pi is the average parity of women in 
age group i,
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If the proportions of women with parity not stated exceed 
2 per cent, it is worth assessing whether the correction can 
be applied.

Step 2: Plot the points (Zi , Ui ) and evaluate the data
For the method to work correctly, the series of points 
(Zi , Ui ) should lie on, or very close to, a straight line. In 
some cases, curvature may be observed in the data points 
corresponding to either the oldest or the youngest ages. If 
the curvature affects the older ages only, even if it is quite 
extreme, it is acceptable to exclude the oldest, or two oldest, 
age groups from the fitting process and fit a straight line 
to the remaining points since the method has the greatest 
absolute impact on the proportions not stated at the youngest 
ages. If the curvature is most noticeable among the younger 
women, the method should not be used as exclusion of the 
data points relating to women aged 15–24 would result in 
the regression performing an out-of-sample extrapolation, 
the results of which could suggest illogical adjustments in 
these age groups.

If a strongly linear relationship cannot be identified, 
even after excluding one or two data points from older 
women, the method cannot be applied. In this situation, it 
is preferable to assume that all women of not stated parity 
are childless, and to include them in the denominator of the 
average parity calculation
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The analytical report should note that this has been done, 
and that, therefore, the average parity values are liable to be 
underestimated.

Step 3: Determine the slope and intercept of the best 
straight line fit to the data
The slope (γ) and intercept (β ) of the fitted line are found by 
means of linear regression of Zi against Ui applied to those 
data points selected for inclusion, that is, Ui = β+γZ i .

The intercept (β ), which is independent of age (i ), is 
the estimate of the proportion of those women in each age 
group with unknown parity whose parity is deemed to be 
truly unknown, and not misreported.

Step 4: Estimation of the revised numbers of childless 
women and women whose parity is not stated
The adjusted proportion of women in age group i that is 
estimated to be truly childless is given by Z Z Ui i i

* = + − β . 
That is, the revised proportion of women of zero parity in 
any age group is the proportion actually recorded as being of 
zero parity together with the proportion of women in that 
age group of not stated parity less the estimated proportion 
of women whose parity is regarded as being truly unknown. 
The revised estimate of the number of childless women in 
age group i is given by N N Zi i i,

* *
0 = × . Thus, the estimated 

true proportion of women in each age group whose parity 
is unknown is given by N Ni u i,

* = ×β . The Ni j,
*

 
for other 

parities ( j>0) are unchanged.

Step 5: Calculation of average parities
If an el-Badry correction has been applied to the data, the 
average parities are given by
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This equation embodies the assumption that the remaining 
women in age group i of unknown parity, βNi , who are 
omitted from the denominator, have the same average parity 
as the women in age group i whose parity is known.

Interpretation and checks
The value of β shows the estimated proportion of women 
whose parity is truly not stated. Larger values of β are 
therefore associated with poorer quality data.

Occasionally, the method may have a contrary effect and 
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suggest that the number of women with not-stated parity 
is understated, and that the number of women of reported 
parity zero should be reduced. Such a situation will arise if 
β>Ui . If this is so, the correction should not be applied to 
that age group.

Worked example
The spreadsheet (see website) implements the method using 
data from the 1989 Kenya Census data obtained from 
IPUMS. The original data are presented in Table 4.1.

Inspection of the data reveals that they have been edited 
to disallow the recording of high parities in women aged 

Table 4.1  Children ever born, by age group of mother at census 
date, Kenya, 1989 Census

Age group (i )
Parity 15–19 (1) 20–24 (2) 25–29 (3) 30–34 (4) 35–39 (5) 40–44 (6) 45–49 (7)

0 597,560 198,600 59,400 23,120 14,580 11,040 9,560
1 134,700 224,660 83,140 26,140 13,620 9,460 7,740
2 38,120 202,300 120,940 38,340 19,180 13,240 9,280
3 11,120 126,500 150,500 53,880 28,020 17,000 12,440
4 6,820 59,700 146,500 73,280 37,340 21,400 14,800
5 1,740 33,720 102,300 87,720 48,140 28,980 18,560
6 0 12,480 58,980 83,580 56,520 35,260 26,280
7 0 0 57,180 91,800 56,240 41,260 28,640
8 0 0 0 64,740 56,560 42,700 32,920
9 0 0 0 0 40,780 39,480 33,000
10 0 0 0 0 26,840 32,240 27,920
11 0 0 0 0 14,920 22,840 21,920
12 0 0 0 0 8,280 14,660 14,720
13 0 0 0 0 3,740 7,900 8,920
14 0 0 0 0 2,180 4,080 4,900
15 0 0 0 0 1,260 2,100 2,860
16 0 0 0 0 960 1,200 1,540
17 0 0 0 0 520 680 1,000
18 0 0 0 0 420 520 620
19 0 0 0 0 140 340 380
20 0 0 0 0 160 300 280
21 0 0 0 0 240 160 280
22 0 0 0 0 40 100 60
23 0 0 0 0 20 20 80
24 0 0 0 0 60 20 80
25 0 0 0 0 60 40 0
26 0 0 0 0 60 40 80
27 0 0 0 0 80 40 60
28 0 0 0 0 20 40 40
29 0 0 0 0 20 0 40
30 0 0 0 0 340 440 360

Not Stated 402,780 147,540 61,920 31,580 20,240 15,420 12,960
TOTAL 1,192,840 1,005,500 840,860 574,180 451,580 363,000 292,320
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less than 35. The editing rule applied at the preparatory 
stage would appear to be stricter than the one suggested in 
Chapter 3. Thus reports of 20–24 year old women have been 
restricted to parity 6 or less (rather than parity 8), reports for 
those aged 25–29 are truncated at parity 7 (rather than parity 
12) and those of 30–34 year olds at parity 8 (rather than 
15). However, implausibly high parities have been allowed 
to remain at ages 35 and more. Therefore, further light 

editing of the data highlighted in italics in Table 4.1 could 
be undertaken by re-assigning to the unknown category 
reports of parity 19 and over for age group 35–39, parity 23 
and over in the age group 40–44, and parity 26 and over in 
the last age group, 45–49.

An option can be selected on the Introduction tab of the 
spreadsheet to set implausible parities to ‘not stated’ prior to 
the application of the method.

Age group (i )

Parity 15–19
(1)

20–24
(2)

25–29
(3)

30–34
(4)

35–39
(5)

40–44
(6)

45–49
(7)

0 597,560 198,600 59,400 23,120 14,580 11,040 9,560
1 134,700 224,660 83,140 26,140 13,620 9,460 7,740
2 38,120 202,300 120,940 38,340 19,180 13,240 9,280
3 11,120 126,500 150,500 53,880 28,020 17,000 12,440
4 6,820 59,700 146,500 73,280 37,340 21,400 14,800
5 1,740 33,720 102,300 87,720 48,140 28,980 18,560
6 0 12,480 58,980 83,580 56,520 35,260 26,280
7 0 0 57,180 91,800 56,240 41,260 28,640
8 0 0 0 64,740 56,560 42,700 32,920
9 0 0 0 0 40,780 39,480 33,000
10 0 0 0 0 26,840 32,240 27,920
11 0 0 0 0 14,920 22,840 21,920
12 0 0 0 0 8,280 14,660 14,720
13 0 0 0 0 3,740 7,900 8,920
14 0 0 0 0 2,180 4,080 4,900
15 0 0 0 0 1,260 2,100 2,860
16 0 0 0 0 960 1,200 1,540
17 0 0 0 0 520 680 1,000
18 0 0 0 0 420 520 620
19 0 0 0 0 0 340 380
20 0 0 0 0 0 300 280
21 0 0 0 0 0 160 280
22 0 0 0 0 0 100 60
23 0 0 0 0 0 0 80
24 0 0 0 0 0 0 80
25 0 0 0 0 0 0 0
U 402,780 147,540 61,920 31,580 21,480 16,060 13,540

TOTAL 1,192,840 1,005,500 840,860 574,180 451,580 363,000 292,320 
Ui 0.338 0.147 0.074 0.055 0.048 0.044 0.046
Zi 0.501 0.198 0.071 0.040 0.032 0.030 0.033

Table 4.2  Correction of parity data, and calculation of proportion 
of women of parity zero, and parity not stated, Kenya, 1989 Census
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Step 1: Determine the proportion of women in each age 
group whose parity is a) not stated; and b) equal to zero
Table 4.2 presents the revised data, together with the calcu-
lation of the proportions of women of parity zero, and parity 
not stated in each age group.

The data include high proportions of women with parity 

not stated at ages 15–19
402 780
1192 840

0 338,
, ,

.=
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, 20–24 

(0.147) and, to a lesser extent, the older age groups. The 
proportion of women reported as childless (Zi) falls rapidly, 
from around 50 per cent in the first age group down to 
around 3 per cent at the end of the childbearing period. On 
these grounds, it is worth investigating whether an el-Badry 
correction can be applied to the data.

Step 2: Plot the points (Zi , Ui ) on a set of axes and 
evaluate the data
The Zi and Ui are plotted against each other (shown by 
the diamonds) in Figure 4.1. The straight line fitted to 
the points is shown. If a point is excluded from the fitting 
process, the figure in the spreadsheet represents it with an 
open diamond.

There is a clear linear relationship between the plotted 
points, and all points can be included in the application of 
an el-Badry correction.

Step 3: Determine the slope and intercept of the best 
straight line fit
Performing a linear regression of the Zi on the Ui for the 
selected points gives a value for the intercept (beta) of 
0.02745. This suggests that around 2.7 per cent of the data 
on women’s parities can be regarded as truly missing.

Step 4: Estimation of the revised numbers of childless 
women, and women whose parity is not stated
The revised number of women of zero parity is given by
N N Z Ui i i i,

* ( )0 = + − β , while the revised numbers with 
parity unknown are calculated by multiplying the total 
number of women in each age group by β as shown in 
Table 4.3.

For example, the number of women aged 20–24 estimated 
to be truly of an unknown parity is given by 0.02745× 
1,005,500 = 27,603. The corrected estimate of the number 
of childless women aged 15–19 is derived from 1,192,840× 
(0.501 + 0.338 – 0.027) = 967,594.

Table 4.3  Revised estimates of numbers of women with parity not 
stated and childless women by age, Kenya, 1989 Census

Age group (i ) Revised parity 
not stated Revised zero parity

15–19 (1) 32,746 967,594
20–24 (2) 27,603 318,537
25–29 (3) 23,084 98,236
30–34 (4) 15,763 38,937
35–39 (5) 12,397 23,663
40–44 (6) 9,965 17,135
45–49 (7) 8,025 15,075

Step 5: Calculation of average parities
Since an el-Badry correction has been applied, corrected 
average parities, presented in Table 4.4, are then derived 
using Equation 2.

Note that, relative to the average parities produced if 
the correction is not applied (and assuming therefore that 
all women with not stated parity are of parity zero), the 
correction increases the parities in each age group by a 
constant, 1

1− β
.

Table 4.4  Corrected average parities by age group, Kenya, 1989 
Census

Age group (i ) Average parity
15–19 (1) 0.242
20–24 (2) 1.525
25–29 (3) 3.214
30–34 (4) 4.760
35–39 (5) 6.239
40–44 (6) 7.120
45–49 (7) 7.510

Detailed description of the method
The method is fully described in el-Badry (1961). el-Badry’s 
fundamental insight was that, if it could be assumed that:
1)	�there is a linear relationship between the proportions of 

childless women of a given age in a population, and the 
proportion of women whose parity is not stated; and

2)	�the true, unknown, proportion of women whose parity is 
not known is a constant and independent of age, then
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	 U Zi i= +α β* ,	 (3)
where αZ*

i is the proportion of truly childless women 
reported as parity not stated, and b is the true, constant, 
proportion of women with parity not stated.

Hence, if αZ*
i have been misclassified as not stated when 

they are truly childless, then Z Z Z Zi i i i= − = −* * *( ) .α α1  
and therefore:

	 Z Z
i

i*

( )
=

−1 α
	 (4)

and substituting this into Equation 3,

U
a
Z Zi i i=

−
+ = +

α β γ β
1

where gamma can be thought of as the odds of a childless 
woman being classified as being of unknown parity.

Thus, a regression of Ui on Zi will give estimates of β (as 
well as γ and α).

From Equation 3, we then obtain U Z Z Zi i i i− = = −β α * * , 
and hence that Z N U Zi i i i

*
,
*= = − +0 β

 
and U Ni i

* = β .
Note that, even though we have two identities involving 

Zi , they will only give the same answer when the fit is exact. 
Convention dictates that we prefer to use Equation 3 rather 
than Equation 4, on the grounds that it relies on the fitted 
value of β (the estimated proportion of truly not stated 
parities) rather than on the value of α, which lacks intuitive 
interpretability.

After deriving corrected values of Z*
i and U*

i , average 
parities can be calculated using Equation 2.

Having applied the correction, care should be taken to 
ensure that, in every age group, the adjusted number of 
childless women (that is, of parity zero) is less than the 
number of women reporting no births in the reference 
period in response to the question on recent fertility. Hence 
the revised Z*

i can be used to determine the minimum 
number of women who could not have had a birth in the 
reference period before the census.

Figure 4.1  Fitting of el-Badry correction, Kenya, 1989 Census
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A version of the correction designed for (the now-rare) 
situations where questions on children ever born are asked 
only of married women is described in Annex II of Manual X 
(UN Population Division 1983).

References 
el-Badry MA. 1961. “Failure of enumerators to make entries of 

zero: errors in recording childless cases in population censuses”, 
Journal of the American Statistical Association 56(296):909–924. 
doi: 10.1080/01621459.1961.10482134

UN Population Division. 1983. Manual X: Indirect Techniques for 
Demographic Estimation. New York: United Nations, Department 
of Economic and Social Affairs, ST/ESA/SER.A/81. http://www.
un.org/esa/population/techcoop/DemEst/manual10/manual10.
html



42  |  FERTILITY EVALUATION OF SUMMARY FERTILITY DATA FROM CENSUSES

Chapter 5  Evaluation of data on recent fertility 
from censuses

Tom A Moultrie

Before evaluating the data on recent fertility collected in a 
census, it is important to examine the precise wording of 
the questions used to capture information on recent births 
by consulting the questionnaire. Over successive waves of 
censuses, and in different countries, widely different ques-
tions have been used. The wording can influence the validity 
of the estimates and the direction and magnitude of biases 
or errors in the data.

The generic forms of the census questions on recent 
fertility fall into three broad categories:
•	 Did you give birth in the last year (or other reference period)?

This question produces a simple binary answer. Multiple 
births in the same reference period are not captured. These 
could arise from the birth of twins or triplets from a single 
pregnancy, or from a very short birth interval separating 
two different pregnancies. Neither of these outcomes is 
likely to influence the overall fertility rate to a large extent 
in that birth intervals shorter than a year are rare, and the 
probability that a pregnancy will result in multiple births 
is less than 2 per cent in most settings (sub-Saharan Africa 
being a possible exception). When faced with data col-
lected in this form, it is recommended that the simplify-
ing assumption be made that all births occurred halfway 
through the reference period, and that only one live birth 
resulted from each pregnancy.

•	 How many children have you given birth to in the last year 
(or other reference period)?
This question is more refined than the first form given 
above. It does not yield information on the timing of 
birth within the reference period, but it does capture in-
formation on multiple births to the same woman, with-
out distinguishing between twins and short birth inter-
vals. Again, it is reasonable for the purposes of calculation 
to assume that the births occurred halfway through the 
reference period.

•	 What was the date of your last live birth?
This question seeks to identify the timing of the last 
delivery with a greater degree of accuracy, although 
typically only the month and year of the last birth are 
recorded. If there are follow-up questions on the number 
of births that occurred at that time these give more accu-
rate information on the number of recent births.
Additional questions (for example, on the survival of the 

last born child; the sex of last born child; or the date of the 
last-but-one birth) are occasionally encountered. Answers 
to such questions can be used, for example, to estimate, 
directly from the data, child mortality rates by sex or a sex 
ratio at birth.

In evaluating the quality of data on recent fertility, the 
following checks might be conducted:
1)	��Comparison of the total number of births with that 

expected (for example, against numbers from a vital regis-
tration system, or from application of an accurate series of 
age-specific fertility rates to the enumerated population 
of women – although in the latter case, systematic under-
enumeration of the women might also cause the rates to 
be underestimated).

2)	�Assessment of the plausibility of the distribution of age-
specific fertility rates calculated directly from the data. 
Plausible fertility distributions are almost invariably 
unimodal, concave, slightly right-skewed, and close to 
zero at the extremes of the childbearing age range. The 
distribution should also exhibit a reasonably smooth 
progression of fertility rates from one age to the next.

3)	�Plausibility checks on the reported numbers of births in 
the reference period. In some censuses (e.g. South Africa 
1996), a significant proportion of respondents confused 
the questions on lifetime and recent fertility, and gave 
the same answers to both questions. This error manifests 
itself in a strong diagonal in tabulations of children ever 
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born by children born in the last year by age of mother 
(Moultrie and Timæus 2002).

4)	�If data on the sex of the last born child have been collected, 
the reported sex ratio at birth should be checked. The sex 
ratio at birth is usually about 1.05, but could be as low as 
0.95 in African populations and up to 1.1 in some Asian 
populations. Values outside the range of 0.99 to 1.06 
should be subjected to careful scrutiny.
In all cases, care must be taken to identify correctly the 

universe of women required to answer the questions (in 
particular the ages and marital status of eligible respondents), 
as well as the rules governing recording and coding of non-
response and incorrect data.

Assessment of current fertility data
Before proceeding with an analysis of age-specific fertility 
rates, it is advisable to investigate the extent to which the 
data on recent births are missing or implausible. The absence 
of any missing data almost certainly indicates that the data 
have been edited. If this is suspected, further investigations 
into the extent of editing and/or imputation of the data are 
recommended to the extent that this is possible, for example 
through examination of the distribution of imputed values 
where imputation flag variables are included in the data.

The proportion of the data that is missing should also be 
checked. If this exceeds five per cent of the total number 
of records relevant for current fertility data, further 
investigations should be done. In particular, one should 
examine the age distribution of missing cases. If these are 
concentrated among young women or women in their forties 
this would suggest that the missing cases are missing because 
these mothers did not have a birth in the reference period, 
and no answer was recorded by the enumerator rather than 
an entry of zero being made. This is an error very similar to 
that giving rise to the el-Badry correction.

When the data are tabulated by the number of births in 
the reference period (as opposed to simply whether or not 
a birth occurred in the reference period), the distribution 
of single versus multiple births should be investigated. 
Generally, less than 2 per cent of pregnancies result in 
multiple births. Triplets and higher order multiple births are 
exceedingly rare (less than 0.5 per cent of deliveries). If the 
proportion of multiple births in the reference period seems 
too high, it is recommended that tabulations of children 
ever born and births in the last year are produced for each 
age group of women. If children ever born and births in 

the last year are equal in a large proportion of cases, even 
for parities two and over, this may suggest that respondents 
or enumerators did not understand the distinction between 
the questions on lifetime and recent fertility. However, it is 
possible that a large proportion of younger women with only 
one child ever born gave birth to that child in the reference 
period and a close match between lifetime reports of just 
one birth and recent reports of one birth in young women 
may not indicate reporting errors.

Direct measurement of fertility from 
census data
When the data are of sufficient quality, it is possible to 
estimate age-specific fertility rates directly. When the data 
are of inferior quality, age-specific fertility rates from the 
direct calculation are used as inputs into various methods 
that aim to produce more reliable estimates of the level of 
fertility using indirect techniques.

The exact form of the age-specific fertility rates that can 
be derived hinges on the nature of the data collected. An 
age-specific fertility rate at any given age (or in any age 
group) is the ratio of the number of births to women of that 
age (in that age group) in a defined period to the number of 
person-years lived by women of the same age (in the same 
age group) in that time period. To calculate age-specific 
fertility rates exactly, one would need to know reliably the 
exact dates of birth of mothers (to establish the mother’s age) 
and their children. One can then calculate precisely the age 
of the mother at the birth of her child, as well as allocate her 
exposure to risk to the relevant ages or age groups over the 
period of investigation.

The data required for such precise calculations are not 
usually available in census microdata records, either because 
exact dates were not collected in the first place, or because 
of the potential for breaching confidentiality if full dates 
of birth are provided to end-users of the data. In addition, 
census data are often of insufficient quality to warrant the 
additional precision. Heaping of months of birth (e.g. 
on January) as well as years of birth (e.g. those ending in 
0 or 5) are commonly encountered problems. Extended 
census enumeration periods can introduce problems with 
translating a reference period (e.g. within the last year from 
the interview date) to a calendar time period (e.g. 2008). 
Furthermore, retrospective questions about recent births 
asked in a census fail to capture information about births to 
mothers who have since died or left the country.
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Four possible combinations of reporting of mother’s vital 
information, and recent births, are typically encountered 
(Table 5.1).

Even in the fourth case identified in Table 5.1, which 
contains the most detailed information, expending effort to 
calculate accurately the exposure to risk for the purposes of 
estimating fertility is not generally warranted, as heaping of 
dates on particular months and other data quality problems 
could severely distort the resulting estimates. Thus, use of 
simple approximations for the calculation of fertility rates 
from census data is usually appropriate. Chapter 12, cov-
ering the direct measurement of fertility from survey data, 
describes the more precise calculation of the exposure to risk 
and estimation of fertility rates from data of good quality.

Cases 1 and 2: Estimation of age-specific fertility rates 
directly from the data when no information is available 
on the timing of the child’s birth
In the first two cases identified in Table 5.1, all that might be 
known about the mother’s recent fertility is whether or not 
she gave birth to at least one child in the period before the 
census. In more informative variants of the recent fertility 
question, the mother may be asked about the number of live 
births in the period preceding the census. Such a question 
allows the identification both of multiple births from the 
same pregnancy (twins, triplets etc.), as well as instances of 
more than one pregnancy ending in the defined period.

Since the mother’s age at birth is not known, the 
approximation usually used is to tabulate the fertility rates 
by the reported age of the mother at the census date. The 
additional assumption is then made that all births occurred 
half-way through the interval in question. This means that 
mothers are, on average, older by half the interval length at 
the time of the census, with the implication that the ages to 

which the fertility rates actually refer are younger than the 
reported ages at census. Most standard methods of estimating 
fertility indirectly compensate for the displacement of ages 
arising from this mismatch.

The additional information (on mother’s month and year of 
birth) available in the second case is not particularly helpful in 
refining the estimates of fertility since additional assumptions 
of uniformity of the distribution of children’s birthdays are 
still required. Thus, where the data that were collected fall 
into either the first or the second case identified in Table 5.1, 
fertility rates are estimated by dividing the count of children 
reported born in the reference period (by age of mother at the 
census date) by the number of women of that age. The total 
number of births in the reference period reported by women 
aged x at the census date, Bx, is given by

,
0

.x x k
k

B k N
ω

=

=∑

where k is the reported number of births in the reference 
period, ω is the maximum value of k in the data and Nx,k is 
the number of women aged x at the census reporting k births 
in the last year. If  is classified as an open interval, e.g. 3+ 
births in the reference period, women in that category are all 
assumed to have had the number of births that opens that 
interval. Again, the error thus introduced is small.

The number of women aged x is given by

N Nx x k
k

=
=
∑ ,

0

ω

.

Women whose recent births are unknown or unrecorded 
must be excluded from both the numerator and denominator, 
with the implicit assumption that their fertility is no different 
from that of women whose recent fertility is known. Age-
specific fertility rates (ASFRs) at age x are given by

Mothers’ vital information

Reporting of children born in the preceding period† Age in completed 
years at census

Date of birth 
(at least month and 

year)

Number of children born (or simple binary, yes/no) (1) (2)
Date of birth of last born child (at least month and year) (3) (4)
†�Typically the preceding period is 12 months, but analysts should be alert to non-standard reference periods, 
for example based on time elapsed since an important national event or holiday

Table 5.1  Taxonomy of data on mother and children for 
estimating recent fertility



CHAPTER 5 EVALUATION OF DATA ON RECENT FERTILITY FROM CENSUSES  |  45

fx=Bx /Nx.

Using the conventional age range (from 15 to 49, inclusive) 
as the limits for the summation, the implied Total Fertility 
(TF) from the single-age data is

TF fa
a

=
=
∑
15

49

.

Total fertility is a synthetic cohort measure – indicating the 
number of children a woman would have if she survives to age 
50 (deemed to be the end of childbearing) and experiences 
the age-specific fertility rates currently observed immediately 
before the census throughout her reproductive life.

Fertility rates by single years of age should be calculated 
and plotted to check the internal coherence of the data. The 
ASFRs will tend to be less erratic than either the numerators 
or the denominators on their own, and may indicate 
plausible levels and distributions of fertility. A highly erratic 
series of age-specific fertility rates by age, departing markedly 
from the anticipated n-shape, offers a strong indication that 
the recent fertility data are problematic, and suggests that 
further investigations are required.

Finally, age-specific fertility rates in conventional five-
year bands, 5 fx, where x = 15, 20,…, 45, can be derived:

f f
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where the index, i, is determined by the relation i = (x/5)–2. 
The measure of total fertility is thus

7

1

5 i
i

TF f
=

= ∑ .

While the TF is an age-standardized measure of fertility (im-
plicitly assuming a uniform distribution of the population 
of child-bearing population of women by age in each age 
group), the fertility rate in any age group is not standardized 
within the group. As a result, the TF derived from calcula-
tions using age-groups and single years of age will differ to a 
small degree, typically in the second or third decimal place.

Total fertility should be compared with estimates from 
other data sources from the same country (e.g. DHS). It 
is worth remembering, however, that the ASFRs and TF 

produced using this method do not take into account the 
true exposure-to risk in the derivation of the denominator. 
In addition, the numerator includes events that took place 
during the reference period categorized by the age of the 
mother at the end of the reference period, not by her age 
at the time the event took place. Most methods of indirect 
fertility estimation adjust the derived fertility rates to account 
for this age shift. For purposes of basic comparison (that is, 
assessing the shape and level of the fertility distributions), 
the differences in classification by age are not of major 
importance. However, the F-only variant of the relational 
Gompertz model provides a method of unshifting fertility 
rates while smoothing them, should this be desired.

Example: Direct calculation of 
fertility
In the 2008 Cambodian Census, women were asked about 
the number of children they gave birth to in the previous 
year. Mother’s age was classified by age at the census date. 
The data are shown in Table 5.2.

The ‘missing’ column shows that only 1,600 women, 
out of nearly 3.65 million aged between 15 and 49, did not 
have their recent fertility recorded. This represents 0.04 per 
cent of all women, and will have no material impact on the 
estimated fertility of women in Cambodia. A further check 
on the age distribution of these cases shows no clear age 
pattern of omission. The number of births is given by the 
weighted sum of women reporting 1, 2, 3 and 4 deliveries, 
in the last row. This calculation shows that 173,070 women 
(170,910 + 1,760 + 250 + 150) gave birth to a total of 175,780 
births (1×170,910 + 2×1,760 + 3×250 + 4×150) during the 
year preceding the census. Of these women, 98.8 per cent 
(170,910/173,070) experienced a single birth. 1.0 per cent 
had twins, and 0.2 per cent triplets or higher-order multiple 
births. The possibility of quintuplets (or five births in 
two deliveries over the period) is remote and need not be 
considered. Had the census not counted the multiple births 
separately, the crude birth rate would have been under-
estimated by a factor of 173,070/175,780 = 0.984. This 
represents an under-estimate of just 1.6 per cent.

Using the data above, the series of single-age ASFRs is 
derived by dividing the total number of births to women of 
each age by the number of women reporting their current 
fertility, that is, excluding those women who did not report 
how many births they had in the last year. The rates are 
shown in Figure 5.1. Even though the number of women 
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Table 5.2  Recent fertility by age of mother at the census date, 
Cambodia, 2008 Census

Births in the last year
Age 0 1 2 3 4 Missing Births Women ASFR
15 160,980 120 0 0 0 80 120 161,180 0.0007
16 152,710 500 0 0 0 50 500 153,260 0.0033
17 144,970 1,250 10 10 0 20 1,300 146,260 0.0089
18 182,500 3,540 20 0 0 40 3,580 186,100 0.0192
19 127,840 5,640 10 0 0 30 5,660 133,520 0.0424
20 147,990 8,840 80 0 0 90 9,000 157,000 0.0574
21 123,960 9,500 30 0 0 70 9,560 133,560 0.0716
22 126,030 11,600 80 0 0 30 11,760 137,740 0.0854
23 123,750 11,830 70 10 0 110 12,000 135,770 0.0885
24 121,820 11,010 150 10 20 80 11,420 133,090 0.0859
25 137,460 12,420 100 0 0 60 12,620 150,040 0.0841
26 115,370 11,320 110 0 0 80 11,540 126,880 0.0910
27 117,840 11,580 190 0 0 40 11,960 129,650 0.0923
28 118,270 10,690 110 0 10 30 10,950 129,110 0.0848
29 82,990 7,600 120 0 0 40 7,840 90,750 0.0864
30 77,690 5,950 40 10 0 30 6,060 83,720 0.0724
31 58,800 4,820 50 20 0 30 4,980 63,720 0.0782
32 67,110 4,480 150 20 0 110 4,840 71,870 0.0674
33 67,080 4,240 40 0 0 50 4,320 71,410 0.0605
34 67,010 3,800 30 10 10 70 3,930 70,930 0.0555
35 90,720 4,570 60 20 0 30 4,750 95,400 0.0498
36 77,950 3,800 10 10 0 30 3,850 81,800 0.0471
37 81,320 4,070 50 10 10 10 4,240 85,470 0.0496
38 92,290 3,780 30 20 30 30 4,020 96,180 0.0418
39 74,030 2,920 50 0 0 30 3,020 77,030 0.0392
40 88,940 2,720 70 10 10 50 2,930 91,800 0.0319
41 71,250 2,140 0 0 0 20 2,140 73,410 0.0292
42 81,560 2,010 30 0 0 60 2,070 83,660 0.0248
43 72,930 1,270 10 0 0 30 1,290 74,240 0.0174
44 69,660 930 10 0 0 50 950 70,650 0.0135
45 84,290 760 30 10 10 30 890 85,130 0.0105
46 67,330 510 0 50 30 40 780 67,960 0.0115
47 66,220 270 10 0 10 0 330 66,510 0.0050
48 74,790 310 10 10 0 30 360 75,150 0.0048
49 57,600 120 0 20 10 20 220 57,770 0.0038

TOTAL 3,473,050 170,910 1,760 250 150 1,600 175,780 3,647,720 1.6157
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Age group Women Missing Births ASFR DHS2005 DHS2010
15–19 780,320 220 11,160 0.014 0.047 0.046
20–24 697,160 380 53,740 0.077 0.175 0.173
25–29 626,430 250 54,910 0.088 0.180 0.167
30–34 361,650 290 24,130 0.067 0.142 0.121
35–39 435,880 130 19,880 0.046 0.091 0.071
40–44 393,760 210 9,380 0.024 0.041 0.028
45–49 352,520 120 2,580 0.007 0.005 0.004

TF 1.61 3.41 3.05
Source: Census estimates, own calculations; DHS StatCompiler (www.statcompiler.com)

Table 5.3  Age-specific fertility rates in five-year age groups, 
Cambodia, 2008 Census and 2005 and 2010 Demographic Health 
Surveys

Figure 5.1  Age-specific fertility rates, Cambodia, 2008 Census

enumerated at each age is erratic, the ASFRs by single years 
of age are relatively smooth, with a clearly defined fertility 
pattern and a typical peak in the mid-twenties.

According to these data, total fertility is 1.61 children 
per woman. Summing births and women in five-year age 
groups produces the same answer (Table 5.3), although, as 

suggested above, the measures do differ in the third decimal 
place.

Even in the absence of external checks, the results from 
the 2008 Census data suggest implausibly low levels of 
fertility in Cambodia. The data are also inconsistent with 
the average parities calculated in Chapter 3. This suggests 
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that the data on recent fertility collected in this census are 
seriously deficient. This is confirmed by external checks, 
in the form of estimates of fertility from two DHSs 
conducted before and after the census. The data in the last 
two columns of Table 5.3 show that the estimate of total 
fertility in the 2010 DHS (based on births in the three 
years before the survey) was 3.1 children per woman. The 
estimate of total fertility from the 2005 DHS was 3.4 
children per woman. It appears that only about half the 
births that occurred in the year before the census were 
reported to census enumerators.

The left-hand panel of Figure 5.2 shows the age-specific 
fertility rates calculated from the 2008 Census and the two 
DHSs. Clearly the fertility rates implied by the census are 
out of line relative to the DHSs. The latter in turn, show a 
rather strange pattern of fertility change over the five years, 
driven by almost constant reductions in fertility between 
ages 25 and 44. The right-hand panel of Figure 5.2 shows 
the same rates, but this time standardized to a TF of one 
child per woman. Despite substantial differences in the im-

plied level of fertility, the shape of the three fertility distri-
butions are similar, with the only real difference between 
them being in the 2024 age group. It is unlikely, therefore, 
that there were significant differentials in the quality of the 
reporting of recent fertility in the 2008 Cambodia Census 
according to the age of women.

This result suggests that, even though the level of fertility 
implied by the 2008 Census data is seriously flawed, the 
shape of the fertility distribution is reasonably accurate. This 
is a prerequisite for applying many of the indirect methods 
of fertility estimation.

Cases 3 and 4: Estimation of age-specific fertility rates 
when information is available on the timing of the 
child’s birth
If the births are classified by women’s date of last birth, a 
suitable period for the fertility investigation needs to be 
chosen. In general, it is advisable not to use a period much 
longer than a year as longer periods of investigation increase 
the probability that women might have had more than one 

Figure 5.2  Age-specific fertility rates, and standardized age-
specific fertility rates, Cambodia, 2008 Census, 2005 DHS and 
2010 DHS
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Age of mother at census
Month 15–19 20–24 25–29 30–34 35–39 40–44 45–49

August 1998 13,240 31,300 23,120 13,940 8,940 3,220 560
September 1998 9,800 22,900 17,260 9,560 6,180 2,080 680
October 1998 9,240 21,580 15,520 9,600 5,880 1,880 500
November 1998 9,040 21,940 16,060 9,880 5,280 1,660 540
December 1998 10,200 23,700 18,000 10,580 5,940 2,080 480
January 1999 14,720 28,620 20,620 12,260 7,300 2,180 660
February 1999 20,740 42,140 30,860 17,400 11,220 4,560 2,060
March 1999 15,620 31,480 21,320 12,520 7,340 2,820 520
April 1999 18,660 33,160 24,260 12,240 7,820 2,860 720
May 1999 19,660 33,880 22,860 13,960 7,440 2,480 760
June 1999 20,100 32,140 23,380 12,580 7,300 2,720 560
July 1999 21,600 32,360 23,860 13,800 7,060 2,640 520
August 1999 15,900 25,020 16,720 9,280 5,840 1,620 360
Estimated births in 
the last year 188,269.68 355,987.74 255,940.65 146,807.74 86,618.71 30,307.10 8,486.45

Number of women 1,700,060 1,495,180 1,205,060 849,620 725,780 519,740 417,500
Age-specific fertility 
rates 0.1107 0.2381 0.2124 0.1728 0.1193 0.0583 0.0203

Table 5.4  Births reported in each month by age of mother at 
census date (24–25 August 1999), Kenya, 1999 Census

pregnancy in that period. This results in births earlier in 
time being omitted (the requirement being to report on the 
date of birth of the last child, not all children in the period), 
meaning that estimates of fertility will systematically exclude 
births in the more distant past. In addition, if fertility has 
been changing rapidly, extending the period of investigation 
over more than a year means that the resulting estimates 
represent some kind of average of fertility over the period. 
If the census was conducted fairly early or late in the year, 
however, there is potentially some advantage to basing 
the rates on births since the beginning of the previous or 
current year respectively as this does not require women to 
remember the month of birth of their child accurately. The 
number of births reported in the reference period can then 
be prorated to produce an estimate of annual births. Rates 
can be calculated both in this way and based on a 12-month 
reference period and the results compared.

The third scenario in Table 5.1 does not permit the 
derivation of a completely accurate measure of fertility, as 
the age of the mother at the birth of the child cannot be 
established precisely. However, knowledge of the child’s 

date of birth does permit the numerator of the age-specific 
fertility rates to be derived more carefully.

In the commonly-encountered situation where the 
question asked is about the month and year of the last child’s 
birth, a more careful approach can be taken to determining 
the number of births in the last year. Usually a notional census 
date is defined. The questions on the census questionnaire 
typically refer to a particular day, even if the actual process 
of enumeration takes several weeks. A list of census dates 
for the last three rounds of censuses is maintained by the 
UN at http://unstats.un.org/unsd/demographic/sources/census/
censusdates.htm; a list of census dates for data maintained 
by IPUMS is available at https://international.ipums.org/
international/samples.shtml.

In establishing the numerator, all the births reported in 
the month of the census, and a prorated proportion of births 
that are reported to have occurred in the equivalent month a 
year earlier should be included. To extract this information 
from census data, the date handling capacity of the statistical 
package being used, or the DHS Century-Month Code 
(CMC) system can be used.
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In the 1999 Kenya Census, the official census date was 
the night of 24–25 August 1999. To estimate the births 
that occurred in the year preceding the census, all births 
reported between September 1998 and August 1999 would 
be included, along with 1–24/31 (= 7/31) of the births 
reported in August 1998. This assumes that births are 
uniformly distributed over the days of a month (Table 5.4).

The estimated number of births in the year before the 
census in the 30–34 age group, for example, is then given by

7
31

13 940 9 560 9 600 9 280 146 807 74( , ) , , ... , , .+ + + + = .

In the absence of further information about the mother’s 
date of birth, the data above are tabulated according to the 
mother’s age at the census date. As noted above, the rates so 
derived would thus be subject to a half-year shift.

Dividing these births by the number of women in each 
age group gives the age-specific fertility rates. The resulting 
estimate of total fertility of 4.66 children per woman is 
clearly out of line with other estimates of fertility in the 

country for around that time. This, as with Cambodia, 
suggests that widespread underreporting occurred of births 
reported in the year before that census.

Only in the fourth case, when detailed information 
is available on both mother and child’s date of birth, is it 
possible to produce a precise measurement of fertility. 
However, if there is evidence of extreme heaping of reported 
dates of birth (for example on 1 January), there is little 
point in making use of the more refined measures as they 
will be distorted by the heaping. Thus, since the quality 
and internal consistency of the data collected in a census 
are unlikely to be as good as in a DHS, it is inappropriate 
to attempt the precise calculation of fertility rates that one 
would with a DHS. In some situations, however, the extent 
of heaping in the reported dates of birth and other errors in 
the data may be sufficiently limited to merit calculation of 
direct estimates of fertility. In these situations, the principles 
outlined for the calculation of estimates of recent fertility 
from survey data should be applied.
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Chapter 6  Overview of fertility estimation methods 
based on the P/F ratio

Tom A Moultrie

Almost all methods of estimating fertility indirectly have 
their origins in the P/F ratio method first proposed by Brass 
(1964). In addition, the interpretation of the results from 
other methods (for example, cohort-period fertility rates) 
and some of the diagnostic tools used to assess the quality 
of the data when estimating child mortality also rely on the 
intrinsic logic of the P/F ratio approach. Thus, while the 
method in its original and modified forms has been super-
seded by the relational Gompertz model and its variants, it is 
useful to present the essential logic of the method here. The 
interested reader is referred to Manual X (UN Population 
Division 1983) for a full exposition of the approach.

The Brass P/F ratio method
The foundation of the method rests on the observation that 
if fertility has been constant for an extended period of time, 
cohort and period measures of fertility will be identical. 
In other words, under conditions of constant fertility, the 
cumulated fertility of a cohort of women up to any given age 
will be the same as the cumulated fertility up to that same 
age in any given period.

If we assume that there are no appreciable mortality 
differentials by the fertility of mother, so that surviving 
women do not have materially different levels of childbearing 
from deceased women, the cumulated fertility of a cohort of 
women up to any given age is the same as the average parity 
in that cohort. (This assumption is not very important as 
even if there are differentials in the fertility of living and 
deceased women, in most populations the magnitude of 
female mortality in the reproductive ages is very small and 
the effect of differential survival will therefore be small.)

Brass defined P to be the average parity (cumulated 
lifetime fertility) of a cohort of women up to a given age, 
and F to be closely related to the cumulated current (period) 

fertility up to that same age. The P/F ratio method expresses 
these two quantities in relation to each other in the form of 
a ratio for each age group.

The derivation of F is a little more complicated than 
suggested above for two reasons. First, any comparison of 
cohort and period fertility has to deal with the probable 
shifting of the data on recent fertility brought about by the 
question being based on the age of the mother at the time of 
the inquiry rather than her age at the time of her most recent 
birth. Second, while the cumulation of period fertility to any 
given age will reflect the fertility experience of all women 
up until that age, the average parities typically calculated 
reflect those of women in 5-year age groups and hence 
reflect (approximately) the average parity of women aged at 
the midpoint of that age group. The method formulated by 
Brass addresses both these aspects.

It follows that if fertility has been constant in a population 
for an extended period of time, and if the data are free of 
error, the P/F ratio would equal 1 in every age group. If 
fertility has been falling, however, cumulated life time 
fertility would be greater than cumulated current fertility. In 
this case (in the absence of errors in the data) the P/F ratio 
would depart from unity systematically with increasing age 
of mother.

The corollary to this observation is that one would expect 
the P/F ratio to be fairly close to unity at the youngest 
ages because even by women’s mid-twenties one would not 
expect significant deviation of cumulated period fertility 
from cumulated lifetime cohort fertility as most of the 
births to women in that cohort would have happened fairly 
recently. It is from this observation that the P/F ratio derived 
from women aged 20–24 at the time of a survey is held to be 
the most reliable indicator of the quality of the fertility data 
collected. Conveniently, the supposition is that the average 
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parities of younger women are usually fairly accurately 
reported, at least relative to those of older women.

It is this characteristic pattern of departure from unity 
with age of mother that forms the basis for many diagnostic 
investigations into the nature and quality of data drawn 
from questions based on recent and lifetime fertility.

Diagnostics based on the P/F ratio
In reality the data are never free from error, and so the 
hypothetical pattern of departure of the P/F ratio from unity 
is confounded and obfuscated by underlying errors in the 
data.

As discussed in Chapters 3 and 4, two errors typically 
affect these data. The first is that reports on lifetime fertility – 
that is, cumulated cohort fertility – become increasingly 
inaccurate with age of the respondent, with older women 
tending to under-report their lifetime fertility. Errors of this 
kind will therefore tend to depress the numerator of the P/F 
ratio, particularly at the older ages. If such errors occur in 
the data, the ratio will tend to be closer to unity than it 
might truly be.

The second kind of error frequently encountered is that 
women tend to under-report recent births, regardless of 
their age. Errors of this type will result in the reported level 
of recent fertility being somewhat lower than anticipated, 
thereby causing the P/F ratio to be inflated.

The P/F ratio method seeks to correct the second problem 
by applying the P/F ratio applicable to younger women (for 

the reasons set out above) to the directly observed fertility 
schedule as a scaling factor.

Summary of methods based on the P/F 
ratio method
A number of methods described here were originally 
presented in Manual X as extensions of the P/F ratio method. 
The relational Gompertz model can be thought of as an 
improved and more versatile version of the Brass P/F ratio 
method. The model uses the same input data (and makes 
the same assumptions about errors that affect fertility data) 
as its precursor. Importantly, however, the method does not 
require an assumption that fertility has been constant in the 
past. Nonetheless, the comparison of lifetime and period 
fertility lies at the heart of the method.

Most of the extensions to the Brass P/F ratio method 
presented in Manual X have been recast as extensions to the 
relational Gompertz model. These extensions include those 
methods that make use of the data on parity increments from 
two censuses to estimate fertility; methods that use parity 
increments in conjunction with a schedule of intercensal 
fertility rates (the synthetic relational Gompertz model); 
and indirect methods that make use of data from vital 
registration systems. Cohort-period fertility rates derived 
from survey data also rely on the logic of the P/F ratio 
method to shed light on longer-term trends and dynamics 
in fertility.
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Chapter 7  The relational Gompertz model
Tom A Moultrie

Description of method
The relational Gompertz method is a refinement of the Brass 
P/F ratio method that seeks to estimate age-specific and total 
fertility by determining the shape of the fertility schedule 
from data on recent births reported in censuses or surveys 
while determining its level from the reported average parities 
of younger women.

In producing estimates of age-specific and total fertility, 
the method seeks to remedy the errors commonly found in 
fertility data associated with too few or too many births being 
reported in the reference period, and the under-reporting 
of lifetime fertility and errors of age reporting among older 
women. These errors are described in greater detail in the 
chapters on evaluation of fertility data (Chapters 3 and 5).

The method relies on a useful property of a (cumulated) 
Gompertz distribution, ( )( )( ) exp .expG x a bx= , which is 
sigmoidal (i.e. S-shaped), but also has an associated hazard 
function that is right-skewed and which therefore captures 
fairly well both the pattern of average parities of women 
by age and their cumulated fertility. The form of G(x) 
implies that a double-negative log transform of proportional 
cumulated fertilities or average parities approximates a 
straight line for most of the age range. The double-log 
transform, ( )( )( ) ln ln ( )Y x G x= − − , is termed a gompit and 
has a close analogue in the logit transform frequently used 
in mortality analysis. Brass, however, found that a much 
closer linear fit could be obtained by a relational model that 
expresses the gompits of an observed series of fertility data as 
a linear function of the gompits of a defined standard fertility 
schedule. In other words, Y(x) =  + Y s(x), where Y s(x) is 
the gompit of the standard fertility  schedule. Evidently, 
if  = 0 and  = 1, the fertility schedule will be identical 
to the standard fertility schedule. Alpha () represents the 
extent to which the age location of childbearing in the 
population differs from that of the standard (negative values 
imply an older distribution of ages at childbearing than in 

the standard), while beta () is a measure the spread of the 
fertility distribution (values greater than 1 imply a narrower 
distribution).

As input data, the method requires average parities at each 
age group, 5Px, for x = 15,20,…, 45, and fertility rates in each 
age group, 5 fx. For ease of exposition, and to differentiate 
more clearly between lifetime and recent fertility data, 5P15 
is indexed as P(1), 5P20 as P(2) and so on. The derivation of 
these inputs from census data is described in Chapter 3. As 
with other methods, the average parities should be adjusted 
with an el-Badry correction where appropriate.

Cumulated (period) fertility to the end-point of each age 
group, F(x) is given by

5
15,5

( 5) 5.
x

a
a

F x f
=

+ = ∑ .

The original method proposed by Brass (1978) used the 
series of the gompits of the ratio of cumulated fertility to 
the end of each age group to the fertility rate cumulated to 
age 50 (i.e. total fertility, TF), giving a sigmoidal curve with 
minimum of 0 and a maximum (at the last age group) of 
1. Gompits of the average parities are derived in a similar 
manner.

There are two inherent weaknesses in this approach. First, 
it requires total fertility as an input, and estimates of total 
fertility available from reported age-specific fertility rates 
(ASFRs) may be biased. In fact, total fertility is often the 
parameter of greatest interest that the analyst is trying to 
estimate. The second weakness is the implicit assumption of 
constant fertility over time arising from the treatment of the 
parity gompits. Nonetheless, Brass’ formulation inspired the 
derivation of the standard fertility schedule by Booth (1980, 
1984), which is still used in the model to this day.

Both limitations are addressed comprehensively by 
Zaba’s (1981) reformulation of the method, which avoids 
the circularity of the original method while also dropping 
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the need to assume that fertility has been constant. Further 
unpublished work by Zaba generalized the approach to 
incorporate alternative variants of the model (some of which 
are described here). A full exposition of Zaba’s reformulation 
is given in a subsequent section. In summary, however, she 
showed that the model can be expressed as

	 2( ) ( ) ( ) ( 1) ,
2
cz x e x g xα β β− = + + − 	 (1)

where e(x), g(x) and c are functions of the chosen standard 
and z(x) is the gompit of the ratios of adjacent cumulated 
period fertility measures, i.e. F(x)/F(x + 5), instead of F(x)/50 
as Brass originally suggested. In other words,

( )( ) ln ln .
( 5)
F xz x

F x
  = − −  +  

For the parity data, the model is fitted to the ratios of 
adjacent average parities, P(i)/P(i + 1). This means that 
the model can be used without the need to estimate total 
fertility before fitting the shape parameters. It follows 
further from Equation 1 that a plot of z(x) – e(x) against 
g(x) should be a straight line with slope  and intercept

21 ( 1)
2

cα β+ − . (Noting that  should be close to one, early 

formulations of the procedure deemed the last term of the 
intercept unimportant, leaving the intercept approximated 
by alpha. With the computing power now to hand, there 
is no justification for the associated loss of precision in the 
calculation of the intercept. However, the requirement that 
 be close to 1 remains).

Exactly the same reasoning holds for the evaluation of the 
parity data. Using P(i)/P(i + 1), the ratio of average parities 
in successive age groups, with a linear equation relating z(i)–
e(i) to g(i) results in

	 2( ) ( ) ( ) ( 1)
2
cz i e i g iα β β− = + + − .	 (2)

By convention, the points derived from the parity data 
are known as P-points and those derived from the fertility 
rates are known as F-points. The goal of the model-fitting 
procedure is to find a combination of P- and F-points that 
are internally consistent with each other (i.e. the two sets of 
points define essentially the same lines) and then to use these 
to determine jointly the parameters  and  in Equations 1 
and 2 above. The values of  and  are used to derive the 
relational gompits, Y(x) =  + Y s(x), and similarly for Y(i ).

Deriving a fitted fertility distribution using the relational 
Gompertz method requires tabulations of calculated aver-
age parities and fertility rates by age. The fertility rates are 
cumulated and ratios of successive cumulated values are 
computed. Ratios of successive average parities are also 
calculated. Gompits of these ratios are calculated and used 
to plot the two pairs of points, z(x)–e(x) against g(x), and 
z(i)–e(i) against g(i). The fitted lines will have slopes equal 
to , and an intercept term involving ,  and c, from which 
 can be calculated. The values of  and  are used to trans-
form the gompits of the standard cumulants into fitted 
gompits, which are then converted to fitted average parities 
and fertility rates. The level of fertility is set by the most reli-
able parity points. These are usually those on women aged 
20–29 or 20–34 who are both less likely to omit births and 
likely to report their ages more accurately than older women.

The use of the relational Gompertz model in the calculation 
of a fitted fertility distribution has a number of advantages 
over the earlier P/F ratio method. The model uses a reliable 
fertility pattern for medium- to high-fertility regimes (the 
Booth standard). Thus unreliable fertility rates estimated 
from reports of births in the last year can be replaced by 
model values which are fitted using the more reliable points. 
The plot of the two series of points is a powerful guide to 
the reliability of each point, and can provide insight into 
data errors as well as identify fertility trends. All reliable 
points can be used to derive the fitted model distribution. 
The model also provides a reliable way of interpolating 
between values to make parity and cumulated fertility data 
comparable and to convert fertility rates in unconventional 
age groups to rates that apply to conventional age groups.

Data requirements and assumptions
Tabulations of data required
•	 Fertility rates for the 12, 24 or 36 months before the 

survey, classified by age of mother at survey, or by age at 
birth of child; or
•	 number of women at the census or survey date, by five-

year age group; and
•	 number of births to women in the 12, 24 or 36 months 

before the survey, by five-year age group.
•	 Average parities of women, classified by five-year age 

group of mother; or
•	 number of women, by five-year age group; and
•	 total number of children born to women, by five-year 

age group.
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Important assumptions
•	 The standard fertility schedule chosen for use in the fitting 

procedure appropriately reflects the shape of the fertility 
distribution in the population.

•	 Any changes in fertility have been smooth and gradual 
and have affected all age groups in a broadly similar way.

•	 Errors in the pre-adjustment fertility rates are proportion-
ately the same among women in the central age groups 
(20–39), so that the age pattern of fertility described by 
reported recent births is reasonably accurate.

•	 The parities reported by younger women (aged 20–29 or 
20–34) are accurate.
The method usually allows violations of these assumptions 

to be detected.

Preparatory work and preliminary 
investigations
Before commencing analysis of fertility levels using this 
method, analysts should investigate the quality of the data 
at least in respect of the following dimensions:
•	 age and sex structure of the population;
•	 reported births in the last year; and
•	 average parities and the necessity of an el-Badry correction.

Caveats and warnings
•	 In applying this method, analysts must take particular 

care to ascertain and correctly specify the definition used 
to classify age of mother.

•	 Where appropriate and necessary, the average parities 
should be the corrected average parities after application 
of the el-Badry correction for the misreporting of childless 
women as parity not stated.

•	 The method can handle data aggregated over a three-year 
period. However, caution should be exercised in using the 
full model (as opposed to using it simply for smoothing) 
with data for periods of much longer than a year. Ideally, 
person-years exposed to risk should be calculated more 
accurately if using a longer period of investigation. In 
addition, there is the risk of multiple births occurring 
within an extended period of investigation, and the form 
of the questions in the census or survey instrument may 
be inadequate to the task of identifying such cases.

•	 If sample or design weights have been provided with the 
data, they must be applied in the manner appropriate to 
the statistical software used when deriving the tabulations 
used as inputs.

•	 The method is contra-indicated where the shape of the 
fertility distribution being modelled differs markedly 
from that of the underlying fertility standard. Since the 
modelled parameters  and  define the shape and loca-
tion of the fertility schedule, Zaba (1981) recommends 
that the model only be applied where –0.3<<0.3 and 
0.8< <1.25. An alternative standard should be consid-
ered if  and  lie outside these ranges.

•	 Some of the approximations used in obtaining the 
estimating equations work less well for the youngest and 
oldest age groups than for those in the middle age range, 
especially if the reported fertility schedule is radically 
different from the standard. The points derived from 
the reports of these women should therefore be treated 
with extra caution. However, this has little impact on the 
estimates of Total Fertility.

Application of method
The method is applied in the following stages.

Step 1: Calculate the reported average parities
Calculate the average parities, 5Px , of women in each age 
group [x ,x + 5), for x = 15, 20…, 45, if not already done 
as part of the preliminary investigations, or produced as 
a consequence of applying the el-Badry correction. The 
derivation and correction of average parities is described in 
Chapters 3 and 4.

Step 2: Determine the classification of the age of mother
Depending on the data available, the fertility rates may be 
classified either by age of mother at the survey date, or by 
age of mother at birth of her child. The former ages are 
almost always encountered in the analysis of census data, 
where the mother’s age is her age at the census. The latter 
are more commonly encountered with administrative data 
derived from vital registration systems. It is crucial that this 
classification is determined correctly as mis-specification 
here will bias the estimated rates produced.

The spreadsheet implementation of the model can 
accommodate data with no shift (i.e. reported according to 
the age of mother at birth); or – in the case of data classified 
by age of mother at survey date – with half a year, a year or 
one and a half year’s shift (for periods of investigation of 12, 
24 and 36 months, respectively).
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Step 3: Calculate implied age-specific fertility rates
Age-specific fertility rates are derived by dividing the births 
reported in the period of investigation (e.g. the year, two 
years or three years) before the survey date by the number of 
women in each age group.

Step 4: Choose the fertility standard to be applied and 
the model variant to be fitted
The default fertility standard is that produced by Booth, 
modified slightly by Zaba (1981). The standard is appropri-
ate to high- and medium-fertility populations and is a nor-
malized cumulated fertility schedule (i.e. with total fertility 
equal to one). The standard Y s(x) values are determined by 
taking the gompits of the schedule and the standard parity 
values, Y s(i), are the gompits of the parities associated with 
the standard fertility schedule. The choice of standard deter-
mines the values of g() and e() used in the regression fitting 
procedures which are derived algebraically from the Y s().

Two variants of the relational Gompertz model are 
presented here. The default option is to make the same 
assumptions about the nature of errors inherent in fertility 
data as in the Brass P/F method, namely that reports of 
recent fertility suffer from reference-period errors and under-
reporting that are independent of age, and that reports of 
lifetime fertility suffer from omission errors that increase 
with age. In the spreadsheet, this is referred to as the ‘Shape 
F – Level P’ variant.

The second variant involves using the relational Gompertz 
model to correct for possible distortions in the shape of the fer-
tility distribution, while leaving the level unchanged. Clearly, 
if reference period errors or under-reporting are suspected, 
this variant will not give a plausible estimate of fertility.

Step 5: Evaluate the plot of P-points and F-points
The plots of z(x)–e(x) against g(x), and z(i)–e(i) against g(i) 
on the same set of axes are then used as a diagnostic for iden-
tifying common errors and trends in the data (see below).

Step 6: Fit the model by selecting the points to be used
Initially, all points should be included in the model, the only 
exception being if the average parities in one age group are 
higher than the average parities in the next. In this case the 
gompit will be undefined and the model cannot be fitted 
using that point. (Such a situation cannot occur in a real 
cohort, but could arise because of data error or in a synthetic 
cohort during a time of rapidly changing fertility.)

If the parity and fertility data are internally consistent, 
the plots of z()–e() against g() should result in straight lines. 
Those P-points and F-points that cause each plot to deviate 
from a straight line should be excluded from the model. 
Ordinary least squares regression is used to fit lines to the 
P-points and F-points and to identify, sequentially, those 
points that do not fit neatly on a straight line. The intention 
is to seek the largest combination of P- and F-points that lie 
(almost) on the same line, and to use these to fit the model.

Points are selected for inclusion or exclusion using the 
following guidelines:
•	 A contiguous series of points must be included in the 

model. Sequentially, only the end-most points can be 
excluded. (The reason for this is that each point on the 
graph is the result of calculations involving the ratio of 
a pair of adjacent data values. If the analysis leads you to 
conclude that a data value is unreliable as a denominator 
of one of these ratios, it is not logical to accept it as the 
numerator of the next ratio.)

•	 P-points should be eliminated in preference to F-points. 
This is because the average parity data are generally more 
prone to age-specific errors than the fertility data.

•	 P-points which deviate clearly from the straight line based 
only on the other P-points as well as F-points which devi-
ate clearly from the straight line based only on the other F-
points should be eliminated early on in the fitting process.

•	 P- and F-points at older ages should be eliminated in 
preference to those at younger ages since data at these ages 
are usually the least reliable and show the least consistency 
between lifetime and recent fertility. The exception to this 
relates to the data points for women under the age of 20 
because small numbers of events, as expected for younger 
women, frequently make the estimates of average parities 
or cumulated fertility unreliable.

•	 Where only a marginally worse fit is achieved with 
more points, this is to be preferred to a slightly better fit 
achieved with fewer points. The spreadsheet calculates the 
root mean squared error (RMSE),

( )
2

2() () ( 1) ()
2
cz e g

RMSE
n
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from the points used to fit the model. This statistic can 
assist with determining the optimal number of data points 
to which to fit if there is uncertainty as to which of two 



58  |  FERTILITY ONE CENSUS METHODS

competing models is better. In this situation, one can choose 
the model with the lower RMSE.

Step 7: Assess the fitted parameters
The values of  and  that represent the best-fitting line 
joining the remaining P-points and F-points must be 
checked to confirm that they are not so far from their central 
values as to suggest that the standard chosen is inappropriate. 
A good fit is indicated if –0.3<<0.3, and if 0.8<<1.25.

If the parameters lie outside this range, one or both of 
the underlying data series are problematic or the standard 
is inappropriate. Experimentation with another standard 
(see below) or changing the selection of points should be 
done before proceeding further. If the parameters still lie 
outside the ranges above, the method should be regarded as 
inappropriate.

Step 8: Fitted ASFRs and total fertility
Having estimated the two parameters of the model, they can 
be applied to the standard values for the parities to obtain 
fitted values Y(i ) =  + .Y s(i ). These are then converted 
back into measures of the cumulative proportion of fertil-
ity achieved by age group i using the anti-gompit transfor-
mation. The anti-gompits based on the parity distributions 
indicate the proportion of fertility achieved by that age 
group. Dividing the observed parity in each age group by 
these proportions produces a series of estimates of total fer-
tility. Averaging these values across the sub-set of age groups 
that were used to estimate  and  gives the fitted estimate 
of total fertility, T̂ .

Applying the same  and  to the standard gompits 
for the ages that divide conventional age groups (i.e. 20, 
25…50), applying the anti-gompit transformation, and 
multiplying by T̂  produces a scaled cumulated fertility 
schedule. Differencing successive estimates of cumulated 
fertility and dividing by five produces the fitted fertility 
schedule for conventional age groups (15–19; 20–24 etc.) 
even if the data were initially classified with a half-year shift.

(If the model has been fitted using only the F-points, 
then  and  are defined by the F-line only. The smoothed 
fertility schedule is produced by a series of steps identical to 
that described above except that the fitted proportions are 
multiplied by the level of fertility estimated from the recent 
data themselves, rather than by an estimate based on the 
parity data.)

Interpretation and diagnostics
Typical errors in the data
The points derived from data applicable to women aged less 
than 20 are often unreliable, as they are typically derived 
from fairly small numbers of events and prone to a variety 
of reporting errors, such as an enumerator ascribing an older 
age to teenage mothers. It is thus common for the lines 
fitted to the P- and F-points to agree for women at peak 
child-bearing ages (20–34), but not at very young or older 
ages. If the P and F lines do not converge even in the 20–34 
age range, then either errors must be present in one or both 
data sets, even at these younger ages, or (substantial) recent 
fertility changes must have occurred.

A plot of all P-points and F-points provides information 
on errors present in the data and recent fertility trends. It 
is useful when interpreting the plots to remember that the 
z()–e() values (on the y-axis) vary with the observed fertility 
and parity schedules, whereas the g() values (which are based 
solely on the standard) do not. Likewise, z()–e() changes in 
the same direction as the underlying ratios.

The most common types of issues highlighted by the 
diagnostic plot are omission of children in the parity reports 
of older women, age exaggeration, and an indication of 
recent declines in fertility.

Zaba (1981) used simulated data based on the Booth 
standard to explore the effect of data errors and fertility 
changes on the plots. The results are described below.

1) � Older women omit children in reporting their 
lifetime fertility

If older women omit children in reporting their completed 
parities, then the P-values will tend to be too high (as the 
denominator of each cumulant will be disproportionately 
low) relative to the straight-line pattern anticipated and the 
P-points tend to curve upward at older ages.

2) � Exaggeration of births, or age exaggeration by older 
women

Both these errors have the same effect, either because an 
erroneous number of births are reported to older women, 
or because younger women (who tend to have higher recent 
fertility) are mistakenly classified as being older than they 
are in reality. As a result, the F-line curves downward at the 
oldest ages.
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3)  Trends in fertility
Trends in fertility level are shown by the divergence of P- 
and F-points on the graph. If fertility has been falling, the 
F-cumulants tend to be higher than the P-cumulants at the 
same age, and the F-points have a steeper slope than the 
P-points. The diagnostic for falling fertility is therefore that 
the F-points tend to lie on a line above that for the P-points, 
and vice versa.

Rapid changes in fertility that have affected the younger 
ages of childbearing usually prevent the P- and F-points 
falling on a common line even when almost all the P-points 
are excluded from the fit. Successive elimination of P-points 
that fails to align the P- and F-points suggests that fertility 
has changed rapidly and recently in the younger age groups.

Typical diagnostic plots, based on the Booth standard, are 
shown in Figure 7.1.

As can be seen, if older women omit live births, the 
P-points on the right hand of the scale (those for older ages) 
will drift upwards. When women report themselves (or 
are reported) to be older than they are, the effect is for the 
F-curve to curve downwards at older ages. Finally, if fertility 
is falling, the F-points will generally lie above the P-points.

In dealing with real data, one is often faced with a 
mixture of errors and trends which may be considerably 
more complicated than the neat archetypes set out here. 
Severe errors may obscure real trends and, for this reason, 
the method should not be applied indiscriminately.

P/F Ratios
While the P/F ratio method is not described in this manual, 
the ratios that result from the application of the method 
provide useful insights into recent trends in fertility. They 
can also be used as guides to the applicability of certain 
methods used to estimate child mortality.

Pseudo P/F ratios for each age group can be derived quite 
easily from a fitted relational Gompertz model. The ratio is 
calculated as 

( )( )
5( ) ,ˆ exp exp ( 2.5)

20,25...,45.

x
s

F F

PP x
F F Y x

x

α β
=

⋅ − + +

=

The numerator is the observed average parity in each age 
group while the denominator uses the values of  and  

Figure 7.1  Diagnostic plots based on simulated data showing 
common errors
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derived from the F-points only (much as in the F-only 
variant of the model) to modify the standard gompit at the 
mid-point of each age group. The anti-gompit is then scaled 
up by the level of total fertility implied by the F-points 
selected to be used in the model. The ratio is not calculated 
for the youngest age group because – typically – average 
parities are very low as is cumulated fertility to age 17½, 
thereby causing the ratio to be unstable in that age group.

These P/F ratios can be plotted in reverse order so that 
the oldest age group is on the left. The series of P/F ratios 
can then be read as running through calendar time from left 
to right (since, in general, older women’s fertility will have 
occurred earlier in time than younger women’s fertility). 
Excessive deviations from the general trend suggest errors 
in the data. A downward trend in the P/F ratios (as plotted) 
shows increasing divergence between cohort and period 
fertility measures with increasing age, and hence is indicative 
of declining fertility.

Worked example
This illustration of the method uses data presented in the 
report on fertility from the 2008 Malawi Census. The method 
has been implemented in an Excel workbook (see website).

Step 1: Calculate the reported average parities
The average parities are presented in Table 2.6 of the 2008 
Malawi Census fertility report. It is not clear from the report 
whether the parities were edited or whether an el-Badry 
correction was applied to the data, shown in Table 7.1.

Table 7.1  Measures of fertility from the Malawi 2008 Census

Age (at survey) Average parity 
per woman

Period fertility 
rates

15–19 0.283 0.111
20–24 1.532 0.245
25–29 2.849 0.230
30–34 4.185 0.195
35–39 5.214 0.147
40–44 6.034 0.072
45–49 6.453 0.032

Step 2: Determine the classification of the age of mother
The question on recent fertility in the 2008 Malawi Census 
was ‘how many live births in the last 12 months’. Since there 
is no way of dating the child’s birth, one can assume that the 

data are classified by age of mother at the census date rather 
than at the birth of her child.

Step 3: Calculate implied age-specific fertility rates
Fertility rates are presented in Table 2.6 of the 2008 Malawi 
Census fertility report. (The derivation of these rates, 
presented in Table 2.3 of the report, suggests that 5 f20 was 
0.250, but the rates in Table 2.6 are retained for the purpose 
of this example so as to allow a better comparison of the 
results derived.)

Step 4: Choose the standard to be applied and the model 
variant to be fitted
In the absence of an alternative, we apply the Booth 
standard, and – in order to correct the shape and level of the 
fertility data, elect to fit the Shape-F Level-P variant. The 
coefficients, e() and g(), are derived in Tables 7.2–7.4 below.

Starting with the values from the standard in column [2], 
the gompits of the standard are calculated in column [3]. 
For example, in the age group ending at 19½, it is –ln(–
ln(0.1140)) = –0.7753. Note that the cumulated values apply 
to ages 14½, 19½ etc., reflecting the half-year shift in the 
classification of mothers’ ages. The ratios of successive pairs 
of cumulated fertility from the standard in column [2] are 
presented in column [4], and the gompits of these are shown 
in column [5]. Thus, in the age group ending at age 39½, 
it is 2.6209 = –ln(–ln(0.9298)) = –ln(–ln(0.9199/0.9893)).

The first and second derivatives at the point where  = 1, 
presented in columns [6] and [7], are evaluated using the 
formulae:

( ) ( )
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( 5).exp ( ) ( ).exp ( 5)
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Finally, e(x) is derived in column [8] by differencing columns 
[5] and [6]. The g(x) values in column [9] are equal to the 
values in column [6]. Table 7.3 repeats the calculations, but for 
unshifted data; these values are required to produce the final, 
unshifted, fertility estimates. Table 7.4 shows the derivation
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Age x F s(x)/F Y s(x) Ratio Phi Phi' Phi" e(x) g(x)
[1] [2] [3] [4] [5] [6] [7] [8] [9]

=gompit[2] =Y s(x)/
Y s(x +5 ) =gompit[4] =[5]–[6] =[6]

14 ½ 0.0011 –1.9228 0.0094 –1.5410 –2.4565 0.9155 –2.4565
19 ½ 0.1140 –0.7753 0.3233 –0.1216 –1.4527 0.9563 1.3311 –1.4527
24 ½ 0.3528 –0.0411 0.6007 0.6741 –0.7426 0.9632 1.4167 –0.7426
29 ½ 0.5872 0.6305 0.7529 1.2592 –0.0364 0.9530 1.2957 –0.0364
34 ½ 0.7800 1.3925 0.8479 1.8021 0.8405 0.9615 0.8405
39 ½ 0.9199 2.4830 0.9298 2.6209 2.1799 0.4409 2.1799
44 ½ 0.9893 4.5323 0.9893 4.5324 4.5315 0.0010 4.5315

Phi"–bar 0.9575

Age x F s(x)/F Y s(x) Ratio Phi Phi' Phi" e(x) g(x)

[1] [2] [3] [4] [5] [6] [7] [8] [9]
15 0.0028 –1.7731 0.0204 –1.3591 –2.3278 0.9688 –2.3278
20 0.1358 –0.6913 0.3600 –0.0214 –1.3753 0.9582 1.3539 –1.3753
25 0.3773 0.0256 0.6200 0.7379 –0.6748 0.9629 1.4127 –0.6748
30 0.6086 0.7000 0.7644 1.3143 0.0393 0.9510 1.2750 0.0393
35 0.7962 1.4787 0.8559 1.8607 0.9450 0.9157 0.9450
40 0.9302 2.6260 0.9378 2.7455 2.3489 0.3966 2.3489
45 0.9919 4.8097 0.9919 4.8098 4.8086 0.0012 4.8086

Phi"–bar 0.9575

Age i Ps(i ) Y s(i ) Ratio Phi Phi' Phi" e(i ) g(i )

[1] [2] [3] [4] [5] [6] [7] [8] [9]

=gompit[2] =Y s(i)/Y s(i + 1) =gompit[4] =[5]–[4] =[6]

0 0.0003 –2.0961 0.0056 –1.6449 –2.6738 1.0289 –2.6738
1 0.0521 –1.0833 0.2044 –0.4622 –1.7469 0.9519 1.2846 –1.7469
2 0.2549 –0.3124 0.5143 0.4081 –1.0159 0.9638 1.4240 –1.0159
3 0.4957 0.3541 0.7014 1.0367 –0.3349 0.9597 1.3717 –0.3349
4 0.7067 1.0579 0.8140 1.5810 0.4406 1.1404 0.4406
5 0.8681 1.9561 0.8969 2.2184 1.5162 0.7022 1.5162
6 0.9679 3.4225 0.9701 3.4943 3.2238 0.2705 3.2238

Phi"–bar 0.9585

Table 7.2  Derivation of e(x) and g(x) when data are subject to a 
half-year shift

Table 7.3  Derivation of e(x) and g(x) when data are not subject to 
age shifting

Table 7.4  Derivation of e(i) and g(i) from parity data
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of the tabulated values of e(i), g(i) and c for use with the 
parity data, using the parities from the standard as inputs in 
column [2].

Step 5: Evaluate the plot of P-points and F-points
Following the guidelines above, we begin by fitting models 
using all the P- and F-points respectively.

The results are shown in the first plot on the Diagnostic 
plots sheet of the Excel workbook (see website) (Figure 7.2).

While the lines fitted to the P-points and the F-points 
lie almost on top of each other, neither fits their underlying 
data series particularly well. The F-points curve downward 
markedly at the oldest ages, suggesting some degree of age-
exaggeration in the data, while the fact that the P-points lie 
just below the F-points is an indication that a slight decline 
in fertility is underway.

Step 6: Fit the model by selecting the points to be used
Examination of the plot suggests that a better fit to both lines 
might be achieved if the P- and F-points for the last age group 
were omitted. These points are eliminated from the plot and 
the resulting revised plot is re-examined (Figure 7.3).

While the lines no longer lie as close together and do not 
remain parallel, visual inspection suggests that the removal 
of the next oldest P-point might cause all the remaining 
points to lie on a single line (Figure 7.4).

To all intents and purposes, these points can be regarding 
as falling on a single line, implying that the average parities 
and fertility rates underlying these points are consistent with 
each other. No evidence remains that fertility has declined. 
While a marginally better fit might perhaps be obtained by 
eliminating the P-point associated with the 35–39 age group, 
to further reduce the number of points included in the model 
in order to produce a very small improvement in the fit is not 
worthwhile. Indeed, the exclusion of that P-point results in a 
small increase in the RMSE, from 0.044 to 0.045.

We can accept this fitting of the relational Gompertz 
model. The third figure in the spreadsheet indicates that the 
equation of the straight line best fitting the remaining nine 
data points is z()–e() = 0.9936.g() – 0.0272.

From this, the value of  is determined directly to be 
0.9936, and the value of  is derived from the formula

( )( )210.0272 1 0.0272
2

cα β= − − − = − ,

Figure 7.2  Plot of z()–e() against g(), all data points, Malawi, 
2008 Census
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where c is the average of (1)xφ ′′  from Table 7.2 for the 
current fertility data (since the data are subject initially to a 
half-year shift), and Table 7.4 for the parity data.

Step 7: Assess the fitted parameters
The estimated values of  (–0.0272) and  (0.9936) are com-
fortably close to the standard values of 0 and 1. In aggregate, 
the slightly negative  shows that the observed fertility distri-
bution for Malawi in 2008 is slightly older than the standard 
and the value of  less than 1 suggests that the spread of the 
distribution is slightly wider than that of the standard.

Step 8: Fitted ASFRs and total fertility
To determine the overall level of fertility, the fitted values 
of  and  are applied to the standard parity gompits 
(column [3] of Table 7.4) for the age groups whose P-points 
were included in the model, and the anti-gompits calculated 
(Table 7.5). Dividing the observed average parities for a 
given age group by the fitted anti-gompit gives the level 
of fertility implied by the average parities (column [6] of 
Table 7.5, and an estimate of total fertility, T̂ , is derived 
from the arithmetical average of these estimates (= 5.9784).

Table 7.5  Calculation of estimated total fertility, T̂  , Malawi, 
1998 Census

Age 
group 

i
Y s(i ) Y(i ) Anti-

gompit P(i )
Implied 
fertility 

level
[1] [2] [3] [4] [5] [6]

=  + Y s(i)
1 –1.0833 –1.1034 0.0491 0.283 5.7662
2 –0.3124 –0.3375 0.2462 1.532 6.2218
3 0.3541 0.3246 0.4854 2.849 5.8694
4 1.0579 1.0239 0.6982 4.185 5.9937
5 1.9561 1.9162 0.8631 5.214 6.0407

T-hat 5.9784

To get the associated age-specific fertility rates in convention-
al ages, we again apply  and , but this time to the current 
fertility gompits, Y s(x), in Table 7.3. Taking the anti-gompit 
of the fitted values produces a cumulative fertility distribu-
tion. These proportions are multiplied up by the estimate of 
T̂  from the previous step to produce the absolute cumu-
lated fertility distribution. Differencing and dividing by 5 
produces the final age-specific fertility rates (Table 7.6).

Figure 7.3  Plot of z()–e() against g() with F- and P-data points 
associated with the 45–49 age group removed, Malawi, 2008 Census



64  |  FERTILITY ONE CENSUS METHODS

The ASFRs are shown in the last column of Table 7.6, 
with an implied total fertility (15–49) of 5.96 children per 
woman.

Detailed description of method
Introduction
The relational Gompertz model evolved from the Brass P/F 
ratio method. It works with the same input data, and makes 
use of the parity data from younger women to set the level 
of fertility, while the shape of the fertility distribution is 
determined by women’s reports on recent births.

Mathematical exposition
The relational Gompertz model of fertility, initially 
developed by Brass (1978), is analogous in many ways to 
the logit models of mortality. The model can be used to 
describe any fertility distribution by reference to a standard 
fertility distribution and the parameters used to transform 
it to produce the required distribution. The transformation 
used as a basis for the relationship between the two fertility 
distributions is known as the Gompertz transformation. In 
the original formulation of the model, it is performed on a 

cumulated, proportional distribution i.e. where each parity 
or fertility cumulant is expressed as a proportion of the 
total fertility rate (the summed distribution). The summed 
distribution therefore takes a value of one. The transformed 
proportions are known as gompits and are given by

( ) ( )( ) gompit ln lnF x F xY x
F F

    = = − −        
,

where F(x) is the sum of the age-specific fertility rates 
cumulated to age x and F is the total fertility rate. Exactly 
the same relationship holds for parities, replacing F(x) with 
average parity for age groups, and F with the cumulated 
parity at age 50+. The Gompertz transformation ‘stretches’ 
the original age axis so that the gompits plotted against age 
almost form a straight line. However, the transformation is 
not perfect; the line tends to curve slightly at both ends, as 
can be seen in Figure 7.5, which plots the fertility rates from 
Booth’s (1984) standard.

The transformation can be used as a basis for a relational 
model because plots of the gompits of different sets of fertil-
ity rates against age tend to deviate from linearity in similar 
ways and, therefore, the relationship between the two such 

Figure 7.4  Plot of z()–e() against g() with P-data point associated 
with the 40–44 age group removed, Malawi 2008 Census
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sets of gompits themselves is usually close to linear. Using 
the model in a relational form enables the model parameters 
to be estimated by fitting straight lines, which is a straight-
forward process and makes it simpler to interpret the results.

As the gompits of the fertility cumulants of any two fertility 
distributions have an approximately linear relationship, one 
can relate the gompits of an observed fertility distribution 
to the gompits of a standard distribution based on accurate 
data, by means of the relation

( ) ( )sY x Y xα β= + ,

where Y(x) is the gompit of cumulated proportionate 
fertility at age x, and Y s(x) is the gompit of the standard 
fertility cumulants.

In this formulation,  represents the extent to which 
childbearing ages in the population differ from the standard 
with negative values of  making the age schedule of 
fertility older.  represents the extent to which the spread 
of childbearing differs from the spread in the standard 
population. The spread of the distribution is narrower for 
values greater than 1.

The model is, in fact, a three-parameter model. Converting 
the fitted gompits back to estimates of cumulative fertility 
using the reverse transformation produces a proportional 
distribution which sums to one. A third parameter is required 
to multiply all the fitted values up to the appropriate level of 
fertility. This is effectively Total Fertility – the very thing one 
is trying to estimate – but the estimate based on the observed 
data may not be reliable due to reporting errors. Thus the 

original fitting procedure (not described here) was adapted 
by Zaba (1981), whose contributions and extensions to the 
method are described below.

Zaba’s approach uses the gompits of the ratio of adjacent 
cumulants of fertility to isolate the estimation of the shape 
parameters from estimation of the level of fertility:

( ) ( )( ) gompit ln ln
( 5) ( 5)
F x F xY x

F x F x
    = = − −    + +    

.

If the cumulant, F(x), conforms to a Gompertz model with 
parameters  and , then

( )( ) ( )( )( )
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where x() is the second term in the penultimate line. For 
values of  close to 1, x() can be approximated by a Taylor 
series expansion about  = 1:
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From the definition of x(), x(1) = Y(x). Further, it can 
be shown that

Table 7.6  Calculation of corrected fertility rates, Malawi, 1998 
Census

Age group 
(up to age x)

Y s(i ) Y(i ) Anti-gompit Scaled by T-hat ASFR

[1] [2] [3] [4] [5] [6]

=  +  Y s(i) F(x)= [4]*5.9784 5 fx – 5 = (F(x) – F(x – 5))/5

15 –1.7731 –1.7887 0.0025 0.0151 0.0030
20 –0.6913 –0.7140 0.1298 0.7758 0.1521
25 0.0256 –0.0017 0.3673 2.1956 0.2840
30 0.7000 0.6683 0.5989 3.5807 0.2770
35 1.4787 1.4419 0.7894 4.7194 0.2277
40 2.6260 2.5817 0.9271 5.5428 0.1647
45 4.8097 4.7512 0.9914 5.9269 0.0768
50 13.8155 13.6984 1.0000 5.9784 0.0103



66  |  FERTILITY ONE CENSUS METHODS

( ) ( )

( ) ( )
( )

2

2

2

2

(1) (1)

( 5).exp ( ) ( ).exp ( 5)
;

exp( ( )) exp( ( 5))

(1) (1)

( ) ( 5) .exp ( ) ( 5)

exp( ( )) exp( ( 5))

x x

s s s s

s s

x x

s s s s

s s

d
d

Y x Y x Y x Y x

Y x Y x
d

d

Y x Y x Y x Y x

Y x Y x

φ φ
β

φ φ
β

′=

+ + +
=

− +

′′=

− + + +
=

− +		  (4)

Zaba (1981) evaluated this last quantity for a variety of 
different values of x, and showed that it is almost constant 
in the range 15 ≤ x < 30. (This can also be seen in Tables 7.2–
7.4 where this quantity is derived). Thus, one can replace 

(1)xφ ′′  by c, the arithmetical mean of the quantities in that 
age range and rewrite Equation 3 as

2( ) (1) ( 1) (1) ( 1)
2x x
cY x α φ β φ β′= + + − + −

or as
2( ) (1) (1) ( 1) (1)

2x x x
cY x φ φ α β βφ′ ′+ − = + − + .

In other words, there is a linear relationship between 
( ) (1) (1)x xY x φ φ′+ −  and (1)xφ ′ .
In subsequent work (Sloggett, Brass, Eldridge et al. 1994), 

Zaba re-expressed these terms as follows:

Term Redefined term

(1)xφ ′ g(x)

(1) (1)x xφ φ ′− e(x)

Y(x) z(x)

Hence, in this revised notation,

2( ) ( ) ( 1) ( )
2
cz x e x g xα β β− = + − + ,

implying a linear relationship between z–e and g.
Applying the same reasoning as above, the equivalent 

Figure 7.5  Effect of the gompit transform on a fertility 
distribution
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formulation can be derived for z(i)–e(i) in terms of , , c 
and g(i).

Variants of the fitting procedure
While the standard version of the model set out here uses 
data on recent fertility to determine the shape of the fertility 
schedule and sets the level by reference to the (selected) 
parity points, other variants are possible that privilege one 
set of input data over the other in different ways. The one 
presented here uses only the data on recent fertility.

The F-only variant privileges the data on recent fertility, 
and uses them to set both the shape and level of fertility in 
the model. This variant should, therefore, only be used if the 
analyst lacks parity data or does not wish them to influence 
the fit of the model. Thus, this variant simply smoothes the 
observed fertility rates using a relational Gompertz model.

Another extension of the relational Gompertz model that 
uses only the data on parity is used to estimate fertility from 
cohort parity increments. There is also a modified version of 
the relational Gompertz model making use of data from two 
censuses or surveys, that produces an estimate of intersurvey 
fertility from these data.

Construction of standards
The Booth Standard
The derivation of the Booth standard is described in detail 
in Booth (1984). The important aspects associated with the 
standard and its use in the relational Gompertz model are, 
first, that the standard is intended for use in medium- to 
high-fertility populations. Second, the standard was derived 
from a number of schedules produced by the Coale-Trussell 
fertility model, and is thus subject to the constraints imposed 
by that model. For the most part, these are not material.

The standard used here is not identical to that published 
by Booth. First, Zaba’s (1981) standard differs slightly from 
Booth’s below age 15 to obtain a better fit for very early 
patterns of childbearing. Accommodating these, it is possible 
to reconstruct fully the tabulated coefficients presented in 
Zaba (1981) and Sloggett, Brass, Eldridge et al. (1994). The 
standard used here is identical for the unshifted coefficients. 
Where the shift is required, small differences emerge, arising 
from the manner in which the original Booth standard 
has been interpolated. Zaba (1981) calculated the values 
for F(x + 1/2), F(x + 3/2), etc. by interpolating between 
successive values of F(x), F(x + 1), F(x + 2). However, as the 
gompit transform linearizes F(x), it makes more sense to 

interpolate the gompits of F(x), Y(x) for half-year ages and 
then to establish the values of F(x + 1/2), F(x + 3/2) etc. by 
taking the appropriate anti-gompits.

Construction of alternative standards
As already noted, the Booth standard was designed for use 
in medium-high fertility countries. In applications of the 
relational Gompertz model to low-fertility countries or 
those with very different patterns of fertility, alternative 
standards are called for. We describe here briefly how to 
derive alternative standards.

The basic approach to constructing any standard requires 
a set of F(x) which can be converted by means of a gompit 
into a series of Y(x), and then to derive values of (1)xφ , (1)xφ ′
and (1)xφ ′′  from them using the relationships established in 
Equations 3 and 4. From these, tabulations of z(), e() and g() 
can be calculated. As described above, the values of (1)xφ ′′
are almost constant between 15 and 30 for a given standard, 
and so the three values (15–19; 20–24; 25–29) are averaged 
to produce estimates of the constant term, c.

To construct a new standard, one should begin with an 
accurate series of age-specific fertility rates, f s(x). Using 
conventional demographic analysis, we can then define the 
equivalent cumulants as

0

( ) ( )
a

s sF x f a da= ∫ .

In most situations f (a) is not an integrable function, so 
numerical techniques have to be used to approximate the 
integral closely. Recursively, using the composite trapezium 
rule,

( )1( ) ( 1) ( 1) ( )
2

s s s sF x F x f x f x≈ − + − + .

From this, the gompit, z(x) is readily calculated,
( ) ln( ln( ( )).z x F x= − −
Using the properties of a Taylor expansion described in 

Equation 4, the components of e(x) and g(x) can be defined 
and expressions for these quantities derived.

The values of z(i), g(i) and e(i) are defined similarly, with 
the only extension being the requirement to derive the 
constant fertility parities associated with F(x). The parities 
in any given age group [x, x + n) are given by

( )
x n

n x
x

P F a da
+

= ∫
which can also be evaluated using a composite trapezium rule.
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Further reading and references
Other than the source material referred to already, literature 
on the relational Gompertz model is sparse. While this is no 
doubt due in part to its being described (Booth 1984) shortly 
after the appearance of Manual X, a coherent exposition of 
how to apply the model appeared only in the SIAP manual 
(Sloggett, Brass, Eldridge et al. 1994). The method has been 
applied in numerous situations around the globe, although 
not in the form described here.

The PASEX suite of spreadsheets prepared by the US 
Census Bureau (1997), for example, offers a somewhat 
simplified version of the model, forcing the user to fit the 
straight lines to P and F using either just two P-points and 
two F-points, or three of each, with little regard for the 
internal consistency of the points chosen. This is the route 
adopted by the Malawian National Statistics Office in their 
analysis of fertility data from the 2008 Census. Given the 
high degree of consistency in these data for all women 
aged less than forty, the results presented in that report 
(TFR = 6.0) do not differ in any meaningful way from those 
presented in the worked example. With less-well behaved 

data, such congruence of results between the applications 
should not be taken for granted.
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Chapter 8  Parity progression ratios
Tom A Moultrie and Basia Zaba

When women or parents think about childbearing they 
usually think in terms of starting a family, or increasing their 
family by adding another child. This chapter focuses on 
analysing the incremental aspects of childbearing, looking 
at proportions of mothers who reach a given parity or birth 
order, and the proportion who then proceed to increase 
their parity by at least one more child.

Information on birth order is easily obtainable from 
two basic census questions: on women’s completed parity 
and on births in the past year. Using the first question one 
can disaggregate the births in the past year by birth order. 
Examination of fertility data by parity through the use of 
parity progression ratios and their projected equivalents 
gives additional information on childbearing trends and 
can be used to assess changes in the parity distribution of 
fertility.

This chapter describes the procedure for calculating parity 
distributions and parity progression ratios for women who 
have reached the end of childbearing as well as the derivation 
of projected parity progression ratios to forecast the eventual 
distribution of younger women by the parities that they are 
expected to attain when they reach the end of childbearing.

Parity progression ratios (albeit with somewhat different 
notation) are well described in the demographic literature 
(see, for example, Preston, Heuveline and Guillot (2001)). 
The idea of calculating projected parity progression ratios 
proposed by Brass (1985) is less widely known. The 
exposition here focuses on the calculation of the latter 
quantities, although conventional parity progression ratios 
are required as part of the process and are described as well.

A parity progression ratio (PPR) is the proportion of 
women who progress from one parity to the next. PPRs can 
be calculated for cohorts of women defined either by age 
or marriage. Usually age cohorts of women are considered 
i.e. the parity progression ratios are calculated from the 
parity distribution of a particular age group of women. 

For cohorts of women that have finished childbearing, and 
assuming there is no differential mortality by parity of older 
women, these measures are fixed. For cohorts that are still 
in the childbearing ages, however, the measures change as 
increasing numbers of women move to higher parities. The 
measures derived from younger women thus suffer from 
both censoring and selection effects as women predisposed 
to having more children faster will be disproportionately 
represented in age-parity combinations before the end of 
childbearing. This means that comparison of the PPRs of 
younger and older women is misleading.

Brass (1985) describes a technique for projecting PPRs to 
the end of women’s reproductive years that enables one to 
use the parity data on younger women. The advantage of dis
aggregating fertility by parity is that different PPRs may re-
spond to different factors, so that changes in particular PPRs 
may provide insight into processes of fertility change going 
on in the population. Thus, for example, parity-specific fer-
tility limitation (or its absence) is readily measured by parity 
progression ratios. PPRs may also be less affected than more 
common fertility metrics by some types of data error (e.g. 
reference period errors). The calculation of first birth rates, 
carried out in the construction of projected PPRs, can also 
provide an indication of data quality and fertility change.

The calculation of PPRs for cohorts that have completed 
their fertility is straightforward. Comparison of successive 
cohorts can give information on trends in fertility, although 
more reliable conclusions can be drawn if PPRs for the same 
cohorts can be compared across more than one census. For 
younger women, who provide information on more recent 
fertility trends, a more elaborate procedure is required. These 
rates are used to project the expected parity distribution that 
the younger women would achieve if they experienced the 
age-order specific fertility rates (AOSFRs) until the end of 
childbearing. This parity distribution is used to calculate 
projected PPRs, which can be used to infer changes in 
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fertility that are implicit in women’s childbearing histories to 
date combined with the current AOSFRs. An advantage of 
using the projected PPRs is that, since they are ratios, errors 
in the AOSFRs that result from under-reporting will tend 
to cancel out when they are used to project PPRs, with the 
exception of progression from nulliparity to the first birth.

Two new concepts are introduced. The first is M(i ) 
the proportion ever-attaining parity order i, which is the 
proportion of women who have at least i children. The 
second is a(i ), the parity progression ratio, which measures 
the proportion of women who progress from a given parity, 
i, to the next parity, i + 1. Projected proportions attaining 
parity i, M*(i ) and projected parity progression ratios a*(i ) 
respectively denote the proportions of women who are 
expected to attain at least parity i, and who are expected 
to progress from parity i to parity i + 1 by the end of their 
childbearing years.

Estimates obtained
The following measures can be calculated specifically for any 
age group of women:
•	 The observed proportion ever-attaining parity order i, 

5Mx(i ), is the proportion of women aged x to x + 5 who 
have had i or more births. The corresponding projected 
proportion *

5 ( )xM i  is the proportion of women currently 
aged x to x + 5 who are expected to have had i or more 
births by the end of their reproductive lives. After the 
end of childbearing, for x ≥ 50, the observed and expected 
proportions are identical.

•	 Observed parity progression ratios of order i for women 
aged x to x + 5 are denoted 5ax(i ) to represent the pro-
portion of women with at least i children who have 
progressed to have at least one more subsequent birth. 
Projected parity progression ratios are denoted by *

5 ( )xa i . 
Once again, for x ≥ 50 observed and expected ratios are 
identical.
The following identities link these measures, and relate 

them to the distribution of women by parity.
Define N(i ) to be the number of women in the population 

of parity i exactly, and denote the total number of women in 
the population as N.

Let W(i ) be the number of women in the population 
having attained parity i or higher, and denote the highest 
parity attained in the population by π.

The number who have attained parity i or higher is 
obtained by summing higher order N(i ):

( ) ( ) ( ) ( 1) ( )
j i

W i N j N i N i N
π

π
=

= = + + + +∑ 

so that the corresponding proportion, M(i ), is

1( ) ( )
j i

M i N j
N

π

=

= ⋅∑ .

The number of women of parity zero and over is

0

(0) ( )
j

W N j N
π

=

= =∑
so that the proportion at parity zero and over, M(0) = N/N 
= 1.

The average parity, P, in the whole population is

1

1 1

1 (1) 2 (2) 3 (3)( )

( ) 1 ( ) ( ).

j

j j

N N NP j N j
N N N N

N W j M j
N N

π

π ππ π
=

= =

⋅ ⋅
= ⋅ ⋅ = + +

⋅
+ + = ⋅ =

∑

∑ ∑

For women who have completed childbearing, average parity 
is the same as completed family size, CFS, the equivalent of 
Total Fertility in a real cohort:

5
1

( 5) ( )x
j

CFS x to x M j
π

=

+ =∑  for x ≥ 50.

The parity progression ratios can be written in terms of 
numbers or proportions:

( 1) ( 1)/ ( 1)( )
( ) ( ) / ( )

W i W i N M ia i
W i W i N M i

+ + +
= = = .

Conversely, the proportion of women attaining parity i + 1 
or higher can be expressed in terms of parity progression 
ratios a(i ) for lower birth-order transitions:

1

( 1) ( ) ( ) ( ) ( 1) ( 2)
( ) ( 1) ( 2) (0)

( )
i

j

M i a i M i a i a i M i
a i a i a i a

a j
=

+ = ⋅ = ⋅ − ⋅ −
= ⋅ − ⋅ − ⋅ ⋅

=∏



where the symbol ∏ denotes cumulative multiplication.

Data requirements and assumptions
Tabulations of data required
•	 Observed party progression ratios
•	 Parity by age group of women aged 45–49 or more.



CHAPTER 8 PARITY PROGRESSION RATIOS  |  71

•	 Projected parity progression ratios
•	 Parity by age group of women aged 45–49 or less; and
•	 Number of children born during the year preceding 

the census, classified by mothers’ age (in five-year 
groups) and number of children ever born. Given the 
assumptions described below, exact apportionment of 
births in the last year is not called for. Use of births in 
each of the 12 complete months preceding the census 
date is recommended.

Important assumptions
•	 Women have had at most one birth in the past year.
•	 The AOSFRs derived will continue to apply in the future. 

This assumption may be unrealistic. It indicates that 
projected PPRs measure the implications of women’s 
achieved fertility in combination with current AOSFRs. 
The PPRs should not be treated as forecasts for cohorts 
likely to have a considerable number of additional chil-
dren of the parity concerned, or where fertility is chang-
ing rapidly.

Preparatory work and preliminary 
investigations
Before commencing analysis of fertility levels using this 
method, analysts should investigate the quality of the data 
at least in respect of the following dimensions:
•	 age and sex structure of the population;
•	 reported births in the last year; and
•	 average parities and the necessity of an el-Badry correction.

Caveats and warnings
•	 Where appropriate and necessary, the parities should be 

those estimated by means of the application of the el-
Badry correction for the misreporting of childless women 
as parity not stated.

•	 If sample or design weights have been provided with the 
data, remember to apply them in the manner appropriate 
to the statistical software used when deriving the tabula-
tions used as inputs.

•	 Projected PPRs should only be calculated from censuses 
and other data sets that include a large number of women 
(at least 10,000 in each age group) because the derivation 
of reliable age-order-specific fertility rates (which are 
required to derive the projected parity progression ratio) 
requires robust estimates of the rates at each age and 
parity combination.

Application of method
The calculation of projected PPRs involves a number 
of steps, but the principle behind the calculation is not 
difficult to grasp. The AOSFRs that are calculated using the 
births in the previous year are used to project forwards the 
parity distribution that would be expected for each cohort 
if those rates were to continue for the rest of the cohort’s 
childbearing. This is done by calculating the order-specific 
equivalent of total fertility, that is, the cumulated fertility 
rates for births of the i-th order, cumulated across all age 
groups. These rates are used to calculate the additional births 
of order i expected to be added to each age cohort of women 
in the interval from their current age to the end of their 
reproductive span. This is a synthetic cohort measure since 
it cumulates current period rates. The additional proportion 
expected to reach parity n or more is added to the current 
proportion of women of birth order i or more, to give the 
final proportion expected to be of parity i or more. These 
cumulated projected parity distributions are used to calculate 
projected PPRs, which can be examined for fertility trends. 
Symbolically, and defining 5Px to be the average parity of 
women aged between x and x + 5, the projected completed 
cohort fertility of women aged x to x + 5 is thus

5 5 5
15,5

( 5 )
x

x x i
i

PTFR P TFR ASFR
=

= + − ∑ .

Step 1: Extract a tabulation of children ever born by age 
group of mother for each age group for which there are 
data
Tabulate the number of women in each age group [x,x+5), 
5Nx, by number of children ever born, i, to produce a series 
5Nx(i ). If necessary, the data should have been edited to 
eliminate implausible parities. An el-Badry correction 
should have been applied if this is indicated.

Step 2: Extract a tabulation showing the number of 
births in the last year, by mother’s age and parity, 5Bx(i )
The assumption is made at this stage that women have had 
a maximum of one child in the last 12 months, and that 
there have been neither multiple deliveries nor multiple 
confinements in the period. It follows that an implicit 
assumption is that a birth in the last year to a woman 
currently of parity i was a birth of order i.
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Step 3: Derive proportions ever attaining parity i and 
parity progression ratios for each age group
The number of women aged between x and x + 5 who have 
given birth to i or more children is thus given by

 5 5( ) ( )x x
j i

W i N j
π

=

=∑ .

The proportions of all women aged [x,x + 5) who have had 
i or more births are calculated as

5 5
5

1( ) ( )x x
j ix

M i N j
N

π

=

= ⋅∑ .

Proportions with i or more births should be derived for 
all cohorts, whether or not they have finished their child
bearing. Women of zero parity should be included in 
the denominator, but those of unknown parity (after the 
application of an el-Badry correction, if necessary) should 
not.

The Parity Progression Ratio (PPR) between parity i and 
i + 1 is then defined as

5
5

5

( 1)
( )

( )
x

x
x

M i
a i

M i
+

= .

Derivation of parity progression ratios for women who have 
completed childbearing ends with this step. The following 
steps describe how to derive projected parity progression 
ratios for younger age cohorts of women.

Step 4: Derive age-order specific fertility rates
From the tabulation of births in the last year by age group 
and parity of mother (in Step 2), calculate age-order specific 
fertility rates for women in each age group 15–19,… 45–49, 

5
5

5

( )
( ) x

x
x

B i
AOSFR i

N
= .

Again, women of unstated parity should be excluded from 
the denominator. (Note that since the denominator is the 
total number of women in the age group (5Nx), and hence 
not a measure of exposure to risk of generating the events in 
the numerator, the AOSFRs are not true incidence rates).

Step 5: Derive cumulated order-specific fertility rates
Cumulated age-order specific fertility rates up to age x + 5 
for order i are calculated from

5 5
15,5

( ) 5. ( )
x

x j
j

TOFR i AOSFR i
=

= ∑ .

It follows that 5TOFR 45(i) – 5TOFR x(i) is a measure of the 
additional proportion of women expected to achieve parity 
i between age x + 5 and the end of the reproductive period, 
on the assumption that future fertility will remain the same 
as current fertility.

Step 6: Calculate the age distribution of order-specific 
fertility rates, and interpolate to conventional ages
The cumulated rates derived in the previous step apply to 
ages 19.5, 24.5, etc. (the half-year shift being on account of 
the classification of mother’s age being age at the census date, 
and not her age at the birth of the child). The proportions 
ever attaining each parity and parity progression ratios, on 
the other hand, apply (roughly) to the mid-point of each 
age group 17.5, 22.5, etc. The age-order rates must therefore 
be interpolated so that they apply to the central age of each 
age group. Interpolation is carried out by expressing the 
cumulated age-order fertility rates as proportions of the 
total order-specific rates and using linear interpolation on 
the gompits of the cumulants.

For each birth order, calculate the proportion of the total 
order-specific rate achieved by the upper limit of the age 
group. Since rates for shifted age groups have been used in 
this example, the upper limits are shifted down by half a 
year. The proportions are calculated by summing the rates 
up to the upper limit of the age group, and expressing this 
summation as a proportion of the total rate i.e.

5
5

5 45

( )
( )

( )
x

x
TOFR i

i
TOFR i

θ = .

As already noted, these proportions apply to ages 19½, 24½, 
etc. Due to the curvature of the fertility schedule, direct 
linear interpolation to obtain the proportions at ages 22½, 
27½ etc. is not appropriate. A gompit (double negative 
log) transform, however, transforms a sigmoidal function 
to a straight line. Hence, the gompits of the proportions 
are calculated, interpolated to the conventional mid-points, 
before being returned to their original scale by means of the 
application of the anti-gompit. Thus, using an asterisk to 
denote the shift to conventional midpoints:

( )( ){ }
( )( ){ }
5 5

*
5

5

0.4. ln ln ( )
( ) exp exp

0.6. ln ln ( )

x

x

x

i
i

i

θ
θ

θ

−
   − −   = − −   + − −      

.	 (1)

This can be applied for x = 20, 25,…, 40.
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To avoid introducing too large a projected component 
into the projected parity progression ratios, we ignore in all 
future calculations those estimates of 

 
*

5 ( )x iθ  which indicate 
that the proportion of order-specific fertility attained by 
the mid-point of an age group is less than 0.3. We treat 
as somewhat speculative calculations based on values of 

*
5 ( ) 0.5x iθ < .

Step 7: Calculate the expected future order increment
The additional proportion of women reaching each parity in 
the interval from the mid-point of the age group to the end 
of childbearing is given by

( )*
5 45 5 5 45 5( ) ( ) ( ). 1 ( )x xTOFR i TOFR i TOFR i iθ− = − .

Step 8: Derive projected cumulated parity progression 
ratios and projected parity progression ratios
The projected cumulated parity progression ratios are 
calculated by adding the future order increments derived in 
the previous step to the current cumulated parity progression 
ratios calculated in Step 1. Thus the proportions of women 
aged x to x + 5 projected to achieve at least parity i is given by

( )* *
5 5 5 45 5( ) ( ) ( ) 1 ( )x x xM i M i TOFR i iθ= + ⋅ −

and the projected parity progression ratios between parity i 
and i + 1 is given by

*
* 5

5 *
5

( 1)
( )

( )
x

x
x

M i
a i

M i
+

= .

Interpretation of results
The interpretation of changes in PPRs may be complicated 
by data errors and should take into account the assumptions 
underlying the calculations. To the extent that there are 
errors in the data, care should be taken to not over-interpret 
the results. PPRs with a substantial projected component 
must be interpreted with special care, since they may reflect 
period effects which will cease to apply in the future. If, for 
example, the AOSFRs reflect a delay in the timing of births 
around the time that the data are collected and fertility 
subsequently increases to compensate so that women catch 
up with the parities achieved by earlier cohorts, then the 
projected PPRs would be misleading. Equally, a future 
decline in fertility will reduce the final parities of women 
even if current rates predict no decline. The projected PPRs 

for older women are more reliable since they have a smaller 
projected proportion.

The projected first birth ratio, i.e. *
5 (1)xM , is often 

biased by reference period errors which will not cancel out 
in the way that they will in the other PPRs. The projected 
proportions having at least one child will be affected by 
changes in the timing of entry into motherhood. Since the 
measure is a synthetic cohort measure derived from current 
rates, changes in the timing of first births will also affect the 
cumulated rate and may also make it fall outside the range 
expected for most real cohorts in developing countries. 
Short-term fluctuations and tempo effects might mean 
that the (period) first-birth ratio might occasionally exceed 
one. This should not be confused with, or interpreted as 
indicating, a parity progression ratio greater than one, which 
is definitionally impossible.

The projected first birth ratio may also give an indication 
of the quality of the data. These rates show the proportion of 
women expected to become mothers over their reproductive 
lifetime in a synthetic cohort experiencing these rates. 
Reference period errors may result in an unlikely projected 
proportion of women expected to become mothers. Extreme 
reference period errors might result in this proportion 
being greater than one. If the cumulated rates are less 
than 0.9, this is a strong indicator of errors in the data or 
substantial changes in the timing of first births, although 
lower proportions may be observed in historical populations 
with high levels of primary sterility and in contemporary, 
low-fertility, populations with high levels of voluntary 
childlessness. A rise in the (projected) proportion of women 
expected to become mothers, (*)

5 (0,1)xPPR , has often been 
observed in populations which have seen a decline in 
primary sterility.

High-order PPRs may be subject to a large degree of 
fluctuation as a result of sampling errors in the AOSFRs, 
since they are derived from relatively small numbers of births. 
When large sampling errors are present in the data due to 
small numbers of women, it is acceptable to ‘condense’ or 
average two or more adjacent projected PPRs to see trends 
more clearly.

Examination of the trends in parity progression ratios 
across cohorts (projected for the 40–44 cohort and younger 
and actual for the 45–49 cohort and older) can cast further 
light on fertility trends. A decline in a (projected) PPR 
indicates a decline in the proportion of women progressing 
to the following birth and, all other things being equal, 
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indicates declining fertility. Changes in the PPRs at different 
parities may result from various factors, with some ratios 
being affected more than others. Which PPRs change may 
be a useful guide to fertility changes in the population. For 
example, the spread of family limitation through parity-
specific contraception will be reflected in the decline of 
PPRs of middle-order parities (say, 3 to 6). A change in 
higher-order PPRs often reflects parity-independent fertility 
changes, such as a change in the duration of breast feeding.

Worked example
The example analyses data from the 1998 Cambodia Census, 
which was conducted on 3 March 1998. The method has 
been implemented in an Excel workbook (see website).

Step 1: Extract a tabulation of children ever born by age 
group of mother for each age group with data
The data from the census, uncorrected, are shown in 
Table 8.1. The data show a typical pattern of average parities 
increasing with age up to the 45–49 age group. Thereafter, 
average parities increase by only a small amount. The data 
indicate, therefore, that either women older than 50 have 
omitted some of their children ever born, or that fertility was 
roughly constant among women finishing their childbearing 
in the last 10–15 years.

Step 2: Extract a tabulation showing the number of 
births in the last year, by mother’s age and parity 5Bx(i )
Data from the 1998 Cambodia Census on the number 
of births reported born in the year before the census, by 
mother’s age group and parity, are shown in Table 8.2.

The data suggest Total Fertility of about 3.25 children per 

Age group
Parity (i ) 15–19 20–24 25–29 30–34 35–39 40–44 45–49 50–54 55–59 60–64

0 635,940 200,620 105,350 55,300 33,900 22,970 16,430 9,790 7,640 6,880
1 30,340 94,810 79,570 38,780 21,150 16,570 13,460 9,600 8,020 7,450
2 5,980 62,580 113,640 66,750 33,320 21,920 17,220 12,840 9,690 8,020
3 1,650 21,680 88,750 75,660 45,680 27,750 20,250 15,170 11,180 8,120
4 1,200 6,890 44,480 72,370 56,100 35,450 24,530 18,090 13,350 10,160
5 630 2,060 16,580 51,600 57,050 39,100 26,660 19,660 16,100 12,040
6 0 1,120 5,630 30,250 50,960 39,180 27,540 19,860 16,180 12,250
7 0 510 2,110 13,390 35,780 33,190 25,850 18,880 16,170 13,690
8 0 480 1,070 5,970 20,580 24,920 23,180 16,940 14,830 11,970
9 0 0 440 1,820 9,590 15,860 16,130 12,680 11,360 9,200
10 0 0 240 880 4,840 10,420 12,790 10,720 9,800 7,750
11 0 0 120 320 1,760 4,430 6,670 5,370 4,850 3,970
12 0 0 80 150 760 3,220 5,350 4,810 4,780 4,230
13 0 0 40 60 250 990 1,960 1,790 1,790 1,440
14 0 0 0 40 170 620 1,020 970 760 540
15 0 0 0 10 10 250 510 460 440 490
16 0 0 0 10 30 130 230 160 140 210
17 0 0 0 0 10 40 80 50 70 70
18 0 0 0 10 10 30 30 30 40 40

TOTAL 675,740 390,750 458,100 413,370 371,950 297,040 239,890 177,870 147,190 118,520

Average 
parity 0.082 0.862 1.965 3.150 4.369 5.086 5.566 5.758 5.974 5.969

Table 8.1  Number of women by age group and parity, Cambodia, 
1998 Census
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woman, substantially less than the cohort fertility (5.566) 
of women aged 45–49. In turn, this suggests either that 
a dramatic fertility decline is underway in the country, or 
systematic omission of recent births in the census.

Step 3: Derive proportions at each attained parity and 
parity progression ratios
Proportions attaining parity i or higher are calculated from 
the data in Table 8.1, and are presented in Table 8.3. Parities 
12 and greater are combined.

The proportion of women who have had i or more births 
is shown in Table 8.3. Thus, while 80.4 per cent of women 
aged 45–49 have had at least three births, only 71.9 per 
cent of women have had four or more births. The associated 
parity progression ratios, 5ax(i ), are shown in Table 8.4.

The ratios suggest that around 93.2 per cent of women 
aged 45–49 in the 1998 Cambodia Census had had at least 
one child, while 89.5 per cent of women in this age group 
who had had three children went on to have a fourth.

Step 4: Derive age-order specific fertility rates
The reported births in the last year (by age and parity) in 
Table 8.2 are divided by the total number of women in each 
age group (the total, by age group, in Table 8.1). The resulting 
age-order specific fertility rates are shown in Table 8.5. Thus, 
for example, 5AOSFR25(1) = 11,500/458,100 = 0.0251.

Step 5: Derive cumulated order-specific fertility rates
From the data presented in Table 8.5, cumulated age-order 
specific fertility rates can be derived by summing along 
each row to the desired age group. Thus, for example, the 
cumulated age-order specific rate up to the end of the 25–29 
age group for parity 3 would be 5×(0.0006 + 0.0214 + 
0.0494) = 0.3572.

Step 6: Calculate the age distribution of order-specific 
fertility rates, and interpolate to conventional ages
Using the results from Step 5, the proportion of order-
specific fertility achieved by the end of each age group is 

Age group
Parity (i ) 15–19 20–24 25–29 30–34 35–39 40–44 45–49

0
1 13,100 23,490 11,500 3,170 1,040 320 190
2 2,340 19,180 21,320 7,830 2,010 730 150
3 410 8,370 22,640 11,470 3,790 850 230
4 210 2,430 14,330 14,110 5,200 1,450 300
5 100 600 6,220 12,440 6,740 1,830 480
6 0 280 2,020 8,360 8,120 2,870 560
7 0 90 750 4,430 7,220 3,240 840
8 0 90 360 2,100 4,930 3,020 750
9 0 0 90 640 2,800 2,310 690

10 0 0 40 300 1,390 1,570 640
11 0 0 30 160 630 810 490
12 0 0 10 40 200 480 320
13 0 0 10 20 80 250 140
14 0 0 10 60 100 70
15 0 0 0 50 30
16 0 10 10 30
17 0 0 10
18 0 0 0 10

ASFRs 0.024 0.140 0.173 0.157 0.119 0.067 0.025

Table 8.2  Births reported in the year before the census by mother’s 
age group and parity, Cambodia, 1998 Census
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Age group

Parity (i ) 15–19 20–24 25–29 30–34 35–39 40–44 45–49 50–54 55–59 60–64
0 1 1 1 1 1 1 1 1 1 1
1 0.0589 0.4866 0.7700 0.8662 0.9089 0.9227 0.9315 0.9450 0.9481 0.9420
2 0.0140 0.2439 0.5963 0.7724 0.8520 0.8669 0.8754 0.8910 0.8936 0.8791
3 0.0051 0.0838 0.3483 0.6109 0.7624 0.7931 0.8036 0.8188 0.8278 0.8114
4 0.0027 0.0283 0.1545 0.4279 0.6396 0.6997 0.7192 0.7335 0.7518 0.7429
5 0.0009 0.0107 0.0574 0.2528 0.4888 0.5803 0.6169 0.6318 0.6611 0.6572
6 0.0000 0.0054 0.0212 0.1280 0.3354 0.4487 0.5058 0.5213 0.5517 0.5556
7 0.0000 0.0025 0.0090 0.0548 0.1984 0.3168 0.3910 0.4096 0.4418 0.4522
8 0.0000 0.0012 0.0043 0.0224 0.1022 0.2051 0.2833 0.3035 0.3320 0.3367
9 0.0000 0.0000 0.0020 0.0080 0.0469 0.1212 0.1866 0.2082 0.2312 0.2357
10 0.0000 0.0000 0.0010 0.0036 0.0211 0.0678 0.1194 0.1370 0.1540 0.1581
11 0.0000 0.0000 0.0005 0.0015 0.0081 0.0327 0.0661 0.0767 0.0874 0.0927
12+ 0.0000 0.0000 0.0003 0.0007 0.0033 0.0178 0.0383 0.0465 0.0545 0.0592

Age group
Parity (i ) 15–19 20–24 25–29 30–34 35–39 40–44 45–49 50–54 55–59 60–64

0 0.0589 0.4866 0.7700 0.8662 0.9089 0.9227 0.9315 0.9450 0.9481 0.9420
1 0.2377 0.5013 0.7744 0.8917 0.9374 0.9395 0.9398 0.9429 0.9425 0.9333
2 0.3679 0.3435 0.5840 0.7909 0.8949 0.9149 0.9180 0.9190 0.9263 0.9230
3 0.5259 0.3378 0.4437 0.7004 0.8389 0.8822 0.8950 0.8958 0.9082 0.9156
4 0.3443 0.3770 0.3717 0.5909 0.7642 0.8294 0.8578 0.8613 0.8794 0.8846
5 0.0000 0.5060 0.3698 0.5063 0.6862 0.7732 0.8199 0.8251 0.8345 0.8454
6 0.4692 0.4214 0.4283 0.5915 0.7060 0.7730 0.7858 0.8008 0.8140
7 0.4848 0.4854 0.4091 0.5151 0.6473 0.7244 0.7409 0.7513 0.7446
8 0.0000 0.4623 0.3560 0.4586 0.5909 0.6589 0.6862 0.6965 0.7001
9 0.5217 0.4485 0.4498 0.5593 0.6397 0.6577 0.6662 0.6707
10 0.5000 0.4054 0.3827 0.4824 0.5534 0.5599 0.5677 0.5864
11 0.5000 0.4667 0.4133 0.5438 0.5792 0.6063 0.6232 0.6388

Table 8.4  Observed parity progression ratios by mother’s age group 
and parity, Cambodia, 1998 Census

Table 8.3  Proportion of women ever-attaining each parity by age 
group, Cambodia, 1998 Census

derived by dividing the cumulated order-specific fertility 
rates by the total order specific fertility rate shown in the 
last column of Table 8.5. The results are shown in Table 8.6.

The proportion of fertility achieved by age 49.5 is assumed 
to be one. Using the same example as in the previous step, 
the proportion of third order-specific fertility achieved by 
age 29.5 is 0.3572/0.5660 = 0.6311.

Because mothers’ ages are classified by their age at the 
census and the average parities derived in Step 1 apply to ages 
17½, 22½ etc., to render the two sets of data comparable, 
we interpolate between pairs of values to get the estimated 
proportions at ages 22½, 27½ etc. The formula for doing 
this is given in Equation 1, and the results are shown in 
Table 8.7.
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Due to the inherent uncertainty surrounding the projec-
tion of future parity progression, cells in Table 8.7 with a 
value of less than 0.3 (i.e., less than 30 per cent of order 
fertility has been achieved by the age indicated) are tinted in 
grey, and will be excluded from further calculations. Values 

greater than 0.3 but less than 0.5 are marked in italic, and 
should be treated with circumspection in further calcula-
tions. Calculations depending on these values will be pre-
sented in brackets in subsequent tabulations.

Age group
Parity (i ) 15–19 20–24 25–29 30–34 35–39 40–44 45–49 TOFR(i)

0
1 0.0194 0.0601 0.0251 0.0077 0.0028 0.0011 0.0008 0.5847
2 0.0035 0.0491 0.0465 0.0189 0.0054 0.0025 0.0006 0.6326
3 0.0006 0.0214 0.0494 0.0277 0.0102 0.0029 0.0010 0.5660
4 0.0003 0.0062 0.0313 0.0341 0.0140 0.0049 0.0013 0.4603
5 0.0001 0.0015 0.0136 0.0301 0.0181 0.0062 0.0020 0.3582
6 0.0000 0.0007 0.0044 0.0202 0.0218 0.0097 0.0023 0.2959
7 0.0000 0.0002 0.0016 0.0107 0.0194 0.0109 0.0035 0.2320
8 0.0000 0.0002 0.0008 0.0051 0.0133 0.0102 0.0031 0.1632
9 0.0000 0.0000 0.0002 0.0015 0.0075 0.0078 0.0029 0.0996

10 0.0000 0.0000 0.0001 0.0007 0.0037 0.0053 0.0027 0.0625
11 0.0000 0.0000 0.0001 0.0004 0.0017 0.0027 0.0020 0.0346

12+ 0.0000 0.0000 0.0000 0.0002 0.0009 0.0030 0.0025 0.0335
ASFR 0.0239 0.1396 0.1731 0.1574 0.1189 0.0670 0.0247 3.5231

Table 8.5  Age-order specific and total order fertility rates (TOFR), 
Cambodia, 1998 Census

Table 8.6  Proportion of order-specific fertility achieved by the end 
of each group, Cambodia, 1998 Census

Age group
Parity (i ) 19.5 24.5 29.5 34.5 39.5 44.5 49.5

0
1 0.1658 0.6799 0.8945 0.9601 0.9840 0.9932 1.0000
2 0.0274 0.4153 0.7832 0.9329 0.9756 0.9951 1.0000
3 0.0054 0.1946 0.6311 0.8762 0.9663 0.9915 1.0000
4 0.0034 0.0709 0.4107 0.7815 0.9334 0.9864 1.0000
5 0.0021 0.0235 0.2130 0.6331 0.8861 0.9721 1.0000
6 0.0000 0.0121 0.0866 0.4284 0.7973 0.9606 1.0000
7 0.0000 0.0050 0.0402 0.2712 0.6895 0.9245 1.0000
8 0.0000 0.0071 0.0311 0.1868 0.5928 0.9042 1.0000
9 0.0000 0.0000 0.0099 0.0876 0.4654 0.8556 1.0000

10 0.0000 0.0000 0.0070 0.0650 0.3639 0.7866 1.0000
11 0.0000 0.0000 0.0095 0.0654 0.3103 0.7046 1.0000

12+ 0.0000 0.0000 0.0065 0.0318 0.1724 0.6201 1.0000
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Step 7: Calculate the expected future order increment
The additional proportion of women reaching each parity in 
the interval from the mid-point of the age group to the end 
of childbearing is given by

( )*
5 45 5 5 45 5( ) ( ) ( ). 1 ( )x xTOFR i TOFR i TOFR i iθ− = −

as shown in Table 8.8.

Thus, the anticipated future order increment after age 
30 at parity 3 is given by 0.5660×(1 – 0.4655) = 0.3025. 
Values shown in brackets are less reliable as they are based 
on proportions of age-order specific fertility attained by the 
mid-point of that age group of less than half.

Age group
Parity (i ) 22.5 27.5 32.5 37.5 42.5 47.5

0
1 0.4897 0.8326 0.9409 0.9769 0.9904 0.9999
2 0.2135 0.6652 0.8915 0.9634 0.9906 0.9999
3 0.0739 0.4655 0.8044 0.9428 0.9852 0.9999
4 0.0275 0.2526 0.6624 0.8916 0.9742 0.9998
5 0.0102 0.1104 0.4751 0.8139 0.9506 0.9998
6 0.0452 0.2738 0.6811 0.9228 0.9997
7 0.0197 0.1539 0.5410 0.8640 0.9996
8 0.0183 0.1061 0.4345 0.8232 0.9996
9 0.0430 0.2965 0.7449 0.9995
10 0.0311 0.2221 0.6527 0.9994
11 0.0341 0.1937 0.5671 0.9993
12+ 0.0181 0.1001 0.4473 0.9993

Table 8.7  Proportion of order fertility achieved by the mid-point 
of each age interval, Cambodia, 1998 Census

Table 8.8  Additional proportion attaining parity (i) by the end of 
childbearing by age group of mother, Cambodia, 1998 Census

Age group
Parity (i ) 20–24 25–29 30–34 35–39 40–44 45–49 50–54 55–59 60–64

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 (0.7850) 0.8679 0.9008 0.9224 0.9283 0.9315 0.9450 0.9481 0.9420
2 0.8081 0.8410 0.8752 0.8728 0.8754 0.8910 0.8936 0.8791
3 (0.6508) 0.7216 0.7948 0.8014 0.8036 0.8188 0.8278 0.8114
4 0.5833 0.6895 0.7115 0.7192 0.7335 0.7518 0.7429
5 (0.4408) 0.5554 0.5980 0.6169 0.6318 0.6611 0.6572
6 0.4298 0.4715 0.5058 0.5213 0.5517 0.5556
7 0.3049 0.3483 0.3910 0.4096 0.4418 0.4522
8 (0.1945) 0.2339 0.2833 0.3035 0.3320 0.3367
9 0.1466 0.1866 0.2082 0.2312 0.2357
10 0.0895 0.1194 0.1370 0.1540 0.1581
11 0.0477 0.0661 0.0767 0.0874 0.0927
12+ (0.0363) 0.0383 0.0465 0.0545 0.0592

Age group
Parity (i ) 22.5 27.5 32.5 37.5 42.5

0
1 (0.2984) 0.0979 0.0346 0.0135 0.0056
2 0.2118 0.0686 0.0232 0.0059
3 (0.3025) 0.1107 0.0324 0.0084
4 0.1554 0.0499 0.0119
5 (0.1880) 0.0666 0.0177
6 0.0944 0.0228
7 0.1065 0.0316
8 (0.0923) 0.0289
9 0.0254
10 0.0217
11 0.0150
12+ (0.0185)

Table 8.9  Projected proportions expected to attain each parity, 
Cambodia, 1998 Census
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Step 8: Derive expected projected proportions attaining 
each parity order and projected parity progression ratios
The projected cumulated parity progression ratios are 
calculated by adding the future order increments presented 
in Table 8.8 to the proportion of women who have ever 
attained each parity calculated in Step 3 and presented in 
Table 8.3.

The projected PPRs for cohorts who are still bearing 
children can now be compared directly with the completed 
PPRs of women aged 50 or more. The results are shown in 
Table 8.9.

In the 25–29 age group, the projected proportion with 
parity 3 and over is 0.3483 (from Table 8.3)+ 0.3025 
(from Table 8.8) = 0.6508. Values shown in brackets are 
less reliable as they are based on proportions of age-order 
specific fertility attained by the mid-point of that age group 
of less than half.

Projected parity progression ratios are derived by division 
of the proportions expected to attain each successive parity 
in any given age cohort (Table 8.10).

Projected parity progression ratios
The parity progression ratio from 0 to 1 shows the proportion 
of women who have ever had a child. Note how the projected 
parity progression ratio at this parity suffers from extensive 
bias, as discussed in detail below. The proportion of childless 
women has remained roughly constant by cohort. However, 

as can be seen from Figure 8.1, at parities 2 and greater there 
is a clear trend for slightly lower parity progression in each 
successively younger cohort.

The projected proportions expected to attain each parity 
from the 1998 Cambodia Census are shown in Figure 8.2.

The effects of the lower parity progression ratios for 
younger cohorts is evident in the proportions expected 
to attain each parity. Thus while 55 per cent of women 
aged 60–64 had had 6 or more children, in the cohort 
now completing its childbearing (that aged 45–49), the 
proportion had declined to just over half (50.6 per cent).

The data indicate the makings of an incipient decline 
in fertility that began roughly – when the cohort currently 
aged 50–54 was having their children, approximately 25–30 
years before the census.

Entry into motherhood
In the case of the Cambodian data, the actual proportion of 
women 45–49 who had ever had a child was 0.9315. The 
projected proportions, by current age of mother, are shown 
in the first row of Table 8.10.

It would certainly appear that there have been some 
significant changes in the timing of entry into motherhood 
among younger cohorts, although the results for women 
in their twenties, and quite probably those aged 30–34 
too, are implausible for reasons discussed in relation to 
the derivation of the results earlier. The projected parity 

Age group
Parity (i ) 20–24 25–29 30–34 35–39 40–44 45–49 50–54 55–59 60–64

0 (0.7850) 0.8679 0.9008 0.9224 0.9283 0.9315 0.9450 0.9481 0.9420
1 0.9312 0.9337 0.9488 0.9403 0.9398 0.9429 0.9425 0.9333
2 (0.8053) 0.8580 0.9081 0.9182 0.9180 0.9190 0.9263 0.9230
3 0.8083 0.8676 0.8878 0.8950 0.8958 0.9082 0.9156
4 (0.7558) 0.8055 0.8404 0.8578 0.8613 0.8794 0.8846
5 0.7738 0.7885 0.8199 0.8251 0.8345 0.8454
6 0.7094 0.7388 0.7730 0.7858 0.8008 0.8140
7 (0.6379) 0.6715 0.7244 0.7409 0.7513 0.7446
8 0.6266 0.6589 0.6862 0.6965 0.7001
9 0.6104 0.6397 0.6577 0.6662 0.6707
10 0.5326 0.5534 0.5599 0.5677 0.5864
11 (0.7611) 0.5792 0.6063 0.6232 0.6388

Table 8.10  Projected parity progression ratios, Cambodia, 1998 
Census
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Figure 8.2  Projected proportion attaining each parity by age 
group, Cambodia, 1998 Census

Figure 8.1  Projected parity progression ratios by parity and age 
group, Cambodia, 1998 Census
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progression ratios for women in their twenties are strongly 
affected both by changes in the timing of childbearing, as 
well as being strongly affected by the projected components. 
These results should be ignored, or alternatively a life-table 
approach to estimating entry into motherhood should be 
applied. Such methods and their calculation are outside the 
scope of this manual.

With the exception of this metric, however, the 
calculation of projected PPRs should eliminate the effect of 
reference period errors in the resulting PPRs in so far as they 

are independent of parity. This can be seen in the estimates 
of the projected parity progression ratios for other parities.

The data for the 20–24 to 40–44 cohorts contain a 
projected component which is more significant the younger 
the cohort. Data for older cohorts are based on completed 
fertility. The projected parity progression ratios for women 
aged 30–44 indicate a systematic decline in the proportion 
of women in each successively younger cohort expected to 
progress to the next parity by the end of their childbearing 
years. This is indicative of fertility decline underway.

Further reading and references
A similar approach to that presented above, but which makes 
use of the detailed data collected in birth histories and also 
takes more careful account of the censoring and selection 
effects is described in Brass and Juárez (1983).

There is a sizable literature on the use and problems 
associated with period (as opposed to cohort) parity 
progression ratios. These fall outside of the scope of this 
manual. The interested reader is referred to Whelpton 
(1946), Feeney and Yu (1987), Ní Bhrolcháin (1987), 
Hinde (1998), and Bongaarts and Feeney (1998).
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Chapter 9  Estimation of fertility by reverse survival
Ian M Timæus and Tom A Moultrie

Description of method
Reverse survival is a method for estimating fertility from 
data collected in a census or single-round survey that can 
be used even if no questions have been asked about fertility 
directly. In a population closed to migration, the population 
of any age x are the survivors of the births in that population 
x completed years previously. This implies that the number 
of births occurring x years ago can be calculated, provided 
that one can estimate the life table survival probabilities 

from birth to age x (that is, 
0

xL
l

).

‘Reverse surviving’ the population to its birth year and 
dividing by an estimate of the total population in that year 
gives the crude birth rate, while dividing by an estimate of 
women of childbearing age gives the General Fertility Ratio. 
By combining reverse survival estimates of past births and 
women according to age with estimates of, or a reasonable 
assumption about, the age pattern of fertility, one can also 
estimate Total Fertility.

Asking about births in the last year or the date of women’s 
last live birth provides an estimate only of current fertility. 
In contrast, reverse survival methods can provide estimates 
of fertility for the last 15 years. Moreover, unlike fertility 
estimates from birth histories, which are usually collected 
only from women aged 15 to 49, fertility estimates produced 
by reverse survival do not become increasingly truncated at 
older ages as they are calculated for more distant periods. So 
long as a single-year age distribution of children is available, 
the approach can produce an annual series of fertility 
estimates. In practice though, the data on age collected in 
developing countries are seldom sufficiently accurate to 
yield an undistorted time series.

Caveats and warnings
The methods described here depend heavily on the accuracy 
of the reported age distribution of the population being 

investigated. Errors in the age distribution, such as omission 
of infants and young children and heaping of reports on 
particular ages, can have a significant impact on the results 
derived. As Manual X notes, “because these types of 
deficiencies are all too frequently characteristic of the data 
sets available, reverse survival methods are often ineffective 
in producing reliable fertility estimates. Their usefulness 
depends mainly upon the fact that they often provide 
independent fertility estimates which can be used to assess 
the plausibility of those obtained by other means” (UN 
Population Division 1983: 178).

Under-enumeration of infants and young children 
is common in censuses and surveys in less developed 
countries. Such under-enumeration of children, especially 
those aged 2 or less, will result in estimates of fertility that 
are proportionally too low. Thus, reverse survival methods 
tend to underestimate current fertility and to produce an 
exaggerated impression of recent fertility decline.

In addition, inaccurate age reporting, in particular 
heaping of reports on preferred ages, may result in very 
erratic time series of estimates of fertility.

Before applying any reverse survival method of estimating 
fertility, investigations into the quality of the age and sex data  
should be undertaken. The methods should be applied with 
caution where the data are deemed to be of poor quality.

Although it is possible, it is generally inadvisable to 
produce reverse survival estimates of fertility going back 
more than 15 years before the inquiry concerned. The first 
reason for this is that both migration and differential under-
enumeration are likely to distort estimates based on the age 
distribution of young adults aged 15 or more. Second, more 
distant estimates of fertility become increasingly dependent 
on accurate assessment of the mortality of older women.

Since the results depend on what is assumed about 
survivorship, they are fairly insensitive to assumptions made 
about the mortality of either children or women aged less 
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than 65. For example, if the probability of having died of 
a child born about 12 years ago was 20 per cent and was 
under-estimated by a quarter at 16 per cent, then the 
resulting overestimate of the number of births would be 
(100–16)/(100–20), which is only 5 per cent. Similarly, even 
if the child had an older mother, her probability of having 
died would seldom be much greater than 20 per cent. If this 
probability was underestimated by a quarter, fertility would 
be overestimated by only 4.8 per cent. Moreover, if the bias 
in the mortality estimates is in the same direction for both 
children and mothers, the resulting errors in the estimates of 
fertility will partly cancel out.

Method 1: Estimation of the Crude 
Birth Rate for five-year periods
Data requirements and assumptions
Tabulations of data required
To derive average birth rates for five-year periods preceding 
an inquiry, the following data are required:
•	 enumerated population aged less than age 15, classified 

by five-year age group;
•	 total population enumerated either at two points in time 

or at a single point in time, together with an estimate of 
the growth rate; and

•	 estimated life table measures of survivorship for children, 
5L0, 5L5 and 5L10.

Important assumptions
The population is assumed to have been closed to migration 
for as many years as are covered by the reverse survival 
estimates. However, because children usually migrate with 
their mothers, errors in the numerator and denominator of 
the estimated rates largely cancel out. Significant bias will 
result only if migration flows are large and migrants have 
different fertility from the rest of the population.

Application of method
Step 1: Calculate the life table survivorship of children
In order to reverse survive the population in the three age 
groups 0–4, 5–9 and 10–14, one needs only values of 
5L0, 5L5, and 5L10, the person-years lived by the stationary 
population between birth and age 5, and between ages 5 
and 10, and 10 and 15, respectively. The source for these 
measures might be an empirically-based life table for the 
population under study or a model life table that is believed 
to be appropriate (for example, one of the Princeton regional 

model life tables). Given the high degree of aggregation 
across ages, one can assume that mortality is constant 
within each five-year period of time preceding the inquiry. 
Overestimates of mortality will produce overestimates of 
fertility (as they imply that the enumerated population 
represents the survivors of a relatively large cohort of births) 
and vice versa.

Since mortality changes rapidly in the first year of life, 
if an empirical life table is used, 5L0 should be calculated 
as 5L0 = 1L0 + 4L1. Should the empirical life tables be sex-
specific, a combined-sex life table should be derived for ages 
0 to 14 by assuming an appropriate sex ratio at birth. This is 
achieved by means of the formula
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where m
xl  

and f
xl  

are the life table values of lx for boys and 
girls respectively, and S0 is the sex ratio at birth (expressed as 
the number of male births per 100 female births).

If a model life table is used to represent mortality in 
childhood, 5L0, 5L5, and 5L10 are obtained by interpolation 
of appropriate values from the tabulated series of models.

Step 2: Estimate the mid-period populations
In order to estimate an annual birth rate for up to three 
preceding periods of five years each, an estimate of the total 
population at the mid-point of each of the three periods 
is required. In the absence of detailed information that 
can be used directly (for example, the results of a census 
conducted 10 years earlier), and given the inherent loss of 
precision introduced by aggregating both population counts 
and mortality into five-year groups, obtaining a precise 
estimate is unnecessary. The easiest way to estimate the total 
population d years before an inquiry, N(t – d ), where d = 2.5, 
7.5 and 12.5, is to assume a constant rate of growth, r, and 
apply this to the population enumerated at time t, N(t), i.e.

N(t – d ) = N(t).exp(– d.r).
The growth rate, r, can be estimated from information on 
the size of the total population, P, at two points in time, t0 
and t1, such that
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r
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Thus, for example, the population 2½ years before the more 
recent inquiry is

N(t –2.5)= N(t).exp(–2.5r)
and similarly for the estimates of the population at other 
points in time.

Step 3: Estimate births in each five-year period preceding 
the inquiry
Define B(t –5,t) to be the number of births that occurred 
each year in the period t – 5 to t years before an inquiry 
where t = 0, 5 or 10. Define also 5Nx(t) to be the enumerated 
population aged between x and x + 5 at the date of the 
inquiry. It follows that the average number of births in each 
of the five years from t –5 to t is

	 B(t –5,t) = 5N0(t).l0/5L0
	 B(t –10,t –5) = 5N5(t).l0/5L5
and
	 B(t –15,t –10) = 5N10(t).l0/5L10.

The crude birth rate for each period is then calculated 
by dividing the number of births in each period by the 
corresponding mid-period populations from Step 2

( 5, )( 5, )
( 2.5)

B t tCBR t t
N t

−
− =

−

and similarly for the earlier periods.

Worked example
The basic principles of reverse-survival estimation of fertility 
are illustrated here using data from the Census conducted in 
Cambodia in 2008.

Step 1: Calculate the life table survivorship of children
Survival factors are derived from the World Health Organi-
zation life table for Cambodia for 2000. Values of nLx for 
both sexes in this life table are shown in Table 9.1 for a radix 
of 100,000.

Table 9.1  Extracted values from WHO life table for Cambodia, 
2000

Age n X lx dx nLx

<1 1 0 100,000 7,956 94,431
1–4 4 1 92,044 2,684 361,734
5–9 5 5 89,360 887 444,581

Based on these data, one can calculate the following quantities

0

5 0

0

5 5

100,000 0.21922
94,431 361,734
100,000 0.22493.
444,581

l
L
l
L

= =
+

= =

Step 2: Estimate the mid-period populations
Using the samples from Cambodian censuses provided by 
IPUMS International, the population of Cambodia on 
3 March 1998 was 11,412,540 people. By the same date in 
2008, it was 13,401,210. The population under the age of 
5 in 2008 was 1,736,790 and that aged between 5 and 10 
was 1,472,470.

Since the censuses were conducted exactly ten years apart, 
the intercensal growth rate is calculated as

13401210ln
11412540 1.60632 per cent per annum.

10
r

 
 
 = =

The population 2.5 and 7.5 years before the second census is 
therefore estimated to be

( 2.5) ( ).exp( 2.5 ) 12,873,706
( 7.5) ( ).exp( 7.5 ) 11,880,172

N t N t r
N t N t r

− = − =
− = − = .

Step 3: Estimate births in each five-year period preceding 
the inquiry
The estimated number of births in each of the five years 
before the census is given by

B(t –5,t) = 1,736,790 × 0.21922 = 380,739.

For the five years before that, it is

B(t –10,t –5) = 1,472,471 × 0.22493 = 331,202.

Dividing the births by the estimated mid-period population 
yields crude birth rates for Cambodia of 29.6 births per 
1000 in the period 2003–2008, and 27.9 births per 1000 in 
the period 1998–2003.

These figures are of the right order of magnitude: the US 
Census Bureau estimates the crude birth rate in the country 
as 28 in 2000 and 27 in 2005, while the UN Population 
Division’s estimate for 2000–2005 is 25.1 births per 1000. 
Note, however, that the reverse survival estimates suggest 
that a slight rise in fertility occurred during the 1990s. This 
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finding could well be spurious and might result from errors 
in the initial estimates of the population or an inappropriate 
choice of life table.

Method 2: Estimation of General 
Fertility and Total Fertility Ratios
The second application of the concept of reverse survival 
described here produces annual estimates of the General 
Fertility and Total Fertility Ratios for up to 15 years before 
the inquiry. To calculate the General Fertility Ratio requires 
only that one estimates the past size of the population of 
adult women from the number of women enumerated in an 
inquiry by allowing for adult mortality. To calculate Total 
Fertility, however, requires information not only on the 
number of births occurring each year, but also on the ages of 
the mothers of these newborn children. One relatively simple 
way of estimating this information, if it is not known, is to 
apportion births to age groups of mother using independent 
estimates of the age distribution of fertility.

Data requirements and assumptions
Tabulations of data required
To derive General Fertility Ratios for individual years, the 
following data are required:
•	 Tabulations of the population (of both sexes) aged 0 to 

14, by single years of age.
•	 Tabulations of the female population aged 15 to 64 by 

five-year age group.
•	 Cohort survival probabilities, Lx, for children aged 0 to 

14 of both sexes.
•	 Survivorship ratios, 5Lx – 5/5Lx for adult women for each 

of the three five-year periods preceding the inquiry.
In respect of the mortality estimates, the implementation 

of the method in the associated Excel workbook (see 
website) allows these to be specified either by reference to 
period-specific parameters  and  of appropriate relational 
model life tables, or to identified values of 5q0 (for children) 
and 45q15 (for adult women) for each of the three five-year 
periods preceding the enquiry.

To produce estimates of Total Fertility, one also requires 
either
•	 A single age-specific fertility distribution that is assumed 

to apply to the entire period covered by the estimates, or
•	 Two age-specific fertility distributions, one of which 

applies to a date reasonably close to the index inquiry and 
the other to a date approximately 15 years prior to that.

Either a series of fertility rates or the parameters of a 
relational Gompertz model fitted to a standard fertility 
schedule can be used as an input to the calculations.

Note that only the estimated shape of the fertility 
distribution is based on these fertility schedules. It is the 
estimated number of births relative to the population of 
women of childbearing age that almost entirely determines 
the estimates of the General and Total Fertility Ratios.

Important assumptions
The population is assumed to have been closed to migration 
for as many years as are covered by the reverse survival 
estimates. However, because children usually migrate with 
their mothers, errors in the numerator and denominator of 
the estimated rates largely cancel out. Significant bias will 
result only if migration flows are large and migrants have 
different fertility from the rest of the population.

Application of method
Step 1: Estimate the number of births in each year before 
the inquiry
The enumerated population aged x in any inquiry represents 
the survivors from the births that occurred in the 12-month 
period centred on the date x + 0.5 years before the inquiry. 
Algebraically,

0.5 ,0 14x
x c

x

NB x
L+ = ≤ ≤ .

The measure of survivorship used in this calculation, cLx, is 
a cohort survival factor. It depends on mortality at successive 
ages in successive years leading up to the inquiry. Appropriate 
cohort estimates of mortality may be available from the 
inquiry used to estimate fertility. Such estimates include 
indirect estimates from children ever born and surviving, 
in the case of a census, and direct estimates from a cohort 
analysis of the birth histories, in the case of a fertility survey. 
Brass (1979) describes a simple procedure for estimating Lx 
directly from proportions of children surviving according to 
their mothers’ age group.

If a series of cohort survival ratios is not readily to hand, 
one can be derived from estimates of period mortality by 
single years of age for each five-year period before the in-
quiry.

Working with a relational logit system of model life 
tables, define T and T to be the parameters that generate 
a life table for period T, where T = 0 refers to the period 0–4 
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years before the inquiry, T = 5 to the period 5–9 years before 
the inquiry and T = 10 to the period 10–14 years before the 
inquiry. For a given standard, indexed by the superscript s,

, . s
x T T T xY Yα β= +

where Y is the logit function:

	
1 1 ( )ln
2 ( )x

l xY
l x
− =  

 
	 (1)

and l(x) (or x p0) refers to the proportion surviving from birth 
to exact age x in a life table with a radix of 1. Equation 1 
implies that

( )( ) 1
1 exp 2 )x xl Y

−
= +

and that
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At ages other than infancy, one can approximate Lx,T , the 
person-years lived between x and x + 1 in period T, by 
assuming that survivorship declines linearly on the logistic 
scale and, therefore, that the logit of Lx,T is the average of 
Yx,T and Yx+1,T . From Equation 2
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The values of l (x) in systems of model life tables are often 
tabulated by single ages up to age 5, and then at every fifth 
year of age. If this is the case for children aged 5 or more, 
one can assume that logit survivorship declines linearly over 
the entire age range x to x + 5. Thus, for example, if a life 
table has tabulated values at x = 5 and x = 10, the estimated 
value of L9,T would be given by
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For infants, one should allow for the concentration of deaths 
in the first days and weeks of life. In medium and high 
mortality populations, one can approximate person years 
lived in the first year of life as

	 ( )( ) 1
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Survivorship ratios from one age to the next, Px,T , in time 
period T, are derived from the ratio of successive values of 
Lx,T :
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Once estimates of the survivorship of children by single 
years of age and five-year time periods have been obtained 
in either the way just outlined or by some other procedure, 
an estimate of cohort survivorship by single years of age for 
single-year age cohorts can be calculated as follows. Recall 
that Pa,T is the survivorship ratio between ages a and a + 1 in 
time period T (where T = 0, 5 or 10, corresponding to five-
year periods 0–4, 5–9 and 10–14 years before the inquiry). 
Further define Sa,t to be the survivorship ratio between ages 
a and a + 1 in the period t to t +1 years before the inquiry, 
0≤t≤14. Using linear interpolation to estimate survivorship 
for the intermediate years
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The proportion of births occurring x to x + 1 years earlier 
that survive to the time of the inquiry, cLx , can then be 
calculated as
	 0, 1, 1 1,1 ,0. .... .c

x x x x xL S S S S− −= .	 (6)

The number of births in each year before an inquiry, centred 
on the point mid-way through that year (i.e. 6 months 
before the date of the inquiry), is thus

0.5 ,0 14x
x c

x
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where Nx is the number of children aged x reported in the 
inquiry.
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Step 2: Estimate the mid-year populations of women by 
five-year age group
The calculation of survivorship for women aged 15 to 64 
at the date of the inquiry can be done in a straightforward 
way because mortality is usually fairly low in the central 
adult ages. Thus, even approximate estimates of mortality 
will enable one to produce a satisfactory estimate of the past 
population from the enumerated population.

The absolute variation of mortality with age within any 
five-year age group is small. One can therefore approximate 
5Lx by linear interpolation between Yx and Yx + 5. This means 
that one can estimate survivorship between five-year age 
groups at time T (where T = 5, 10 and 15) as
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Starting with the population enumerated at T = 0, the num-
ber of women in each five-year age group T + 5 years before 
the inquiry can then be calculated from the number at T:
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Furthermore, since the age structure of a population changes 
only slowly, the mid-year populations of women in the age 
groups 10–14, 15–19,…, 60–64 for each year before the 
date of the inquiry can be estimated by interpolating linearly 
between the population estimates for 0, 5, 10 and 15 years 
before the inquiry produced by Equation 8. For example, to 
estimate the number of women aged 20–24 at the point 8½ 
years before the inquiry, the formula would be

( ) ( )5 20,8.5 5 20,5 5 20,100.3 0.7N N N= + .

Step 3: Derive General Fertility Ratios
The General Fertility Ratio for the year centred on the point 
x – 0.5 years before the inquiry is

	
0.5

0.5 45

5 , 0.5
15,5

,0 14x
x

a x
a

B
GFR x

N

+
+

+
=

= ≤ ≤
∑ 	 (9)

where the denominator is the total number of women aged 
between 15 and 49 at the mid-point of the year during 
which the births occurred.

Step 4: Estimate age-specific and Total Fertility
A natural extension to the calculation of General Fertility 
Ratios is to make use of a schedule describing the age-pattern 
of fertility in the population being studied to estimate Total 
Fertility by a procedure akin to indirect standardization.

Such a fertility schedule might come from data on recent 
births collected in the same inquiry as is being analysed by 
reverse survival methods. As only information on the age 
pattern of fertility is obtained from these data, no need 
exists to adjust the reports for reference-period errors. If a 
second fertility schedule is available from a previous census 
or survey of the same population (preferably conducted 
about 15 years earlier) one can interpolate between the two 
schedules, or if necessary extrapolate, to estimate the shape 
of the fertility schedule in each year for which one intends 
to estimate Total Fertility.

However, even if one suspects that fertility has been 
changing, having two schedules is not essential, since the age 
pattern of fertility evolves only gradually and estimates of 
Total Fertility are not very sensitive to the exact assumptions 
made about the shape of the fertility distribution. Thus, a 
single schedule (preferably referring to about the middle of 
the estimation period) will suffice.

If fertility has been estimated using a relational Gompertz 
model, in combination with the chosen standard, the 
parameters  and  derived during the estimation of fertility 
define the shape of the fertility schedule. Accordingly, values 
of  and  can be used to determine the shape of the fertility 
schedule(s) used in the estimation of Total Fertility.

Once one has estimated the proportion of Total Fertility 
occurring in each age group for each year before the inquiry, 
these proportions can be applied to the population of women 
in each age group in each year to estimate the number of 
births that would have occurred to women in that age group 
if Total Fertility equalled one child per woman.

Thus, once one has selected a fertility schedule (scaled to 
a Total Fertility of 1), *

5 , 0.5a xf + , for each age group (a = 15, 
20,…, 45) for each of the 15 years (x) before an inquiry, the 
expected number of births to women in each age group in 
each year is given by

* *
5 , 0.5 5 , 0.5 5 , 0.5. ,0 14a x a x a xB N f x+ + += ≤ ≤ .

It follows that the total number of births that would have 
occurred in year x if Total Fertility had equalled 1 is
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45
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However, Step 2 yielded an estimate of the actual number of 
births in each year, Bx + 0.5. The estimate of Total Fertility for 
each year is thus the ratio of B to B*
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Estimates of the age-specific fertility rates for the year can 
be produced by multiplying the proportional rates, *

5 ,a xf , 
for each age group (a) and year (x) by the estimate of Total 
Fertility for that year. It should be noted, however, that the 
results will merely reproduce the age pattern of fertility that 
was input into the calculations: this method provides no 
new information on the age pattern of fertility.

Worked example
The worked example, implemented in an Excel workbook 
(see website), estimates fertility trends in Cambodia from the 
2008 Census. Sample microdata are available from IPUMS 
International and the reference date for the census was 
3 March 2008. In decimal notation, this date corresponds 
to 2008.17.

The numbers of children aged less than 15 by single years 
of age, and the numbers of women aged 10 to 64 in five-year 
age groups extracted from the data are shown in Table 9.2.

Table 9.2  Numbers of children by single year of age, and women 
by five-year age group, Cambodia, 2008 Census

Age Children Age group Women
0 281,260 10–14 815,930
1 261,320 15–19 780,320
2 268,410 20–24 697,160
3 286,810 25–29 626,430
4 278,990 30–34 361,650
5 293,760 35–39 435,880
6 293,490 40–44 393,760
7 302,060 45–49 352,520
8 315,970 50–54 294,280
9 267,190 55–59 230,200
10 326,980 60–64 160,590
11 280,260
12 354,120
13 356,920
14 354,830

Mortality for the five-year period before the census was 
taken from the 2009 WHO life tables for Cambodia. 
The proportion surviving to exact age x, together with the 
associated logits for children aged less than 15 of both sexes 
and for women aged 10 to 65 are shown in Table 9.3.

Table 9.3  WHO life table for Cambodia in 2009 used as 
standard

Children l(x) Logit, Y(x)
0 1.0000
1 0.9320 –1.3085
5 0.9125 –1.1723
10 0.9048 –1.1256
15 0.8997 –1.0968

Women
10 0.9138 –1.1805
15 0.9099 –1.1561
20 0.9049 –1.1266
25 0.8980 –1.0875
30 0.8889 –1.0399
35 0.8760 –0.9774
40 0.8603 –0.9089
45 0.8419 –0.8361
50 0.8179 –0.7511
55 0.7847 –0.6467
60 0.7374 –0.5161
65 0.6732 –0.3613

This life table was used as a standard against which to fit 
relational model life tables for children and adults separately 
for the periods 5–9 and 10–14 years before the census to 
the WHO life tables for Cambodia for 2000 and 1990. The 
fitted values of  and  for children and adults are shown 
in Table 9.4.

TAble 9.4  Parameters of relational model life tables for five-year 
periods before the 2008 Census, using the 2009 WHO life table for 
Cambodia as the standard

Period before the census (years)
0–4 5–9 10–14

Children  0.00 0.22 0.35
 1.00 1.10 1.17

Adults  0.00 0.08 0.00
 1.00 0.97 0.87

Estimates of age-specific fertility for mid-1997 and mid-
2007 were obtained from the UN Population Division’s 



CHAPTER 9 ESTIMATION OF FERTILITY BY REVERSE SURVIVAL  |  89

World Population Prospects (2010 revision) and are shown 
in Table 9.5.

Table 9.5  Fertility schedules for Cambodia used in the reverse 
survival estimation

Year
Age group 1997.5 2007.5

15–19 0.053 0.042
20–24 0.197 0.154
25–29 0.214 0.148
30–34 0.184 0.112
35–39 0.133 0.071
40–44 0.068 0.030
45–49 0.013 0.003

Step 1: Estimate the number of births in each year before 
the inquiry
Applying Equations 3 and 4 to the logit values of the 
standard presented in Table 9.3, using the values of  and  
in Table 9.4, gives the estimates of Lx,T and Px,T presented 
in Table 9.6.

Cohort survival to the census date of children aged 0 to 
14 is then estimated using Equations 5 and 6 (presented in 
the last column of Table 9.6).

Finally, the number of births in each year preceding 
the census is derived by dividing the number of children 
enumerated in 2008 at each age by the relevant value of cLx 
(Table 9.7).

Step 2: Estimate the mid-year populations of women by 
five-year age group
Applying the values of  and  for adult women in each 
five-year period given in Table 9.4 to the standard logits in 
Table 9.3 produces (by means of Equation 7) the five-year 
survivorship ratios for women by five-year age group shown 
in Table 9.8.

Application of the survivorship ratios from Table 9.8 to 
the enumerated population of women aged 10 to 64 using 
Equation 8 produces estimates of the population of women 
by five-year age group for 5, 10 and 15 years before the 
census (Table 9.9).

It is a straightforward arithmetic exercise to interpolate 
linearly between the four right-hand columns of Table 9.9 
for each age group to produce estimates of the population 
by five-year age group for the 15 years centred on dates 6, 
18, 30 … 174 months before the census, which is to say for 
2007.67, 2006.67 … 1993.67. An extract of the results is 
shown in Table 9.10.

x Lx,0 Lx,5 Lx,10 Px,0 Px,5 Px,10
cLx

0 0.9524 0.9439 0.9397 0.9524 0.9439 0.9397 0.9524
1 0.9298 0.9170 0.9106 0.9763 0.9716 0.9691 0.9298
2 0.9252 0.9112 0.9039 0.9951 0.9936 0.9926 0.9252
3 0.9197 0.9041 0.8958 0.9941 0.9923 0.9910 0.9181
4 0.9145 0.8974 0.8881 0.9944 0.9926 0.9914 0.9104
5 0.9118 0.8939 0.8840 0.9970 0.9960 0.9954 0.9049
6 0.9102 0.8919 0.8818 0.9983 0.9978 0.9974 0.9003
7 0.9087 0.8899 0.8795 0.9983 0.9978 0.9974 0.8954
8 0.9071 0.8879 0.8771 0.9983 0.9977 0.9973 0.8911
9 0.9056 0.8858 0.8747 0.9983 0.9977 0.9973 0.8871

10 0.9043 0.8842 0.8728 0.9986 0.9981 0.9978 0.8834
11 0.9033 0.8828 0.8713 0.9989 0.9985 0.9983 0.8801
12 0.9022 0.8815 0.8698 0.9989 0.9985 0.9983 0.8767
13 0.9012 0.8802 0.8682 0.9989 0.9985 0.9982 0.8741
14 0.9002 0.8789 0.8667 0.9989 0.9985 0.9982 0.8719

Mid-year preceding 
the census date Births

2007.67 295,328
2006.67 281,062
2005.67 290,118
2004.67 312,409
2003.67 306,453
2002.67 324,644
2001.67 325,997
2000.67 337,355
1999.67 354,583
1998.67 301,184
1997.67 370,118
1996.67 318,451
1995.67 403,924
1994.67 408,337
1993.67 406,976

Table 9.6  Calculation of cohort survival ratios by age, Cambodia 
1983–2008

Table 9.7  Estimated number of births 
in each of the 15 years preceding the 2008 
Census, Cambodia
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Step 3: Derive General Fertility Ratios
General Fertility Ratios for each year are calculated using 
Equation 9, the births from Table 9.7 and the population of 
women aged 15 to 49 (from Table 9.10).

Table 9.11  Estimates of the General Fertility Ratio, Cambodia, 
1993–2008

Mid-year preceding 
 the census date GFR (15–49)

2007.67 82
2006.67 80
2005.67 85
2004.67 93
2003.67 94
2002.67 102
2001.67 106
2000.67 112
1999.67 121
1998.67 106
1997.67 134
1996.67 119
1995.67 156
1994.67 163
1993.67 168

Step 4: Estimate age-specific and Total Fertility
Interpolating between the two fertility schedules in Table 9.5, 
fertility distributions – assuming Total Fertility of one child 
per woman – can be calculated for successive periods of a year 
preceding the census. An extract of the series, illustrating a 
portion of the calculations, is shown in Table 9.12.

For each year, multiplication of the number of women in 

Age 
group 2007.67 2006.67 2005.67 2004.67 2003.67 2002.67

10–14 812,750 806,391 800,032 793,672 787,313 776,305
15–19 772,463 756,748 741,033 725,318 709,604 695,269
20–24 690,645 677,616 664,587 651,558 638,528 605,814
25–29 600,400 548,341 496,281 444,222 392,162 374,474
30–34 369,790 386,069 402,349 418,628 434,907 439,682
35–39 432,454 425,603 418,752 411,901 405,050 398,453
40–44 390,531 384,074 377,617 371,160 364,703 356,694
45–49 347,738 338,174 328,610 319,046 309,483 299,444

Table 9.8  Survival factors, 5Px,T, by five-year age group and 
period before the Census, Cambodia 1993–1998

Age group T = 0 T = 5 T =    10

10–14 0.9951 0.9942 0.9945
15–19 0.9935 0.9922 0.9927
20–24 0.9912 0.9895 0.9902
25–29 0.9878 0.9855 0.9866 
30–34 0.9838 0.9810 0.9826 
35–39 0.9804 0.9772 0.9793 
40–44 0.9752 0.9714 0.9744 
45–49 0.9658 0.9609 0.9654 
50–54 0.9501 0.9438 
55–59 0.9271 

Table 9.9  Number of women by five-year age group 0, 5, 10 and 
15 years before the 2008 Cambodia Census

Age 
group 2008.17 2003.17 1998.17 1993.17

10–14 815,930 784,134 705,852 640,512
15–19 780,320 701,746 636,977 372,754
20–24 697,160 632,014 370,014 454,008
25–29 626,430 366,133 449,548 414,964
30–34 361,650 443,047 409,395 376,470
35–39 435,880 401,624 369,909 320,300
40–44 393,760 361,474 313,672 258,772
45–49 352,520 304,701 252,137 190,119
50–54 294,280 242,285 183,546
55–59 230,200 173,224
60–64 160,590

Table 9.10  Number of women by five-year age group by year
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each age group by the corresponding fertility distribution 
for that age group produces the estimated number of births 
in that age group if Total Fertility was one child per woman.

However, the number of births each year has been esti-
mated already (Table 9.7). The ratios of those estimates to 
the estimates based on the assumption that Total Fertility was 
1 represent estimates of actual Total Fertility in each year.

Interpretation
The results of the application of reverse survival methods 
to data from the 2008 Census of Cambodia are plotted 
in Figure 9.1. The figure gives a strong visual sense of the 
progress of fertility decline in Cambodia over the 15-year 
period up to 2008. While the Crude Birth Rate estimated by 
Method 1 rose slightly between two five-year periods before 
the census, Total Fertility has continued to fall. Figure 9.1 
also shows clearly the impact on the age structure, and 
thereby the estimates of fertility, of a preference for reporting 
children to be ages 8, 10 and 12, rather than 9 or 11.

In general, the main problems that are likely to arise with 
fertility estimates calculated by reverse survival methods 
stem not from the reverse survival procedure itself or from 
the assumptions made about the age pattern of fertility, but 
from age reporting errors or the failure of some respondents 

to report all young children who are household members. 
Omissions of young children and overestimation of their 
ages often produce a false impression that fertility decline has 
accelerated in the few years before the data were collected. 
No evidence exists that such reporting errors have occurred 
in Cambodia.

Because only a minority of children die during the 15 years 
after their birth, and in most contemporary populations 
quite a small minority of children at that, any errors in 
the assumptions made about children’s mortality have a 
less than proportional impact on the estimates of fertility. 
Overestimates of child mortality produce overestimates of 
past fertility and vice versa. As the proportion of children 
that have died increases with age, the impact of such errors 
tends to be greater for the more distant estimates, resulting 
in a slight bias in the estimated trend in fertility. It is often 
easier to determine whether such biases exist in the data if it 
is possible to plot multiple series of fertility estimates on one 
chart rather than just examining a single set of results, as in 
this illustrative analysis.

Extensions of the method
A well-established extension of reverse survival methods 
for estimating fertility is the Own-Children Method. The 

Age 
group 2007.67 2006.67 2005.67 2004.67 2003.67 2002.67

10–14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15–19 0.0123 0.0126 0.0128 0.0131 0.0133 0.0136
20–24 0.0456 0.0465 0.0474 0.0483 0.0492 0.0502
25–29 0.0496 0.0500 0.0503 0.0506 0.0509 0.0513
30–34 0.0426 0.0423 0.0421 0.0418 0.0416 0.0413
35–39 0.0310 0.0304 0.0299 0.0293 0.0287 0.0282
40–44 0.0158 0.0153 0.0148 0.0143 0.0138 0.0133
45–49 0.0031 0.0029 0.0028 0.0026 0.0024 0.0022

Table 9.12  Interpolated fertility distributions by five-year age 
group and year

Mid-year preceding 
the census date Total Fertility

2007.67 2.76
2006.67 2.69
2005.67 2.85
2004.67 3.15
2003.67 3.18
2002.67 3.46
2001.67 3.56
2000.67 3.78
1999.67 4.09
1998.67 3.58
1997.67 4.48
1996.67 3.89
1995.67 4.98
1994.67 5.07
1993.67 5.10

Table 9.13  Estimates of Total Fertility, 
Cambodia 1993–2007
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method has been documented comprehensively by Cho, 
Retherford and Cho (1986). The Own-Children Method 
also produces estimates of Total Fertility but, instead of 
using independent estimates of the age pattern of fertility 
to apportion births among mothers, seeks to link each child 
enumerated in an inquiry to his or her mother. This makes 
it possible to tabulate children by both their own age and 
the age of their mothers. These counts can then be reverse 
survived to calculate the number of children born each year 
in the past according to the age of their mothers then.

In inquiries in which detailed information has been 
collected on intra-household familial relationships and, 
in particular, if the identifier of co-resident mothers was 
included in the record for each child, this exercise in record 
linkage is somewhat algorithmically complex but do-able. 
Assumptions still need to be made about the age of the 
mothers of foster children and maternal orphans and, if they 
are numerous, it may be problematic to assume that they 
can be allocated to age groups of mothers on a pro rata basis.

If only limited information on relationships within the 
household is available, linking children to their mothers 

can become problematic, especially in populations where 
extended family households are common. In particular, if 
the mother is not resident in the household, children are 
at risk of being linked wrongly to an aunt, grandmother 
or other woman instead of remaining unlinked. The net 
impact of such errors is usually to inflate the estimated age-
specific fertility of older women. Divorce, remarriage and 
polygynous marriage also increase the scope for identifying 
the wrong woman as the child’s mother.

It is impossible to offer advice here on the detailed algo-
rithms that should be used to link children to mothers when 
applying the Own-Children Method for estimating fertil-
ity, as the procedure adopted should be tailored to exactly 
what questions were asked and what fieldwork procedures 
were followed. For example, linkage becomes more straight-
forward if interviewers were instructed to list simple family 
units within a household together rather than, for example, 
grouping household members by age or gender.

Because substantial numbers of young people leave home 
in their late teenage years (including, in most cultures, 
young women who marry), the recommendation that 

Figure 9.1  Trend in Total Fertility estimated by reverse survival 
from the 2008 Cambodia Census
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reverse survival methods should be used only to estimate 
fertility for the 15 years before the inquiry concerned applies 
particularly strongly to estimates produced using the Own- 
Children Method.

Despite these potential limitations, experience suggests 
that the Own-Children Method can produce estimates of 
fertility of similar quality to those calculated from birth 
history data. Indeed, because they avoid the problem of 
truncation of the fertility rates for older women as the 
estimates move back in time and because birth history data 
must be collected from women personally and women who 
cannot be interviewed tend to have relatively lower fertility, 
it has been argued that estimates produced by the Own-
Children Method are superior to direct estimates from birth 
histories in most instances. (Avery, St. Clair, Levin et al. 
2013)

Equally, the reverse survival methods described in detail 
here usually perform well at a national level. They do not 
require access to individual-level data files and may produce 
more accurate estimates than the Own Children Method in 
inquiries in which matches of children to the wrong putative 
mother are common.

The Own-Children Method is particularly appropriate, 
however, for the study of differential fertility according to 
attributes of the mother such as her education, residence, 
or marital status. Because it can be applied to census data, 
the Own-Children Method can be used to estimate the 
fertility of sub-groups of the population that are too small 
to study using fertility survey data. Moreover, because far 
more information on women’s attributes is usually collected 
in censuses than on birth certificates, the method remains of 
value even in countries with complete registration of births.





Multiple Census Methods
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Chapter 10  Synthetic relational Gompertz models
Tom A Moultrie

Description of method
The synthetic relational Gompertz model is an extension 
of the relational Gompertz method for the estimation of 
age-specific and total fertility and makes use of two sets of 
parity data, collected at different points in time, together 
with estimates of current fertility for the intervening period 
based on reports of recent births classified by age.

The method explicitly allows changes in fertility to 
be taken into account and is designed to be applied to 
censuses or surveys conducted either 5 or 10 years apart. 
In such circumstances, the survivors of a cohort of women 
at the first inquiry can be identified at the second, and the 
change in the average parity of the cohort can be calculated. 
The resulting sequence of parity increments for different 
cohorts during the period between the inquiries can then 
be cumulated to calculate average parities for a hypothetical 
cohort experiencing the fertility implied by the observed 
parity increments.

The period fertility rates that are compared with these 
synthetic cohort estimates should ideally refer to the entire 
period between the two inquiries that asked about lifetime 
fertility. One way to ensure this is to make use of data 
on registered births classified by age of mother for each 
calendar year of the period. If such data are available, all 
births recorded during the period for each age group can be 
calculated by addition over calendar years. Average fertility 
rates for the period between the two inquiries can be obtained 
by dividing the births by the number of woman-years lived 
in each age group, estimated from the female population 
enumerated at the beginning and end of the period.

Where such data are not readily available, or are not 
reliable, a simpler, and generally adequate, procedure is to 
calculate age-specific fertility rates for the first and last years 
of the period, and to estimate the rates for the entire periods 
as the arithmetic mean of these two sets. If data on registered 
births are not available, but the two surveys or censuses 

gathered data on births in the past year, age-specific fertility 
rates for the period may by approximated in the same way 
by averaging the rates observed at the beginning and end of 
the period. If the births during the 12 months preceding 
each survey are tabulated by age of mother at the time of 
the survey, the observed fertility rates will correspond to age 
groups displaced by six months. The analysis will need to 
take this fact into account.

Once corresponding parities and fertility rates have 
been calculated for the period between the two inquiries, 
the cumulation and interpolation of the latter, and their 
comparison with the average parities, are carried out 
exactly as described in the presentation of the conventional 
relational Gompertz model.

Data required
The data required are:
•	 The number of children ever born classified by five-year 

age group of mother, taken from two surveys or censuses 
five or 10 years apart.

•	 EITHER the number of births during the year preceding 
each survey classified by five-year age group of mother 
OR registered births by five-year age group of mother 
for each inter-survey year. If data on births classified by 
age of mother are not available for the end-points of the 
inter-survey period, an appropriate age-specific fertility 
schedule referring approximately to the middle of the 
period could be used.

•	 The number of women in each five-year age group from 
both surveys or censuses.

•	 If the crude birth rate is to be calculated, or the relative 
completeness of the data from the vital registration system 
is to be assessed, the total population recorded by each 
survey or census.
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Assumptions
Most of the assumptions are those associated with the 
relational Gompertz model, namely:
•	 The standard fertility schedule chosen for use in the fitting 

procedure appropriately reflects the shape of the fertility 
distribution in the population.

•	 Any inter-survey changes in fertility have been smooth 
and gradual and have affected all age groups in a broadly 
similar way.

•	 Errors in the pre-adjustment fertility rates are propor-
tionately the same for women in the central age groups 
(20–39), so that the age pattern of fertility described by 
reported births in the past year is reasonably accurate.

•	 The parities reported by younger women in their twenties 
are accurate.
The calculation of the synthetic cohort mean parities 

assumes that mortality and migration have no effect on 
actual parity distributions. In other words, it is assumed 
that the average parity of those women who die or migrate 
between the surveys is not significantly different from the 
average parity at comparable ages of those women who are 
alive and present at the end of the period.

Preparatory work and preliminary 
investigations
Before commencing analysis of fertility levels using this 
method, analysts should investigate the quality of the data 
at least in respect of the following dimensions:
•	 age and sex structure of the population;
•	 reported births in the last year; and
•	 average parities and whether an el-Badry correction is 

necessary.

Caveats and warnings
It is crucially important that the sets of fertility rates being 
averaged are consistent with respect to age classification 
before they are averaged. If they are not consistent initially, 
because one refers to age groups displaced by six months 
and the other does not, the former set should be adjusted 
(for example, by applying the F-only variant of the relational 
Gompertz model) before proceeding. In general, estimates 
of age-specific fertility rates from different sources (e.g. vital 
registration and census) should not be combined because of 
the different ways in which the schedules may be distorted.

If age-specific fertility rates for the end-points of the 
period are not available, a set of rates referring approximately 

to the mid-point of the period could be used. It should be 
remembered that only the pattern of the inter-survey age-
specific fertility rates is important in applying the relational 
Gompertz method, so that if this pattern was more or less 
constant over the period, the exact reference date of the rates 
used does not matter.

If data on registered births are used, changes in complete-
ness of the data by age group over time could distort the pat-
tern of fertility. If this has been the case, the method should 
be applied with caution.

Application of the method
The method is applied in the following steps.

Step 1: Calculation of reported average parities
Calculate the average parities, 5Px(t1) and 5Px(t2) of women 
in each age group [x,x + 5) for the two inquiries (t1 and t2), 
for x = 15,20… 45. For ease of exposition, we denote the 
average parity in age group i at time t by P(i,t)=5Px(t), where 
i = (x/5–2). Thus, the average parities obtained from the first 
census or survey are denoted by P(i,1), and those from the 
second survey by P(i,2).

Step 2: Calculation of average parities for a hypothetical 
cohort
The way in which the parities are calculated depends upon 
the length of the inter-survey interval.

a) Interval is of five years’ duration
If the interval between the two data series is five years, all 
the survivors of age group i at the first inquiry are in age 
group i + 1 at the second inquiry, and the parity increment 
between the inquiries for the corresponding cohort is equal 
to P(i + 1,2)–P(i,1). Such increments can be calculated for 
each age group, and the hypothetical-cohort parities are 
then obtained by successively cumulating them. Thus, if the 
parity increment for the cohort of age group i at the first 
inquiry is denoted by ∆P(i + 1), and the parity of age group 
i for the hypothetical cohort is denoted by P(i,s) (where the 
s stands for ‘synthetic’), one has ∆P(i + 1) = P(i + 1,2)–P(i,1) 
for i = 1…6, and hence

1

( , ) ( )
i

j

P i s P j
=

= ∆∑ .

The parity increment ∆P(i + 1) for the youngest age group 
(i = 0) is taken as being equal to P(1,2), i.e., assuming that 
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P(0,1) – the average parity of women aged 10–14 in the first 
inquiry– is zero. If fertility is changing rapidly, this value 
of ∆P(1) will therefore reflect period rates somewhat closer 
to the second survey than to the mid-point of the interval, 
slightly over-allowing for the change in fertility.

b) Interval is of ten years’ duration
If the intercensal or inter-survey interval is 10 years, then 
the survivors of the initial cohort of age group i in the 
first survey will be the women in age group (i + 2) in the 
second. The hypothetical cohort parities are then obtained 
by cumulating two parallel sequences of parity increments. 
Once more, for the youngest age groups, ∆P(1) is taken as 
being equal to P(1,2) and ∆P(2) to P(2,2). Other parity 
increments are calculated as ∆P(i + 2) = P(i + 2,2)–P(i,1) for 
i = 1…5.

Hypothetical cohort parities for even-numbered age 
groups are obtained by summing the parity increments 
for even-numbered age groups, whereas those for odd- 
numbered age groups are obtained by summing parity 
increments for odd-numbered age groups. Thus,

(1, ) (1) (1,2)
(2, ) (2) (2,2)
(3, ) (1) (3)
(4, ) (2) (4)
(5, ) (1) (3) (5)
(6, ) (2) (4) (6)
(7, ) (1) (3) (5) (7)

P s P P
P s P P
P s P P
P s P P
P s P P P
P s P P P
P s P P P P

= ∆ =
= ∆ =
= ∆ + ∆
= ∆ + ∆
= ∆ + ∆ + ∆
= ∆ + ∆ + ∆
= ∆ + ∆ + ∆ + ∆ .

Step 3: Calculation of the current fertility rates
The method of calculating this schedule, denoted by f (i ), 
where i indexes the age groups as before, depends upon the 
data available.

a) Data from a vital registration system
One possible procedure is to calculate age-specific fertility 
rates referring roughly to the first and last years of the pe-
riod between the two inquiries using data on the reported 
number of births during the year preceding each inquiry. In 
such a case, for each inquiry one would divide the reported 
births for each five-year age group of mother by the reported 
number of women in the same age group and then obtain 
age-specific fertility rates for the intervening period by cal-
culating the arithmetic mean of each pair of end-point rates.

Alternatively, if age-specific fertility rates are available 
from a vital registration system for the whole period, a 
mean age-specific fertility rate for the period for each age 
group could be used. Calculating this mean would involve 
summing the births reported for each age group of mother, 
and dividing by the person years lived (by averaging the size 
of the age groups at the beginning and end of the interval, 
and multiplying by the number of years in the period).

Age-specific fertility rates obtained from vital registration 
are, by definition, classified by age of mother at the time of 
the delivery of the child.

b) Data from the inquiries giving rise to the average 
parities in Step 2
If the data on fertility are to be drawn from women’s reports 
of recent fertility in the year before each of the surveys used 
to derive the average parities, the arithmetic mean of the two 
fertility schedules is still taken as the estimate of fertility in 
the intervening period. However, the schedule of fertility 
rates derived in this way applies to the six months before 
each survey, and hence the age classification of the rates must 
be adjusted to reflect the classification by age of mother at 
census, and not the birth of the child. This age shift in the 
rates must be taken into account in the application of the 
relational Gompertz model.

The process of fitting a relational Gompertz model to the 
data is exactly as described in Chapter 6. The only points of 
difference to note are the following:
•	 The estimates apply to the mid-point of the period, that is 

either 2½ or 5 years before the second inquiry.
•	 The spreadsheet only allows for the conventional applica-

tion of the relational Gompertz model, using the parities 
to set the level and using the fertility schedule based on 
current fertility data for the intervening period to deter-
mine the shape of the fertility curve.

•	 If the data are classified by age of mother at the inquiry 
date (i.e. when the data on recent fertility are drawn 
from the census or survey that also provided the average 
parities, rather than from a vital registration system), the 
accompanying Excel workbook (see website) allows only 
for recent fertility data to be based on births reported in 
the 12 months preceding the census or survey.

The relevant steps are reproduced below.
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Step 4: Choose the fertility standard to be used with the 
model
The default fertility standard is that produced by Booth, 
modified slightly by Zaba (1981). The standard is appropri-
ate to high- and medium-fertility populations and is simply 
a normalized cumulated fertility schedule (i.e. with total 
fertility equal to one). The standard Y s(x) values, are deter-
mined by taking the gompits of the schedule. The standard 
parity values, Y s(i), are the gompits of the parities associated 
with the standard fertility schedule. The choice of standard 
determines the values of g() and e() used in the regression 
fitting procedures.

Step 5: Evaluate the plot of P-points and F-points
The plots of z(x)–e(x) against g(x), and z(i)–e(i) against 
g(i) on the same set of axes are then used as a diagnostic 
for identifying common errors and trends in the data, as 
discussed in the main article on the relational Gompertz 
model.

Step 6: Fit the model by selecting the points to be used
Initially, all points should be included in the model. The 
only exception is if the average parities in one age group are 
higher than the average parities in the next, in which case 
the gompit will be undefined and the model cannot be fitted 
using that point. (Such a situation cannot occur in a real 
cohort, but could arise in a synthetic cohort, either because 
of data error or during a time of rapidly changing fertility.)

If the parity and fertility data are internally consistent, 
the plots of z()–e() against g() should result in straight lines. 
Those P-points and F-points that cause each plot to deviate 
from a straight line should be excluded from the model. 
Ordinary linear regression (using least squares) is used 
to fit lines to the P-points and F-points, and to identify, 
sequentially, those points that do not fit neatly on a straight 
line. The intention is to seek the largest combination of P- 
and F-points that lie (almost) on the same line, and to use 
these to fit the model.

Points are selected for inclusion or exclusion using the 
following guidelines:
•	 A contiguous series of points must be included in the 

model. Sequentially, only the end-most points can be 
excluded. (The reason for this is that each point on the 
graph is the result of calculations involving the ratio of 
a pair of adjacent data values. If the analysis leads you to 
conclude that a data value is unreliable as a denominator 

of one of these ratios it is not logical to accept it as the 
numerator of the next ratio).

•	 P-points should be eliminated in preference to F-points. 
This is because the average parity data are generally more 
prone to age-specific errors than the fertility data.

•	 P-points which deviate clearly from the straight line 
based only on the other P-points, and F-points which 
deviate clearly from the straight line based only on the 
other F-points should be eliminated early on in the fitting 
process.

•	 P- and F-points at older ages should be eliminated in 
preference to those at younger ages since data at these ages 
are usually the least reliable and show the least consistency 
between lifetime and recent fertility. The exception to 
this relates to the data points for women under the age of 
20. Small numbers of events, as is usual for these young 
women, frequently make the estimates of average parities 
or cumulated fertility unreliable.

•	 Where only a marginally worse fit is achieved with 
more points, this is to be preferred to a slightly better fit 
achieved with fewer points. The spreadsheet calculates the 
root mean squared error (RMSE),
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from the points used to fit the model. This statistic can 
assist with determining the optimal number of data points 
to which to fit if there is uncertainty as to which of two 
competing models is better. In this case, one should choose 
the model with the lower RMSE.

Step 7: Assess the fitted parameters
The values of  and  that represent the best-fitting line 
joining the remaining P-points and F-points must be 
checked to confirm that they are not so far from their central 
values as to suggest that the standard chosen is inappropriate. 
A good fit is indicated if –0.3<<0.3, and if 0.8<<1.25.

If the parameters lie outside this range, one or both of 
the underlying data series are problematic or the standard 
is inappropriate. Experimentation with another standard or 
changing the selection of points should be done before pro-
ceeding further. If the parameters still lie outside the ranges 
above, the method should be regarded as inappropriate.
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Step 8: Fitted ASFRs and total fertility
Having estimated the two parameters of the model, they 
can be applied to the standard values for the parities to 
obtain fitted values, Y(i) =  + .Y s(i). These are then con
verted back into measures of the cumulative proportion 
of fertility achieved by age group i using the anti-gompit 
transformation. The anti-gompits based on the parity 
distributions indicate the proportion of fertility achieved by 
that age group. Dividing observed parity in each age group 
by these proportions produces a series of estimates of total 
fertility. Averaging these values across the sub-set of age 
groups that were used to estimate  and  gives the fitted 
estimate of total fertility, T̂ .

Applying the same  and  to the standard gompits for the 
ages that divide conventional age groups (i.e. 20, 25…50), 
applying the anti-gompit transformation, and multiplying 
by T̂  produces a scaled cumulated fertility schedule. Dif-
ferencing successive estimates of cumulated fertility and 
dividing by five produces the fitted fertility schedule for 
conventional age groups (15–19; 20–24 etc.) even if the 
data were initially classified with a half-year shift.

Worked example
This example uses data collected in two Kenyan Censuses, 
a decade apart, in 1989 and 1999. Both censuses asked 
questions about births in the last year and lifetime fertility. 
The method has been implemented in an accompanying 
Excel workbook (see website).

Step 1: Calculation of reported average parities
An el-Badry correction was applied to the data from the 
1989 Census – its application to Kenya is described here. 
By contrast, the data from the 1999 Census had evidently 
been edited prior to release, and no missing data were indi-
cated. The average parities from the two censuses are shown 
in the first two columns of Table 10.1. From these data, it 
would appear that the lifetime fertility of older women has 
fallen by around 0.6 of a child over that decade. However, 
the increase in lifetime fertility among younger women is 
somewhat surprising.

Step 2: Calculation of average parities for a hypothetical 
cohort
The intercensal interval is 10 years (from 1989 to 1999). 
We therefore use the routine described in Step 2(b) on 
page 98 to derive the cohort average parities, shown in 

the last column of Table 10.1. As described at that step, 
∆P(1) = P(1,2) = 0.2848 and ∆P(2) = P(2,2) = 1.3640, while 
P(5,s) = ∆P(1) + ∆P(3) + ∆P(5) = 0.2848 + (2.6073 – 0.2416) 
+ (5.3867 – 3.2138) = 4.8234.

It appears that omissions of children ever born may have 
occurred at older ages, as the hypothetical cohort parity at 
the oldest age group is somewhat lower than that of women 
in the hypothetical inter-survey cohort aged 40–44.

Step 3: Calculation of current fertility rates
The data available are women’s reports of the month and year 
of their last birth in the year before each census. As described 
in Chapter 3, these reports can be converted into estimates 
of age-specific and total fertility by assuming that all births 
reported in the census month occurred before the census 
date, and pro-rating the births in the census month one year 
before the census. Doing so produces the direct estimates of 
age-specific and total fertility shown in Table 10.2. The last 

Table 10.1  Average parities by age group, Kenya, 1989 and 1999 
Censuses

Age group 1989 1999 Hypothetical cohort 
parity P(i,s)

15–19 0.2416 0.2848 0.2848
20–24 1.5247 1.3640 1.3640
25–29 3.2138 2.6073 2.6505
30–34 4.7602 4.1432 3.9825
35–39 6.2390 5.3867 4.8234
40–44 7.1204 6.3818 5.6041
45–49 7.5103 6.9143 5.4987

Table 10.2  Direct estimates of age-specific and total fertility, 
Kenya, 1989 and 1999 Censuses

Age group 1989 1999 Average 
fertility

15–19 0.0679 0.1107 0.0893
20–24 0.2179 0.2381 0.2280
25–29 0.2309 0.2124 0.2217
30–34 0.1908 0.1728 0.1818
35–39 0.1458 0.1193 0.1326
40–44 0.0764 0.0583 0.0673
45–49 0.0351 0.0203 0.0277

Total Fertility 4.82 4.66 4.74
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column, the estimate of inter-survey fertility, is derived by 
averaging the rates for 1989 and 1999 in each age group.

It is worth noting that the quality of reporting of fertility 
in the two censuses is poor. The levels of fertility implied by 
these data are substantially lower than those implied by the 
synthetic cohort parities, or from the value of total fertility 
of 5.3 children per woman obtained in the Demographic 
and Health Survey conducted in Kenya in 1993.

Step 4: Choose the fertility standard to be used with the 
model
The default fertility standard is that produced by Booth, 
modified slightly by Zaba (1981). No other peer-reviewed 
standard for female fertility exists.

Step 5: Evaluate the plot of P-points and F-points
We begin by fitting models using all the P- and F-points. 
The results are shown in the first plot on the Diagnostic plots 
sheet of the accompanying Excel workbook (see website).

Step 6: Fit the model by selecting the points to be used
Following the guidelines set out above, points are sequentially 
removed from the model to achieve a greater congruence of 
the P-points and the F-points. The best fit is found using 
the P-points for ages 20–39 and the F-points for ages 20–44 
(Figure 10.1).

Step 7: Assess the fitted parameters
In this application, the fitted values of  (–0.0286) and  
(1.0042) lie comfortably within the set range.

Step 8: Fitted ASFRs and total fertility
The total fertility implied by the fitted model is 5.56 children 
per woman (Table 10.3), and applies, approximately, to 
August 1994, the model having accommodated the shift in 
the data arising from the classification of mother’s age. This 
level of fertility is broadly consistent with the estimate of 5.3 
children per woman from the 1993 Kenyan DHS, as well as 
with estimates arising from the application of the relational 
Gompertz method to each data set separately.

Figure 10.1  Plot of z()–e() against g() after elimination of points, 
synthetic cohorts based on the 1989 and 1999 Kenyan Census data
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Table 10.3  Estimated fertility rates based on hypothetical parity 
increments, Kenya 1989–1999

Age group ASFR
15–19 0.139
20–24 0.267
25–29 0.261
30–34 0.213
35–39 0.153
40–44 0.070
45–49 0.009

Total Fertility 5.56

Detailed description of method
The method described here is – in effect – a variant of the 
relational Gompertz model that, instead of using parity and 
fertility data collected at one point in time, constructs an 
‘average’ fertility schedule based on reports of current and 
lifetime fertility at two points in time. The mathematics 
of the relational Gompertz model is described fully in 
Chapter 7.

Further reading and references
This method was described initially by Zlotnik and Hill 
(1981) and re-presented on pages 41–45 of Manual X (UN 
Population Division 1983). The write-up here remains 
true to the original formulation, with the exception that it 
is presented as a variant of the relational Gompertz model 
where the parities used are the intercensal parities derived 
from the two surveys, and the fertility rates are the inter-
survey estimates.

UN Population Division. 1983. Manual X: Indirect Techniques for 
Demographic Estimation. New York: United Nations, Department 
of Economic and Social Affairs, ST/ESA/SER.A/81. http://www.
un.org/esa/population/techcoop/DemEst/manual10/manual10.
html

Zaba B. 1981. Use of the Relational Gompertz Model in Analysing 
Fertility Data Collected in Retrospective Surveys. Centre for 
Population Studies Research Paper 81–2. London: Centre for 
Population Studies, London School of Hygiene & Tropical 
Medicine.

Zlotnik H and K Hill. 1981. “The use of hypothetical cohorts 
in estimating demographic parameters under conditions of 
changing fertility and mortality”, Demography 18(1):103–122. 
doi: 10.2307/2061052
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Chapter 11  Fertility estimates derived from 
cohort parity increments

Tom A Moultrie

Description of the method
Data on children ever born tabulated by standard five-year 
age group of women for a single census or survey convey 
a lot of information about the past fertility experience of 
the women. Unfortunately, however, if fertility has been 
changing, it is not possible to use the average parities of 
women in different age groups to obtain estimates of the age 
patterns of either cohort or period fertility.

If information on children ever born is available from two 
censuses or surveys approximately five or ten years apart, the 
change in the average number of children ever born by a 
particular cohort of women reflects their intercensal fertility. 
It then becomes possible to estimate an age-specific fertility 
schedule for the intervening period. Arretx (1973) developed 
a method for using such information with a 10-year interval 
between the inquiries. Manual X (UN Population Division 
1983) presents a variant of an approach proposed by Coale 
and Trussell using the P/F ratio. A further refinement of the 
Manual X approach is presented here, based on the use of 
the relational Gompertz model.

The method estimates the average age-specific fertility 
rates in effect during the inter-survey period by constructing 
the average parities of a hypothetical, inter-survey cohort. 
A cumulated fertility schedule is then derived from these 
parities by interpolation, and age-specific fertility rates are 
obtained from cumulated fertility by successive subtraction.

The method is intended for situations in which it is pos-
sible to calculate average parities by age group of women for 
two points in time approximately five or ten years apart. If the 
interval between the inquiries is five years, the women in any 
five-year age group at the second inquiry represent the sur-
vivors of the women in the next younger five-year age group 
at the first inquiry. The difference in the average parity of 
the cohort between the first and the second inquiries reflects 

its childbearing experience between the two inquiries, if it is 
assumed that women who died or migrated between them 
had, on average, lifetime fertility that was not systematically 
different from that of the original women who remained. By 
cumulating the parity increments, it is possible to estimate 
average parities for a synthetic cohort experiencing through-
out its hypothetical lifetime the age-specific fertility rates in 
effect during the period between the two inquiries. If the 
length of this period is ten years, a five-year age group at 
the second inquiry represents the survivors of the five-year 
age group who were two groups younger at the first inquiry. 
In this case, it is still possible to calculate the cohort parity 
increment for each cohort in order to construct the average 
parities of a hypothetical cohort. The method may be applied 
when the data come entirely or partially from nationally rep-
resentative sample surveys as well as when they come from 
censuses, for although cohorts of particular individuals will 
not be identical on each occasion, their average parities will 
be representative of those of the sampled female population.

The two data sets need not refer to two points exactly five 
or ten years apart. For example, unless fertility is changing 
very rapidly, a four-year interval or an 11-year interval will 
provide reasonable estimates. In such a case, one is no longer 
following a cohort from survey to survey, but this factor is 
not very important because the average parity of an age 
group will not change rapidly from one year to the next.

Although the strength of method lies in its robustness to 
changing fertility, the technique presented here can also be 
used to estimate age-specific fertility rates using parity data 
from a single census or survey when fertility has not been 
changing during the reproductive life spans of the women 
concerned.
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Assumptions
Most of the assumptions are those associated with the 
relational Gompertz model, namely
•	 The standard fertility schedule chosen for use in the fitting 

procedure appropriately reflects the shape of the fertility 
distribution in the population.

•	 Any changes in fertility have been smooth and gradual 
and have affected all age groups in a broadly similar way.

•	 The parities reported by younger women in their twenties 
are accurate.
Further, in deriving this measure of inter-survey fertility 

it is assumed that mortality and migration have no effect 
on actual parity distributions; that is, it is assumed that the 
average parity of those women who die or migrate between 
the surveys is not significantly different from the average 
parity at comparable ages of those women who are alive and 
present at the end of the period.

Preparatory work and preliminary 
investigations
Before commencing analysis of fertility levels using this 
method, analysts should investigate the quality of the data 
at least in respect of the following dimensions:
•	 age and sex structure of the population; and
•	 average parities and whether an el-Badry correction is 

necessary.

Caveats and warnings
The general warning given about the use of information on 
children ever born in estimating fertility should be kept in 
mind in this instance. A tendency exists, even in countries 
with otherwise reasonably good data, for older women to 
omit some of their children, perhaps those who have died or 
those who have left home. As a result, average parities often 
fail to increase at a plausible rate, or may even decrease after 
age 35 or 40. The calculation of age-specific fertility rates 
from parities that suffer from such omissions will result in 
under-estimates of the fertility of older women. If the error 
is relatively minor, its effects may not be obvious. Thus, 
fertility estimates based on average parities of older women 
must be interpreted with caution, particularly if they indicate 
low fertility in relation to that estimated from the reports of 
younger women. Average parities for a hypothetical cohort 
are, moreover, very sensitive to changes in parity reporting 
from one inquiry to the other, and the calculation of such 
parities provides a useful consistency check of the raw data.

Whenever the additional data required on recent fertility 
exist, the procedure using a synthetic relational Gompertz 
model to compare cumulated intersurvey fertility rates 
with hypothetical-cohort average parities is to be preferred 
to the method described here, since the former method is 
less sensitive to the omission of children ever born from the 
reports of older women.

Application of the method
Steps 1 and 2 simply repeat the first two steps of the synthetic 
relational Gompertz method.

Step 1: Calculation of reported average parities from 
each inquiry
Calculate the average parities, 5Px(t1) 

and 5Px(t2) of women in 
each age group [x ,x + 5) for the two inquiries (t1 and t2), for 
x = 15, 20… 45 if not already done as part of the preliminary 
investigations, or produced as a consequence of applying the 
el-Badry correction. For ease of exposition, we denote the 
average parity in age group i at time t by P(i,t) = 5Px(t), where 
i = (x/5–2). Thus, the average parities obtained from the first 
census or survey are denoted by P(i,1), and those from the 
second inquiry by P(i,2).

Step 2: Calculation of average parities for a hypothetical 
cohort
The way in which the parities are calculated depends upon 
the length of the interval between the two inquiries.

a) Interval is of five years’ duration
If the interval between the two data series is five years, all 
the survivors of age group i at the first inquiry are in age 
group i + 1 at the second inquiry, and the parity increment 
between the inquiries for the corresponding cohort is equal 
to P(i + 1,2)–P(i,1). Such increments can be calculated for 
each age group, and the hypothetical-cohort parities are 
then obtained by successively cumulating them. Thus, if the 
parity increment for the cohort of age group i at the first 
inquiry is denoted by ∆P(i + 1), and the parity of age group 
i for the hypothetical cohort is denoted by P(i,s) (where the 
s stands for ‘synthetic’), one has ∆P(i + 1) = P(i + 1,2)–P(i,1) 
for i = 1…6, and hence

1

( , ) ( )
i

j

P i s P j
=

= ∆∑ .

The parity increment ∆P(i + 1) for the youngest age group 
(i = 0) is taken as being equal to P(1,2), i.e., assuming that 



CHAPTER 11 FERTILITY ESTIMATES DERIVED FROM COHORT PARITY INCREMENTS  |  105

P(0,1), the average parities of women aged 10–14 in the 
first inquiry, is zero. If fertility is changing rapidly, this value 
of ∆P(1) will therefore reflect period rates somewhat closer 
to the inquiry survey than to the mid-point of the interval, 
slightly over-allowing for the change in fertility.

b) Interval is of ten years’ duration
If the intercensal or inter-survey period is 10 years, then 
the survivors of the initial cohort of age group i in the 
first survey will be the women in age group (i + 2) in the 
second. Hypothetical cohort parities are then obtained by 
cumulating two parallel sequences of parity increments. 
Once more, for the youngest age groups, ∆P(1) is taken 
as being equal to P(1,2) and ∆P(2)

 
to P(2,2). Other parity 

increments are calculated as ∆P(i + 2) = P(i + 2,2)–P(i,1) for 
i = 1…5.

Hypothetical-cohort parities for even-numbered age 
groups are obtained by summing the parity increments 
for even-numbered age groups, whereas those for odd- 
numbered age groups are obtained by summing parity 
increments for odd-numbered age groups. Thus,

(1, ) (1) (1,2)
(2, ) (2) (2,2)
(3, ) (1) (3)
(4, ) (2) (4)
(5, ) (1) (3) (5)
(6, ) (2) (4) (6)
(7, ) (1) (3) (5) (7)

P s P P
P s P P
P s P P
P s P P
P s P P P
P s P P P
P s P P P P

= ∆ =
= ∆ =
= ∆ + ∆
= ∆ + ∆
= ∆ + ∆ + ∆
= ∆ + ∆ + ∆
= ∆ + ∆ + ∆ + ∆ .

The following steps repeat those involved in using the rela-
tional Gompertz model, but fit a line only to the parity data.

Step 3: Fitting of a relational Gompertz model
If the parity data are internally consistent, the plots of z(i)–
e(i) against g(i) should result in straight lines. Those P-points 
that cause the plot to deviate from a straight line should 
be excluded from the model. Ordinary linear regression 
(using least squares) is used to fit lines to the P-points and to 
identify, sequentially, those points that do not fit neatly on 
a straight line. The intention is to seek the most numerous 
combination of P-points that lie (almost) on the same line, 
and to use these to fit the model.

Points are selected for inclusion using the following 
guidelines:

•	 A contiguous series of points must be included in the 
model. Sequentially, only the end-most points can be 
excluded. (The reason for this is that each point on the 
graph is the result of calculations involving the ratio of 
a pair of adjacent data values. If the analysis leads to the 
conclusion that a data value is unreliable as a denomina-
tor of one of these ratios, it is not logical to accept it as the 
numerator of the next ratio.)

•	 P-points at older ages should be eliminated in preference 
to those at younger ages since data at these ages are usually 
the least reliable and exhibit the least consistency between 
lifetime and recent fertility.

•	 Where only a marginally worse fit is achieved with 
more points, this is to be preferred to a slightly better fit 
achieved with fewer points.

Step 4: Assess the fitted parameters
The values of  and  that represent the best-fitting line 
joining the remaining P-points and F-points must be checked 
to ascertain that they are not so far from their central values 
as to suggest that the standard chosen is inappropriate. A 
good fit is indicated if –0.3<<0.3, and if 0.8<<1.25.

If the parameters lie outside this range, one or both of 
the underlying data series are problematic or the standard 
is inappropriate. Experimentation with another standard or 
changing the selection of points should be done before pro-
ceeding further. If the parameters still lie outside the ranges 
above, the method should be regarded as inappropriate.

Step 5: Fitted ASFRs and total fertility
Having estimated the two parameters of the model, they 
can be applied to the standard values for the parities to 
obtain fitted values, Y(i) =  + .Y s(i). These are then 
converted back into measures of the cumulative proportion 
of fertility achieved by age group i using the anti-gompit 
transformation. The anti-gompits based on the parity 
distributions indicate the proportion of fertility achieved by 
that age group. Dividing observed parity in each age group 
by these proportions produces a series of estimates of total 
fertility. Averaging these values across the sub-set of age 
groups that were used to estimate  and  gives the fitted 
estimate of total fertility, T̂ .

Applying the same  and  to the standard gompits for the 
ages that divide conventional age groups (i.e. 20, 25…50), 
applying the anti-gompit transformation, and multiply-
ing by T̂  produces a scaled cumulated fertility schedule. 
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Differencing successive estimates of cumulated fertility and 
dividing by five produces the fitted fertility schedule for 
conventional age groups (15–19; 20–24 etc.).

These ASFRs are then deemed to apply to the mid-point 
of the period in between the two inquiries.

Worked example
The example uses the same data on average parities from the 
1989 and 1999 Censuses of Kenya as in the example of the 
synthetic relational Gompertz model. In this application, 
however, it is assumed that the only available information is 
the average parities and that no data on recent fertility were 
collected. The process of fitting the relational Gompertz 
model to parity data alone is essentially similar to the basic 
relational Gompertz model. The exposition here therefore 
concentrates on the differences from that procedure. The 
method has been implemented in an accompanying Excel 
workbook (see website).

Step 1: Calculation of reported average parities from 
each inquiry
An el-Badry correction was applied to the data from the 
1989 Census. Its application is described here. By contrast, 
the data from the 1999 Census had evidently been edited, 
and no missing parity data were present. The average 
parities from the two censuses are shown in the first two 
columns of Table 11.1. From these data, it would appear 
that the cohort lifetime fertility of older women has fallen 
by around 0.6 of a child over that decade. However, the 
increase in lifetime fertility among teenaged women is 
somewhat surprising.

Step 2: Calculation of average parities for a hypothetical 
cohort
The inter-survey period is 10 years (from 1989 to 1999). 
We therefore use the routine described in Step 2(b) on 
page 105 to derive the cohort average parities, shown in 
the last column of Table 11.1. As described in that step, 
∆P(1) = P(1,2) = 0.2848 and ∆P(2) = P(2,2) = 1.3640, while 
P(5,s) = ∆P(1) + ∆P(3) + ∆P(5) = 0.2848 + (2.6073 – 0.241
6) + (5.3867 – 3.2138) = 4.8234. It is readily apparent that 
severe omissions of parities must have been present at older 
ages, as the hypothetical cohort parity at the oldest age group 
is somewhat lower than that of women in the hypothetical 
inter-survey cohort aged 40–44.

The definition of the age of the mother does not enter 

into this method. Average parities are – by definition – those 
prevailing at the survey or census date.

Table 11.1  Average parities by age group, Kenya, 1989 and 1999 
Censuses

Age 
group 1989 1999 Hypothetical cohort 

parity P(i,s)
15–19 0.2416 0.2848 0.2848
20–24 1.5247 1.3640 1.3640
25–29 3.2138 2.6073 2.6505
30–34 4.7602 4.1432 3.9825
35–39 6.2390 5.3867 4.8234
40–44 7.1204 6.3818 5.6041
45–49 7.5103 6.9143 5.4987

Step 3: Fitting of a relational Gompertz model
The hypothetical cohort data in the last column of Table 11.1 
are used to estimate fertility by means of the relational 
Gompertz model. Data points based on the average parities 
(P-points) are successively eliminated until the data points 
show a linear relationship with the (transformed) parities 
from the standard fertility schedule. The fitted points are 
shown in Figure 11.1.

Only five parity points can be plotted as the hypothetical 
parity for the 45–49 age group is lower than that of the 40–
44 age group (5.4987 vs. 5.6041), meaning that the gompit 
of the ratio of this pair of points is undefined. Examining 
the points, there is evident under-reporting of fertility in the 
ages used to generate the last point plotted. Eliminating that 
point results in a much lower root mean square error, and 
the model is fitted to the remaining four points.

Step 4: Assess the fitted parameters
The implied values of  and  are –0.0084 and 1.0071 
implying a fertility schedule fairly close to that underlying 
the modified Booth standard.

Step 5: Fitted ASFRs and total fertility
Applying these parameters to the gompits of the parities 
in the standard using the linear relational model, 

 Y(i) =  + Y s(i), taking the anti-gompits (column 4 of 
Table 11.2) and dividing these into the observed parities at 
the ages selected for inclusion in the model produces a series 
of five estimates of total fertility (ranging from 5.4 to 5.7 
children per woman). Averaging these suggests total fertility 
(T̂ ) is 5.54 children per woman.
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Table 11.2  Derivation of estimated total fertility (T-hat), Kenya, 
1989 and 1999 Censuses

Age (i ) Y s(i ) Fitted Y(i ) exp(–exp
(–Y(i )))

Actual 
cumulant

0 –2.0961 –2.1194 0.0002 0.0013
1 –1.0833 –1.0994 0.0497 0.2754
2 –0.3124 –0.3230 0.2513 1.3930
3 0.3541 0.3482 0.4936 2.7368
4 1.0579 1.0570 0.7065 3.9166
5 1.9561 1.9615 0.8688 4.8167
6 3.4225 3.4384 0.9684 5.3688
7 6.0922 6.1270 0.9978 5.5320

Applying the fitted estimates of  and  to the standard 
gompits, Y s(x), in each age group to derive the fitted gompits, 
then taking the anti-gompits and multiplying up by T̂  
produces the modified cumulative fertility schedule, FM(x), 
below. Differencing and dividing by five produces the final 
schedule of age-specific fertility rates in the last column of 
Table 11.3.

The resulting estimate of total fertility is 5.5 children per 

woman, applicable half-way between the two censuses. In this 
application, the estimated age-specific fertility rates derived 
from the hypothetical-cohort parities can be compared with 
those obtained from the application of the synthetic relational 
Gompertz model (TFR = 5.56 children per woman). The 
similarity of the two sets of results is reassuring.

It must be remembered, however, that the results can be 

Figure 11.1  Fitted P-points, hypothetical cohorts, Kenya, 1989 
and 1999 Census data

Table 11.3  Derivation of final adjusted fertility schedule, Kenya, 
1989 and 1999 Censuses

Age (x) Y s(x) Fitted 
Y(x)

exp(–exp 
(–Y(i ))) FM(x) fm(x)

15 –1.7731 –1.7262 0.0036 0.0212 0.0042
20 –0.6913 –0.7318 0.1251 0.7318 0.1421
25 0.0256 –0.0727 0.3411 1.9957 0.2528
30 0.7000 0.5472 0.5607 3.2801 0.2569
35 1.4787 1.2630 0.7537 4.4090 0.2258
40 2.6260 2.3176 0.9062 5.3013 0.1785
45 4.8097 4.3249 0.9869 5.7732 0.0944
50 13.8155 12.6034 1.0000 5.8501 0.0154

  Total Fertility 5.53
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Further reading and references
The basic mechanics of the method were set out by Arretx 
(1973) and written up in Manual X (UN Population 
Division 1983). The version in Manual X used the P/F ratio 
method to convert the parity increments into fertility rates. 
The method described here uses the more versatile relational 
Gompertz method.

Arretx C. 1973. “Fertility estimates derived from information on 
children ever born using data from censuses,” in International 
Population Conference, Liège 1973. Vol. 2. Liège: International 
Union for the Scientific Study of Population, pp. 247–261.

UN Population Division. 1983. Manual X: Indirect Techniques for 
Demographic Estimation. New York: United Nations, Department 
of Economic and Social Affairs, ST/ESA/SER.A/81. http://www.
un.org/esa/population/techcoop/DemEst/manual10/manual10.
html

seriously distorted if children ever born tend to be omitted 
from the reports provided by their mothers, particularly if the 
extent of such omission changes from one survey to the next.

Detailed description of method
The method described here is simply a variant of the relational 
Gompertz model, but instead of using parity and fertility 
data collected at one point in time, constructs an ‘average’ 
fertility schedule based on reports of lifetime fertility at two 
points in time. It uses these alone to determine a fertility 
schedule. The mathematics of the relational Gompertz 
model is described fully in Chapter 7.

Variants of the method
An option in the spreadsheet allows the intercensal period to 
be set to zero. This allows the derivation of TF from a single set 
of parity data. For this procedure to yield plausible estimates, 
not only would the average parities would have to be without 
error, but fertility would have had to have been constant for 
an extended period of time preceding the inquiry.
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Chapter 12  Direct estimation of fertility from  
survey data containing birth histories

Tom A Moultrie

Description of method
The direct estimation of fertility (age-specific, and total) 
from survey data containing birth histories is relatively 
straightforward. If the data are carefully collected with a 
validated instrument (such as that used by the Demographic 
and Health Surveys), they can provide reliable and accurate 
estimates of fertility. However, distortions also frequently 
occur in birth history data, especially in relation to the shifting 
of births to more distant years to avoid additional questions 
on, for example, child health or anthropometry (Cleland 
1996). These problems have again been highlighted recently 
by Schoumaker (2010, 2011). Displacement and omission 
of births might cause fertility (particularly in the period 
three to five years before the survey) to be underestimated.

Two approaches can be used to estimate fertility directly 
from data containing a detailed birth history. The first 
approach – that used by the DHS in its official reports – 
produces an estimate covering the one- or three-year period 
before the survey. (Three-year estimates are frequently used 
to avoid undesirable fluctuations in the estimates arising 
from the relatively small number of annual births in the 
DHS). This approach is described in detail in the Guide to 
DHS Statistics (Rutstein and Rojas 2003). There are two 
disadvantages to it. First, if the survey is carried out over 
an extended period, it becomes impossible to locate the 
measure of fertility precisely in time. Second, the calculation 
of fertility rates is made more complex both by having to 
refer to the survey date and by working in five-year age 
groups and three-year periods of calendar time.

The simpler approach described here produces estimates 
of fertility for individual ages and calendar years of time. 
These can be very easily aggregated to produce estimates for 
wider age groups, or for periods of several years.

As with the DHS approach, initial manipulations have 

to be performed at a unit record level. For this reason, it 
makes sense in almost all circumstances to estimate fertility 
directly from birth histories using the built-in survival time 
functionality of a statistical analysis program such as Stata. 
A useful routine for performing these calculations in Stata 
has been produced by Schoumaker (2013). However, the 
calculations are sufficiently straightforward to carry out using 
simple cross-tabulations of data. This chapter describes how.

Data requirements and assumptions
Data required
Two sets of data, both routinely produced at the data 
processing stage of a survey with detailed birth histories, 
are required. The first is a data set in which the unit of 
analysis is the woman – i.e. there is one record per woman. 
These data are required to estimate the denominator of the 
fertility rates. The second data set has the child as the unit of 
analysis – i.e. there is one record per child – but also includes 
essential information on the mother (crucially, her date of 
birth) in each record in the data set.

To estimate fertility, the following information must be 
present in the data.

A)  Women’s data set
•	 The month and year of each woman’s birth, derived if 

necessary from a century-month code (CMC).
•	 The month and year of interview.
•	 Any variables needed to adjust the data for the sampling 

design and sample weights.
•	 Important covariates by which one might wish to assess 

differentials in fertility, bearing in mind that covariates at 
the date of interview may not have applied at the time the 
events of interest (recent births) took place.
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B)  Child’s data set
•	 The child’s date of birth – month and year, derived if 

necessary from a CMC.
•	 The mother’s date of birth – month and year, derived if 

necessary from a CMC.
•	 Any variables needed to adjust the data for the sampling 

design and sample weights.
•	 The same covariates by which differentials in fertility are 

to be assessed.

Caveats and warnings
•	 While single-age fertility rates derived from relatively 

small-scale surveys provide some indication of the quality 
of the data, the rates are almost always too erratic to be of 
direct use. Aggregation into five-year groups (and then – 
perhaps – smoothing the rates by means of a relational 
Gompertz model) is almost always called for.

•	 Similarly, rates for a single calendar year derived from 
survey data may not be reliable. Data for multiple calen-
dar years should be combined to produce a more reliable 
estimate. However, ideally, one should not combine more 
than three years’ data to avoid flattening out the trend in 
fertility.

•	 The rates produced using this approach may be affected 
materially by omission or displacement of the date of 
reported births.

•	 The rates produced in this manner will not be the same 
as those produced by MeasureDHS. In the first place, the 
estimation of the period exposed to risk is a little different 
(MeasureDHS works in complete months, while here 
we work in half-months). Second, the reference period 
for the rates may differ by up to 11 months. One could, 
however, calculate rates for years running from July to 
June (and thus centred on 1 January, or indeed for any 
other 12-month period) by manipulating the numerator 
and denominator appropriately.

Application of method
We define the following terms:
•	 c

BM 	 – the child’s month of birth

•	 c
BY 	 – the child’s year of birth

•	 m
BM 	 – the mother’s month of birth

•	 m
BY 	 – the mother’s year of birth

•	 M1	 – the month in which the mother is interviewed

•	 Y1	 – the year in which the mother is interviewed
•	 B(x,t)	– �the total number of births to mothers aged x at 

the birth of their child in calendar year t
•	 E(x,t)	– �the person-years of exposure to risk of women 

aged x in calendar year t.
The rates are calculated by means of the following steps. 
To avoid having to make additional assumptions about the 
exposure to risk in the month of interview, both exposure 
and births occurring in the month of interview are ignored.

The general case is presented below where not all women 
are interviewed in the same calendar year. Where all women 
are interviewed in the same calendar year, the process can be 
simplified accordingly.

Step 1: Produce a tabulation of the number of births in 
each calendar year by the age of the mother at the birth 
of the child
This step produces the numerator of the fertility rates: births 
of children by calendar year and age of mother at birth.

In principle, the tabulation is relatively straightforward, 
although care needs to be taken to allocate appropriately 
mother’s age at the birth of her child when both mother and 
child have the same month of birth. If, as is usually the case, 
information on day of birth is not available, it is necessary 
to allocate the mother’s day of birth randomly to fall before 
or after the child’s day of birth. This could be implemented 
by generating a binary variable, b, using a random number 
generator, but doing so would have implications for the 
consistency and replicability of investigations. Instead, b 
can be generated from a putatively uniform variable that has 
no bearing on the outcomes being investigated, such as the 
day of the month in which the mother was interviewed. We 
therefore define b = 1 if the day of interview is greater than 
15, and 0 if the day of the month is 15 or less.

The age (at last birthday) of the mother at the birth of a 
given child, x, is given by

	
12( ) ( )int

12

c m c m
B B B BY Y M M bx

 − + − −
=  

 

where int() represents the integer portion of the term in 
brackets.

Extract a tabulation showing the total number of births 
in each cell defined by combinations of c

BY  and x, B(x,t), 
weighting the data as appropriate, and making sure to 
exclude births that occurred in the month that the mother 
was interviewed.



112  |  FERTILITY SURVEY DATA METHODS

Step 2: Calculate the age of each woman at the start of 
the year in which she was interviewed
Working with the women’s data set (i.e. with one record per 
woman), begin by deriving the age of women on 1 January 
of the year of interview, xI, assuming that mothers’ births 
are uniformly distributed over calendar months (and hence 
occur, on average, half-way through each month):

	 1m m
I I Bx Y Y= − − .	 (1)

It follows that the age of the mother on 1 January of any 
other year, t, (t ≤ YI) will be xI  – (YI  – t).

Step 3: Calculate the exposed to risk for each woman in 
the year of her interview
In the calendar year in which she is interviewed, a woman 
is exposed to the risk of giving birth for only a portion of 
the year (that is, the portion before the interview takes 
place). In this case, the computation of exposure to risk 
depends on whether the interview took place before or 
after the woman’s birthday in that year. If her birth month 
precedes the interview month, she will be exposed to risk 

of giving birth at age xI for 
0.5( , )

12

m
B

I I
ME x Y −

=  years, 

and for 
0.5

( 1, )
12

m
I B

I I

M M
E x Y

− −
+ =  years at age xI + 1. 

In contrast, if her birth month is the same as, or after, the 
month of her interview, her exposure to risk of giving birth 

in the year of interview will be for 
1

( , )
12
I

I I

M
E x Y

−
=  years 

at age xI, and E(xI + 1,YI )=0 years at age xI + 1.
Note that in the last complete year, aggregate exposure per 

woman is 1 year, whereas in the year of interview, aggregate 
exposure is (MI –1)/12 of a year, regardless of the relative 
timing of birth month and interview month.

Variables giving each woman’s exposure at ages xI and xI + 1 
in the year of interview must be derived, and then aggregated 
(weighting were necessary) to produce a tabulation of 
aggregate exposure by age in the year of interview.

Step 4a: Calculate the exposure to risk for each woman 
in the last complete calendar year before her interview
In the last complete calendar year before each woman 
is interviewed, i.e. in year t = YI –1, she will be aged xI – 1 
until her birthday, and xI for the remainder of the year. On 

the same assumption as above of a uniform distribution of 
births within calendar months, the fraction of a year from 
1 January until each woman’s birthday is given by

0.5( 1, 1)
12

m
B

I I
ME x Y −

− − =

while for the remaining fraction of the year, she will be aged 
xI with exposure

0.5( , 1) 1 ( 1, 1) 1
12

m
B

I I I I
ME x Y E x Y −

− = − − − = − .

Using the two formulae above, variables giving each woman’s 
exposure at ages xI and xI + 1 in year YI –1 must be derived, 
and then aggregated (weighting were necessary) to produce 
a tabulation of aggregate exposure by age in that year.

Step 4b: Derive the exposure for earlier complete 
calendar years
Birth histories are collected retrospectively from all women 
and each woman provides information for the entire period 
over which she has been exposed to the risk of childbearing. 
Some women may have moved between places or changed 
their other characteristics at some point during this period 
but, because complete residential and economic histories are 
seldom collected in fertility surveys, it is usually impossible 
to allow for this when calculating fertility rates. This means 
that the interpretation of some results such as fertility by 
place of residence becomes less clear.

However, since birthdays are immutable, and the popu-
lation of women being assessed is constant over time, the 
aggregate exposure of women attaining age x in a year for 
which all women’s exposure is complete, v, will also equal 
the exposure of the cohort in earlier years, that is:

	 ( , 1) ( 1, 2)
... ( , 1)

E x v E x v
E x k v k

− = − −
= = − − − .

	 (2)

Step 5: Derive the age-specific fertility rates
The total exposure at each age in each calendar year, E(x,t), 
is derived by summing the tabulations derived in Steps 3 
and 4 for each age and for each calendar year (complete 
and incomplete). Note that if fieldwork extends over two 
calendar years, YI –1 will refer to two different years, as 
will YI . Total exposure in the final calendar year for which 
exposure might be derived will be based on only the partial 
exposure of women interviewed in the final calendar year 
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of fieldwork, whereas total exposure in the immediately 
preceding year will be comprised of the partial exposure of 
women interviewed in the first year of fieldwork and the full 
exposure in that year of women interviewed in the final year 
of fieldwork.

The age-specific fertility rates for age x in year t are given 
by ( )( )

( )
x

x
x

B tf t
E t

= .

Age-specific fertility rates for conventional five-year age 
groups are derived by summing the births to women across 
each age group, and dividing by the sum of the exposure in 
that age group. Thus, if i = (x/5)–2 for x = 15,20,…, 45, then

5 15 5 20 5 45(1) ; (2) ;... (7)f f f f f f= = =

and
5 14

5 10
5 14

5 10

( )
( , )

( )

i

a
a i
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a
a i
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f i t

E t

+

= +
+

= +

=
∑

∑
.

To combine data for multiple years, the numerators and 
denominators are summed separately before dividing to 
produce the rate:

( )

2

1

2

1

5 14

5 10
1 2 5 14

5 10
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Worked example
This example uses data from the 2004 Malawi DHS. Field-
work in this survey began in earnest in October 2004 and 
ran through to February 2005.

Step 1: Produce a tabulation of the number of births in 
each calendar year by the age of the mother at the birth 
of the child
After random allocation of mother’s age at birth in cases 
where the mother and child’s month of birth are the same, 
the full cross-tabulation of children’s year of birth by age 
of mother at the birth of her child is shown in Table 12.1. 
It would appear that there has been extreme shifting or 
omission of births in 2001 and 2002 in that the number of 
births reported in those years is some 20 per cent lower than 

that reported in 2003. Reported births in 2004 are lower 
than in 2003 in part because many women were not exposed 
for the full calendar year, and because births occurring in the 
month of interview are excluded from the analysis.

Table 12.1  Classification of births since 2001 by age of mother at 
birth, Malawi, 2004 DHS

Year of birth
Age 2001 2002 2003 2004 2005
13 1.11 0.96 0.00 0.00 0.00
14 6.44 3.26 2.00 4.02 0.00
15 19.70 12.74 17.21 14.65 0.00
16 49.84 41.40 49.87 39.00 0.00
17 93.45 88.79 93.36 61.67 0.00
18 113.79 133.70 153.38 110.40 0.00
19 145.63 148.18 162.51 162.48 0.00
20 146.03 166.63 177.72 155.24 0.00
21 159.60 137.76 179.68 174.46 0.00
22 137.50 128.60 147.12 148.44 0.00
23 115.15 110.30 173.94 138.36 2.12
24 109.24 96.07 144.74 149.19 0.00
25 113.58 93.61 105.37 117.68 0.00
26 82.08 69.68 107.11 105.36 0.00
27 74.37 77.16 129.50 105.48 0.00
28 66.31 66.14 73.87 91.96 0.00
29 62.92 63.28 75.42 80.13 0.00
30 55.93 55.44 76.98 68.16 0.00
31 55.89 42.38 59.05 56.76 0.00
32 55.11 72.47 59.85 61.36 0.00
33 34.74 54.08 72.14 41.23 0.00
34 28.09 44.41 67.04 52.00 0.00
35 50.00 25.28 41.26 48.16 0.00
36 41.61 33.88 27.42 33.56 0.00
37 30.57 25.46 48.50 30.46 0.00
38 24.47 32.07 31.55 36.85 0.00
39 23.05 16.87 39.64 22.38 0.00
40 16.95 20.66 12.56 26.47 0.00
41 19.67 9.72 17.17 9.87 0.00
42 12.44 7.72 9.79 8.89 0.00
43 9.43 10.35 17.32 9.15 0.00
44 4.17 10.98 7.11 11.11 0.00
45 4.94 4.86 3.63 4.29 0.00
46 4.02 9.07 14.65 4.96 0.00
47 0.00 0.82 3.96 2.35 0.00
48 0.00 0.00 2.16 0.00 0.00
49 0.00 0.00 0.00 0.00 0.00

TOTAL 1967.84 1914.75 2404.58 2186.55 2.12
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Exposure in year of interview Exposure in last complete year

caseid Date of birth Date of 
interview

Age at start 
of year of 
interview

Lower age Higher age Lower age Higher age

(1) (2) (3) (4) (5) (6) (7) (8)

443 4 February 1976 October 2004 27 0.125 0.625 0.125 0.875
443 10 October 1974 October 2004 29 0.750 0.000 0.792 0.208
444 3 August 1984 October 2004 19 0.625 0.125 0.625 0.375
445 2 June 1983 October 2004 20 0.458 0.292 0.458 0.542
519 7 May 1989 January 2005 15 0.000 0.000 0.375 0.625
522 2 March 1979 January 2005 25 0.000 0.000 0.208 0.792
526 4 December 1989 January 2005 15 0.000 0.000 0.958 0.042
526 7 September 1979 January 2005 25 0.000 0.000 0.708 0.292
528 2 January 1970 January 2005 34 0.000 0.000 0.042 0.958
529 2 October 1972 January 2005 32 0.000 0.000 0.792 0.208

Table 12.2  Data showing derivation of exposure to risk, Malawi, 
2004 DHS

Step 2: Calculate the age of each woman at the start of 
the year in which she is interviewed
The age of women at the start of the year in which she is 
interviewed is derived from Equation 1. A sample extract 
is shown in Table 12.2. In the third line, the woman (case 
id 444 3) was born in August 1984 and interviewed in 
October 2004. On 1 January 2004 she would have been 
aged 19 (column 4). The woman with case id 528 2, in the 
ninth (penultimate) line of data, born in January 1970, 
interviewed in January 2005, and would have been aged 34 
on 1 January 2005.

Step 3: Calculate the exposure to risk for each woman in 
the year of her interview
Columns (5) and (6) of Table 12.2 show the derivation of 
the exposure to risk for each woman in the year of her inter
view. The woman in the first line (case id 443 4) had her 
28th birthday in February 2004. On the assumption that 
birthdays occur, on average, half-way through each month, 
she would have spent 0.125 (1.5 /12) aged 27 in 2004, and 
a further 0.625 of a year (7.5 months from the middle of 
February to the end of September, the month before she was 
interviewed) aged 28 in 2004.

The woman in the second line (case id 443 10) had her 
birthday in the same month she was interviewed. As a result, 
she experiences a full 9 months (0.75 of a year) exposure 
aged 29 in 2004, and has no exposure thereafter.

All women interviewed in January 2005 have no exposure 
in the year of interview, as we do not consider exposure (or 
births) that occur in that month.

Step 4a: Calculate the exposure to risk for each woman 
in the last complete calendar year before her interview
Columns (7) and (8) of Table 12.2 show the derivation of 
exposure to risk in the last complete year for which women 
were exposed to risk of giving birth in the survey data. For 
women interviewed in 2004, this would have been in 2003. 
For women interviewed in 2005, this would have been in 
2004.

In the second case (case id 443 10), exposure in 2003 – 
her last complete year of exposure – would have been 9.5 
months at age 28 and 2.5 months at age 29. As suggested 
by Equation 2, in previous years her exposure would have 
been distributed similarly, at commensurately younger ages: 
in 2002, exposure would have been 9.5 months at age 27 
and 2.5 months at age 28.

In the last case presented (case id 529 2), the woman 
would have spent approximately 9.5 months (0.792 of a 
year) aged 31 in 2004, and 2.5 months (0.208 of a year) 
aged 32 in 2004.

Aggregating exposure by single year of age and calendar 
year from Step 4 produces the exposure to risk shown in 
Table 12.3.
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Table 12.3  Aggregate exposure by single year of age and calendar 
year, Malawi, 2004 DHS

Age 2002 2003 2004 2005
11 0.063 0.000 0.000 0.000
12 198.291 0.063 0.000 0.000
13 468.833 198.291 0.063 0.000
14 432.083 468.833 197.506 0.000
15 490.890 432.083 409.831 0.049
16 522.245 490.890 370.078 0.402
17 597.259 522.245 431.191 0.216
18 606.502 597.259 444.050 0.337
19 594.975 606.502 528.989 0.622
20 573.166 594.975 514.654 0.674
21 480.330 573.166 521.777 0.354
22 574.521 480.330 489.303 1.172
23 486.871 574.521 422.082 0.166
24 405.933 486.871 503.468 0.939
25 405.592 405.933 416.489 0.729
26 407.569 405.592 350.520 0.000
27 346.264 407.569 354.229 0.425
28 313.426 346.264 349.949 0.265
29 286.749 313.426 300.703 0.337
30 308.209 286.749 262.300 0.177
31 252.422 308.209 252.010 0.000
32 309.337 252.422 256.686 0.166
33 267.239 309.337 217.728 0.000
34 183.176 267.239 271.954 0.000
35 185.172 183.176 226.209 0.868
36 222.879 185.172 151.012 0.000
37 217.592 222.879 166.838 0.000
38 236.389 217.592 192.603 0.110
39 177.195 236.389 194.856 0.363
40 161.461 177.195 195.769 0.591
41 142.134 161.461 155.461 0.000
42 173.338 142.134 133.356 0.166
43 168.616 173.338 126.403 0.000
44 148.788 168.616 147.170 0.088
45 140.768 148.788 143.087 0.088
46 138.297 140.768 125.995 0.000
47 72.711 138.297 124.497 0.000
48 0.606 72.711 117.910 1.027
49 0.000 0.606 53.140 0.000

TOTAL 11697.89 11697.89 10119.87 10.330

Table 12.4  Age-specific fertility rates by single years of age and 
calendar year, Malawi, 2004 DHS

Age 2001 2002 2003 2004
11 0.000 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000
13 0.003 0.002 0.000 0.000
14 0.013 0.008 0.004 0.020
15 0.038 0.026 0.040 0.036
16 0.083 0.079 0.102 0.105
17 0.154 0.149 0.179 0.143
18 0.191 0.220 0.257 0.249
19 0.254 0.249 0.268 0.307
20 0.304 0.291 0.299 0.302
21 0.278 0.287 0.313 0.334
22 0.282 0.224 0.306 0.303
23 0.284 0.227 0.303 0.328
24 0.269 0.237 0.297 0.296
25 0.279 0.231 0.260 0.283
26 0.237 0.171 0.264 0.301
27 0.237 0.223 0.318 0.298
28 0.231 0.211 0.213 0.263
29 0.204 0.221 0.241 0.266
30 0.222 0.180 0.268 0.260
31 0.181 0.168 0.192 0.225
32 0.206 0.234 0.237 0.239
33 0.190 0.202 0.233 0.189
34 0.152 0.242 0.251 0.191
35 0.224 0.137 0.225 0.213
36 0.191 0.152 0.148 0.222
37 0.129 0.117 0.218 0.183
38 0.138 0.136 0.145 0.191
39 0.143 0.095 0.168 0.115
40 0.119 0.128 0.071 0.135
41 0.114 0.068 0.106 0.064
42 0.074 0.045 0.069 0.067
43 0.063 0.061 0.100 0.072
44 0.030 0.074 0.042 0.075
45 0.036 0.035 0.024 0.030
46 0.055 0.066 0.104 0.039
47 0.000 0.011 0.029 0.019
48 0.000 0.030 0.000
49

Total Fertility 5.61 5.20 6.32 6.36
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Figure 12.1  Age-specific fertility rates by single years of age and 
calendar year, Malawi, 2004 DHS

Step 5: Derive the age-specific fertility rates
Single-year age-specific fertility rates for each calendar year 
are derived by dividing the births in Table 12.2 by the 
person-years exposed-to-risk in Table 12.3. The results are 
shown in Table 12.4.

The data vary a lot between calendar years, with estimates 
of total fertility differing by more than a child per woman 
between 2002 and 2003. The estimate of total fertility in 
2004, despite being derived from only partial exposure in 
that year for most women, is highly consistent with the 
estimate for 2003. The shape of the distribution (as can be 
seen in Figure 12.1) is consistent across the three years, even 
measured in single years of age. This is true despite a high 
degree of variability in the estimates by single years of age 
even if they are aggregated over the three years from 2001 
to 2003.

Further aggregating the data into conventional five-year 
age groups produces the results shown in Table 12.5.

The differences in the last two columns between the 
ASFRs derived here and those reported in the DHS survey 
are very small. However, the much lower fertility rates for 

2002 (and 2001, not shown) should give cause for concern 
about possible reference period errors and shifting of births.

Table 12.5  Age-specific fertility rates by grouped year of age and 
calendar year, Malawi, 2004 DHS

Age 
group 2002 2003 2004 2002–4 DHS

15–19 0.151 0.180 0.178 0.169 0.162

20–24 0.254 0.304 0.312 0.290 0.293

25–29 0.210 0.261 0.283 0.252 0.254

30–34 0.204 0.235 0.222 0.221 0.222

35–39 0.129 0.180 0.184 0.164 0.163

40–44 0.075 0.078 0.086 0.080 0.080

45–49 0.042 0.049 0.021 0.036 0.035

Total 
Fertility 5.32 6.44 6.43 6.05 6.05

Note: DHS rates are 3-year rates as presented in the 2004 DHS 
report.
Source: MeasureDHS StatCompiler
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Chapter 13  The use of P/F ratio methods with survey data: 
Cohort-period fertility rates

Tom A Moultrie

Description of method
The availability of detailed demographic and birth history 
data typically collected in demographic surveys (examples 
being the World Fertility Surveys conducted in the 1970s, 
and the ongoing programme of Demographic and Health 
Surveys conducted by ORC Macro) has meant that – in 
general – direct measures of fertility estimation are to be 
preferred over indirect methods. Nevertheless, extensions 
of indirect methods to situations where there is more data 
can provide not only corroborating evidence to support the 
results derived directly, but also provide important insights 
into the quality of the birth history data collected.

One such extension is to apply the same logic as the Brass 
P/F ratio method to the birth histories, allowing a detailed 
investigation of the fertility data by age, period and cohort. 
The method yields period estimates of total fertility (TF) 
for either the five-year period or the two five-year periods 
preceding collection of the data. The method also permits 
the identification of common errors in the data.

Data requirements and assumptions
Tabulations of data required
•	 Numbers of women by age group at the survey date.
•	 Numbers of births by (current) age group of mother, 

grouped into five-year periods before the survey date. 
This tabulation requires, for each entry in a birth history,
•	 the date (month and year) of the interview;
•	 the child’s date of birth (month and year); and
•	 the mother’s current age group.

Assumptions
There is no differential fertility between women interviewed 
in the survey and those who have died or emigrated, and 
who are therefore not sampled in the survey.

Preparatory work and preliminary 
investigations
The method can be applied working either with the date-
handling routines available in most statistical packages, or 
(almost as well) using dates presented in the DHS CMC 
format. If dates of birth and interview have not been coded 
as such, it is recommended that they are so coded for 
purposes of applying this method. The routine for doing so 
is described on the MeasureDHS website.

Application of method
The method is applied in the following stages.

Step 1: Extract the (weighted) number of women, by age 
group at survey date
This is a straightforward tabulation. In the context of 
DHS data, women’s age group at the survey is given by the 
v013 variable, and the sample and design weights by v005 
(divided by 106 where appropriate). The number of women 
in age group i is denoted by Ni = 5Nx, where x = 15,20,…, 45 
and i = x/5–2.

Step 2: Extract numbers of births by age group and 
period before the survey
If working with dates in CMC format, with a full birth 
history in a file with one record per child, the child’s current 
age in months is easily determined by subtracting the CMC 
of the child’s date of birth from the CMC of the interview 
date. Dividing the result by 60 and taking the integer portion 
of the result produces an index that allocates the child’s date 
of birth to successive five-year periods before the survey.

A minor modification needs to be made to accommodate 
the cases where the child was born in the month of interview 
exactly 5, 10 … years previously. Depending on the relative 
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timing of the day of interview and the day of birth, children 
could be in one of two adjacent age groups. To resolve this, 
and to avoid allocating all such cases to one group, children 
in the boundary months should be allocated to age groups 
based on the reported day of interview, if available, and 
assuming that days of birth are uniformly distributed over 
each month. Where possible, we define b = 1 if day (within 
the calendar month) of interview < 16 – in other words, the 
child’s birthday is more likely to be in the second half of the 
month – and 0 otherwise.

Thus

	
int( );

60
0,1,2...

cDoI DoB bTime of birth j

j

− −
= =

=
	 (1)

where DoI is the date of the interview and DoBc is the child’s 
date of birth, both recorded in CMC format. In the case of 
DHS data, DoI is provided by the v008 variable and DOBc 
by variable b3. The day of interview is given by variable 
v016.

A cross-tabulation (weighted, where appropriate, for the 
sample design) of mothers’ age group at the survey date and 
the grouped time of birth variable defined above is then 
extracted. The structure of the cross-tabulation is as shown 
in Table 13.1, where the Bi,j reflect the aggregate (weighted) 
number of births j years ago to women in age group i at the 
survey date:

Table 13.1  Structure of tables used to derive Cohort-Period 
Fertility Rates

Births by period before the survey ( j)
Age group 

of cohort at 
survey (i)

Number 
of 

women

0–4
( j=0)

5–9
( j=1)

10–14
( j=2)

15–19
( j=3)

20–24
( j=4)

15–19 (i=1) N1 B1,0 B1,1

20–24 (2) N2 B2,0 B2,1 B2,2

25–29 (3) N3 B3,0 B3,1 B3,2 B3,3

30–34 (4) N4 B4,0 B4,1 B4,2 B4,3 B4,4

35–39 (5) N5 B5,0 B5,1 B5,2 B5,3 B5,4

40–44 (6) N6 B6,0 B6,1 B6,2 B6,3 B6,4

45–49 (7) N7 B7,0 B7,1 B7,2 B7,3 B7,4

Note that, going back in time, the fertility rates of the 
youngest women will be zero for time periods in which 
all the women are less than 10 years old. Some births that 
occurred in the past will not be reported if the birth histories 
were collected only from women under 50.

Step 3: Derive cohort-period fertility rates based on the 
age group of mother at the time of the survey
If we denote age groups (or cohorts, defined by age at the 
survey) by the index, i, (i = 1 corresponding to the 15–19 
age group, etc.) and successive five-year periods before the 
survey by j ( j = 0 corresponding to the five-year period 
immediately preceding the survey, and ending at the survey 
date), the cohort-period fertility rate is then defined as

,
,

1
5

i j
i j

i

B
f

N
 

=  
 

.

The ratio is divided by five because women’s exposure will be 
exactly five years as all women alive at the survey date must 
have been alive throughout each of the previous periods.

The resulting cohort-period rates present the experience 
of women in the same cohort (born in the same time period) 
in the rows, with periods in the columns, and equivalent 
attained ages running down the diagonals, as shown in 
Table 13.2.

Table 13.2  Cohort-period fertility rates, classified by age of cohort 
at survey

Births by period before the survey ( j)
Age group 

of cohort at 
survey (i)

0–4
( j=0)

5–9
( j=1)

10–14
( j=2)

15–19
( j=3)

20–24
( j=4)

15–19 (i=1) f1,0 f1,1

20–24 (2) f2,0 f2,1 f2,2

25–29 (3) f3,0 f3,1 f3,2 f3,3

30–34 (4) f4,0 f4,1 f4,2 f4,3 f4,4

35–39 (5) f5,0 f5,1 f5,2 f5,3 f5,4

40–44 (6) f6,0 f6,1 f6,2 f6,3 f6,4

45–49 (7) f7,0 f7,1 f7,2 f7,3 f7,4

Step 4: Transpose the Cohort-Period Fertility Rates
The rates derived in Step 3 can also be classified by the age 
of the mother at the end of each successive five-year time 
period. The end of the period reflecting births that occurred 
in the five years before the survey date (when j = 0) is the 
survey date, and the end of the period 5–9 years before the 
survey (when j = 1) is the point exactly five years before the 
survey. The effect of this reclassification is that a revised 
series of cohort fertility indices are created:

*
, ,k j k j jf f += .
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With this reclassification, Table 13.2 above is rearranged 
as in Table 13.3 below. Thus, for example, the fertility 
of women aged 30–34 at the survey in the period 10–14 
years before the survey (i.e. f4,2) would now be recast as the 
fertility of women who were aged 20–24 10 years before the 
survey ( f *2,2).

Table 13.3  Matrix of cohort-period fertility rates, with redefined 
age

Births by period before the survey ( j)
Age group of 
cohort at the 
end of each 
period, k

0–4
( j=0)

5–9
( j=1)

10–14
( j=2)

15–19
( j=3)

20–24
( j=4)

15–19 (k =1) f *1,0 f *1,1 f *1,2 f *1,3 f *1,4

20–24 (2) f *2,0 f *2,1 f *2,2 f *2,3 f *2,4

25–29 (3) f *3,0 f *3,1 f *3,2 f *3,3 f *3,4

30–34 (4) f *4,0 f *4,1 f *4,2 f *4,3

35–39 (5) f *5,0 f *5,1 f *5,2

40–44 (6) f *6,0 f *6,1

45–49 (7) f *7,0

Periods further back in time will have a steadily rising 
number of missing values for older women if birth histories 
were not collected for women over 50. For example f *6,3 
would represent the fertility experienced 15–19 years ago 
by women who were aged 40–44 exactly 15 years before the 
survey date. At the survey date these women would have 
been aged 55–59 and would not have completed the birth 
history section of a DHS survey.

Step 5: Derive measures of cohort fertility
Define Pk, j to be the cumulated cohort fertility (i.e. attained 
mean children ever born) from age 15 to the end of age 
group k of the cohort of women aged k at time j, then

1 1
*

, , ,
0 0

5. 5.
k k

k j k j z j k j z j
z z

P f f
− −

− + + +
= =

= =∑ ∑ .

Step 6: Derive measures of period fertility and two 
estimates of Total Fertility
Period fertility measures are the cumulated fertility rates in a 
given period. Thus, we define Fi,j to be the cumulated period 
fertility up to age i in period j. Hence,

*
, , ,

1 1

5. 5.
k k

k j z j z j j
z z

F f f +
= =

= =∑ ∑ .

Note that F7,0 is a measure of the (period) Total Fertility 
(TF) in the five years immediately preceding the survey. This 
estimate can be assumed to apply (roughly) 2½ years before 
the survey date.

More often than not, F7,1 cannot be evaluated directly as 
this would require reports of fertility among women now 
aged 50–54 when they were aged 45–49 in the five-year 
period ending five years before the survey. However, fertility 
in this age group is generally very low, so an approximate 
estimate of fertility in the period 5–9 years before the survey 
can be derived from

*
1 6,1 7,05.TF F f= + .

In other words, we assume that f *7,1 = f *7,0 = f 7,0. If fertility 
has been declining, the resulting estimate will be marginally 
too low, but as fertility is typically very low in this age group, 
this bias will be unimportant.

In populations with low or moderately low fertility 
(current total fertility below 3 births per woman), it 
would be reasonable to make a similar substitution for the 
unmeasured fertility of women aged 40–49 exactly 10 years 
before the survey, as fertility in the age group 40–44 would 
also be low enough for small changes to impact very little on 
the estimated TF 10–14 years earlier. In this case we could 
assume that f *7,2 = f 7,0 and f *6,2 = f 6,1 to obtain

* *
2 5,2 7,0 6,15 5TF F f f= + ⋅ + ⋅ .

Step 7: Derive P/F ratios
The method allows the direct calculation of P/F ratios 
from the results produced in Steps 5 and 6. The P/F ratio 
applicable to age group k in period j is

11
*

,,
, 00
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, ,

1 1
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( , )

5 5
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k j z jk z z j
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Thus, for example, the P/F ratio for women aged 25–29 in 
the five year period ending 10 years before the survey is, 
with k = 3 and j = 2 in the formulae above,



CHAPTER 13 THE USE OF P/F RATIO METHODS WITH SURVEY DATA  |  121

2
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Interpretation and diagnostics
Several important interpretations arise from these results.

1) E stimates of period fertility
Step 6 showed how two estimates of fertility, applicable to 
points in time approximately 2½ and 7½ years before the 
survey, can be derived. From this, a short-term trend in 
fertility may be inferred.

2) �I nterpretation of P/F ratios and timing of the 
fertility decline

The P/F ratios derived in Step 7 can give insights into both 
the nature and timing of a decline in fertility, as well as 
problems with the quality of the data. Chapter 6 describes 
the essential features of the P/F method.

P/F ratios of, or very close to, 1 at each age in a given period 
imply that there has been no change in fertility, as period 
and cohort measures are roughly equal. Fertility decline is 
indicated by P/F ratios that increase consistently with age 
in any given period, rising from a value close to unity for 
ages under 25. (25 is used because it is difficult for cohort 
and period fertility for the youngest cohorts to diverge too 
much.) Thus, if in one period before the survey, j, the P/F 
ratios are almost constant by age, but in the next period 
closer to the survey, j –1, the P/F ratios show a clear trend 
with respect to age, fertility decline began (approximately) 
at the date dividing the two periods.

A series of low P/F ratios in a given period followed or 
preceded by a series of much higher P/F ratios is indicative 
of possible displacement of births into the period where the 
ratios appear low, and out of the period where the ratios 
appear to be uncharacteristically high. Similarly, a series of 
P/F ratios on a major diagonal (i.e. for a particular cohort) 
that departs uncharacteristically from the overall trend is 
indicative of age mis-statement by women, or omissions of 
births if the trend is observed in the oldest age group.

3) A ssessment of data quality
Examination of the cohort-period fertility rates (i.e. the f *) 
derived in Step 4 can contribute to assessment of the quality 
of the data. For example, reading along the rows from right 
to left shows how fertility in each age group has changed as 
the date of the survey approached.

Since, in the absence of severe exogenous factors, the 
expectation is one of orderly and incremental change, 
deviations from orderliness may reflect reference period 
errors or other omissions. Three types of reference period 
errors are argued to be prevalent in the retrospective birth 
history data collected in surveys.

The first type of reference period error is that attributed 
to Brass who argued that older women tend to exaggerate 
the age of their oldest children thereby placing their birth 
dates further back in time than they actually occurred. This 
causes the level of fertility for the earliest periods preceding 
the survey to be over-estimated and more recent fertility to 
be under-estimated as births are transferred from relatively 
recent to more distant time periods, thereby exaggerating the 
apparent drop in fertility. ‘Brass effects’ are identified by the 
earliest cohort-period fertility rates for any age group being 
distinctly higher than those of slightly younger cohorts at 
the same attained age. This shifting of births back in time 
also has the effect of making fertility decline appear less than 
it is in reality in the more recent periods.

The second type of reference period error is that identified 
by Potter (1977). Women, Potter argues, have a tendency to 
bring earlier births closer to the date of the interview, but to 
report recent events correctly. This results in understatement 
of the level of fertility for the more distant periods preceding 
the survey, while recent fertility rates are correct and those 
in the intervening periods are exaggerated. Potter’s model 
is based on two propositions: first, that the “date of an 
event is recalled less accurately the longer ago the event 
took place. The second is that if a birth history is elicited 
by asking questions about live births in the order in which 
they occurred, then the date a woman attaches to any event 
other than the first is influenced by the information she has 
already given about the previous event” (Potter 1977: 341). 
‘Potter effects’ are more likely to occur when women’s birth 
histories are collected in the order that the births occurred 
than when asked from youngest to oldest birth.

A third type of error of omission arises from the system-
atic omission of children born just before the survey, or their 
displacement into an earlier time period. This is brought 
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about by the enumerator seeking to avoid asking detailed 
supplementary questions (for example, an anthropometry 
questionnaire) of children under a certain age (usually five 
years). Such errors have been well-documented by Cleland 
(1996) and Schoumaker (2010, 2011). If such omissions 
or displacements have occurred, the appearance of fertility 
decline in the period just before the survey will be exag-
gerated, and the P/F ratios in that most recent period will 
show a much greater degree of fertility decline. Some of this 
decline may be real, but analysts should be alert to the pos-
sible effects of this kind of omission or displacement.

The impact of these three effects on fertility measures over 
time can be represented graphically, as in Figure 13.1.

The line marked ‘true fertility’ shows the time trend in 
fertility (total, or age-specific) in a hypothetical population. 
‘Brass’ effects create the impression of higher fertility in the 
distant past and a slower fertility decline in the 10 or so 
years before the survey. ‘Potter’ effects produce systematic 
exaggerations of fertility in the 5–15 years before the survey, 
resulting in a mistaken impression of more rapid recent 
fertility decline. The ‘typical pattern’ indicates the nature of 
common distortions in birth history data. Fertility in the 

most recent period is usually too low, caused by omission (in 
censuses) or displacement of recent births to avoid modules 
on anthropometry etc. (in surveys), while fertility in the far 
distant past is often exaggerated (by means of ‘Brass’ effects) 
and visible in the apparent excess of births to very young 
women in many birth histories.

Worked example
The example uses retrospective birth history data collected 
in the 2004 Malawi Demographic and Health Survey. 
Tabulations have been weighted using the sample and 
design weights provided with the data, which accounts for 
the fractional women in the tabulations. The method has 
been implemented in an accompanying Excel workbook 
(see website).

Steps 1 and 2: Extraction of data
The tabulations extracted from the DHS data files are shown 
in Table 13.4. The births reported by period before the 
survey have been adjusted to accommodate approximately 
the boundary problem discussed in the derivation of 
Equation 1.

Figure 13.1  Graphical representation of Brass and Potter effects 
on misreporting of fertility
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Step 3: Derivation of cohort-period fertility rates, 
classified by age group of the cohort at the survey date
Table 13.5 shows the cohort-period fertility rates from the 
data in Table 13.4. Thus, for example, the cohort fertility 
rate associated with the births occurring 5–9 years to women 
aged 20–24 at the survey is given by

1 981.8. 0.068
5 2,869.7

= .

Step 4: Transpose the Cohort-Period Fertility Rates
The rates in Table 13.5 are transposed so that the rows 
represent equivalent attained ages at the end of each time 
period represented in the columns. Thus, for example, a 
woman aged 30–34 at the survey would have been aged 
25–29 at the end of the period 5–9 years before the survey 
(and 20–24 at the end of the period 10–14 years before the 
survey), and these cohort fertility rates (0.291 and 0.270 
from Table 13.5) are now tabulated against ages 25–29 and 
20–24 respectively, as in Table 13.6.

To assist with the identification of trends in fertility as 
well as problems or flaws in the data, the cohort-period 
fertility rates in Table 13.6 are presented graphically by birth 
cohort and attained age in Figure 13.2. There would appear 
to have been some generalized omission of more distant 
fertility in the survey as the cohort-period fertility rates for 
the oldest women (the 1955–59 cohort) at younger attained 
ages (20–24) are somewhat lower than those of slightly 
younger cohorts. Nonetheless, there are some indications 
from these data of an incipient fertility decline in Malawi in 

that fertility rates among the youngest cohorts (those born 
after 1980) are lower than those of older cohorts.

Further investigations are required to untangle these 
effects.

Step 5: Derive measures of cohort fertility
Cumulated cohort fertility to any given age is calculated 
by summing the diagonal of cohort rates in Table 13.6 and 
multiplying by 5, as shown in Table 13.7. Thus, for example, 
the cumulated cohort fertility of women aged 25–29 at the 
end of the period 5–9 years before the survey is given by 
5(0.291 + 0.270 + 0.081) = 3.210.

Step 6: Derive measures of period fertility and two 
estimates of the TF
Cumulated period fertility up to a given age are derived by 
summing all the cohort period fertility rates (CPFRs) from 
Table 13.6 in a given column (the period) up that age, and 
multiplying by 5 (shown in Table 13.8). For example, the 
cumulated fertility up to age 30 in the period 5–9 years before 
the survey is given by 5(0.068 + 0.250 + 0.291) = 3.047.

Two estimates of Total Fertility are derived. The first is that 
in the period 0–4 years before the survey, and is calculated 
directly from the data (6.1 children per woman). Fertility in 
the period 5–9 years before the survey is estimated by 6.091 
+ 5(0.063) = 6.406 children per woman.

Since the median date of interview in that DHS was 
November 2004, we can take the two estimates as applying 
to May 2002 and May 1997 respectively. The results suggest 
that TF fell by about 0.4 children per woman between the

Births by period before the survey ( j)
Age group of 

cohort at survey 
(i)

Approximate 
cohort birth 

years

Number of 
women

0–4
( j=0)

5–9
( j=1)

10–14
( j=2)

15–19
( j=3)

20–24
( j=4)

25–29
( j=5)

30–34
( j=6)

15–19 (i =1) 1985–1989 2,392.0 713.7 5.2 0.0 0.0 0.0 0.0 0.0
20–24 (2) 1980–1984 2,869.7 3,638.8 981.8 28.7 0.0 0.0 0.0 0.0
25–29 (3) 1975–1979 2,157.4 2,952.3 2,693.6 859.1 13.6 0.0 0.0 0.0
30–34 (4) 1970–1974 1,478.0 1,734.4 2,152.7 1,996.7 595.5 21.9 0.0 0.0
35–39 (5) 1965–1969 1,116.8 1,139.6 1,462.6 1,815.5 1,386.4 508.4 18.1 0.0
40–44 (6) 1960–1964 935.0 569.3 923.5 1,372.6 1,456.2 1,267.8 386.4 13.4
45–49 (7) 1955–1959 749.1 235.1 558.8 952.6 1,024.9 1,128.3 953.3 311.6

Table 13.4  Number of women, by age group at survey, and 
number of births to those women, classified by timing of birth, 
Malawi, 2004 DHS
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Period before the survey ( j)
Age group 

of cohort at 
survey (i )

0–4
( j=0)

5–9
( j=1)

10–14
( j=2)

15–19
( j=3)

20–24
( j=4)

25–29
( j=5)

30–34
( j=6)

15–19 (i =1) 0.060 0.000
20–24 (2) 0.254 0.068 0.002
25–29 (3) 0.274 0.250 0.080 0.001
30–34 (4) 0.235 0.291 0.270 0.081 0.003
35–39 (5) 0.204 0.262 0.325 0.248 0.091 0.003
40–44 (6) 0.122 0.198 0.294 0.311 0.271 0.083 0.003
45–49 (7) 0.063 0.149 0.254 0.274 0.301 0.255 0.083

Period before the survey ( j)
Age group of 
cohort at the 
end of each 

period before 
the survey, k

0–4
( j=0)

5–9
( j=1)

10–14
( j=2)

15–19
( j=3)

20–24
( j=4)

25–29
( j=5)

30–34
( j=6)

15–19 (k =1) 0.060 0.068 0.080 0.081 0.091 0.083 0.083
20–24 (2) 0.254 0.250 0.270 0.248 0.271 0.255
25–29 (3) 0.274 0.291 0.325 0.311 0.301
30–34 (4) 0.235 0.262 0.294 0.274
35–39 (5) 0.204 0.198 0.254
40–44 (6) 0.122 0.149
45–49 (7) 0.063

Period before the survey ( j)
Age group of 
cohort at the 
end of each 

period before 
the survey, k

0–4
( j=0)

5–9
( j=1)

10–14
( j=2)

15–19
( j=3)

20–24
( j=4)

25–29
( j=5)

30–34
( j=6)

15–19 (k =1) 0.298 0.342 0.398 0.403 0.455 0.413 0.416
20–24 (2) 1.610 1.647 1.754 1.697 1.769 1.689
25–29 (3) 3.015 3.210 3.322 3.327 3.195
30–34 (4) 4.384 4.632 4.795 4.563
35–39 (5) 5.652 5.783 5.835
40–44 (6) 6.391 6.581
45–49 (7) 6.895

Table 13.5  Cohort period fertility rates, 
classified by age of mother at the end of each 
period before the survey, Malawi, 2004 DHS

Table 13.6  Cohort-period fertility rates, 
classified by age of mother at the end of each 
period before the survey, Malawi, 2004 DHS

Table 13.7  Cumulative fertility of cohorts 
at end of each period (P), Malawi, 2004 
DHS

two periods, although displacement and omissions of most 
recent births may be producing an exaggerated impression 
of decline.

Step 7: Derive P/F ratios
P/F ratios are derived by dividing the equivalent cells in 
Tables 13.7 and 13.8, as shown in Table 13.9.

It is clear from the steady increases in the P/F ratios with 
age in the most recent two periods that a fertility decline is 
under way. No such trend exists in the ratios for 10–14 years 
before the survey. Thus, the fertility decline in Malawi appears 
to have started about 10 years before the survey, 1994.

The P/F ratios offer some evidence that there has been 
some omission or displacement of births in particular 
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Period before the survey ( j)

Age group of 
cohort at the 
end of each 

period before 
the survey, k

0–4
( j=0)

5–9
( j=1)

10–14
( j=2)

15–19
( j=3)

20–24
( j=4)

25–29
( j=5)

30–34
( j=6)

15–19 (k =1) 0.298 0.342 0.398 0.403 0.455 0.413 0.416
20–24 (2) 1.566 1.591 1.749 1.644 1.811 1.686
25–29 (3) 2.935 3.045 3.375 3.202 3.317
30–34 (4) 4.108 4.357 4.843 4.570
35–39 (5) 5.129 5.345 6.115
40–44 (6) 5.738 6.091
45–49 (7) 6.051 6.406

Figure 13.2  Cohort-period fertility rates, Malawi, 2004 DHS

Table 13.8  Cumulative fertility within 
periods (F), Malawi, 2004 DHS

cohorts and periods. For example, the data on births 
occurring 10–14 years before the survey indicates P/F ratios 
less than one. In addition, the ratio in respect of births 
10–14 years before of women then aged 20–24 (1.003) 
is clearly divergent from the ratio of women of the same 
age 5–9 years before the survey and 15–19 years before the 
survey. This might be attributable to rising fertility in this 
period, but this seems unlikely. More probably – since the 

ratios are too low in that period – births have been shifted 
into that period (possible Brass or Potter effects), thereby 
inflating the estimates of F and depressing the ratios. 
Women aged 45–49 at the survey would appear to have 
omitted some of their births in that in all periods 5–25 years 
before the survey, the P/F ratios for this cohort are lower 
than those of the cohort of women aged 40–44 at the survey.
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( j)

Age group of 
cohort at the 
end of each 

period before 
the survey, k

0–4
( j=0)

5–9
( j=1)

10–14
( j=2)

15–19
( j=3)

20–24
( j=4)

25–29
( j=5)

30–34
( j=6)

15–19 (k =1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20–24 (2) 1.028 1.035 1.003 1.032 0.977 1.002  
25–29 (3) 1.027 1.054 0.984 1.039 0.963    
30–34 (4) 1.067 1.063 0.990 0.998      
35–39 (5) 1.102 1.082 0.954        
40–44 (6) 1.114 1.080          
45–49 (7) 1.139            

Table 13.9  P/F ratios, Malawi, 2004 
DHS

Further reading and references
The method of deriving P/F ratios from survey data 
described here was set out in the early 1980s by Hobcraft and 
others (Goldman and Hobcraft 1982; Hobcraft, Goldman 
and Chidambaram 1982). Hobcraft, Goldman and 
Chidambaram (1982), in their exposition of the method, set 
out the approach to analysing cohort-period fertility rates by 
duration since marriage (and age at marriage) and duration 
since first birth (and age at first birth).

Beyond the sources already cited, the method has been used 
in a number of analyses of World Fertility Survey and DHS 
data. Examples include applications to Lesotho (Timæus 
and Balasubramanian 1984), Zimbabwe (Muhwava and 
Timæus 1996), West Africa (Onuoha and Timæus 1995) 
and Nepal (Collumbien, Timæus and Acharya 2001). Hinde 
and Mturi (2000) applied the method, using duration since 
marriage, to Tanzanian data.
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Chapter 14  Comparison of mean number of births registered  
by a cohort of women with the reported average 

parity of the same cohort
Tom A Moultrie and Basia Zaba

Description of method
The synthetic relational Gompertz model presents a method 
for comparing average parities with average parity equivalents 
derived from period fertility rates without having to assume 
constant fertility. The most important aspect of that method 
is that average parities are calculated for a period rather than 
for a series of cohorts. It requires, however, that data on 
children ever born be available for two points in time, five 
or ten years apart. If only one source of data on children 
ever born exists, or if the inter-survey period is not (at least 
approximately) five or ten years, an alternative procedure 
that does not require the assumption of constant fertility 
must be used.

The method outlined here is such a procedure. However, 
while it has distinct theoretical benefits, in practical 
application the method requires that a fairly long series of 
annual data on registered births classified by age of mother 
is available. Such data may not be readily accessible or may 
be deemed to be so unreliable and defective that the method 
may not produce sensible results. The method is mainly 
of use with data on births from a vital registration system, 
which is normally the only source of information about 
births by calendar year over a 20-year period. However, if 
fertility schedules are available from other sources for regular 
five-year intervals (e.g. complete birth history data collected 
at a series of time points), such schedules could be used. 
The method is described here in terms of data from a vital 
registration system. In general, if parities up to age x are to 
be used, current fertility data on at least the previous x – 15 
years are required in order to make reasonable comparisons.

The method makes use of the cohort nature of reported 
average parities and compares them with parity equivalents 
obtained from the recorded fertility rates pertaining to the 

relevant cohorts. If one considers women aged 30–34 at 
some census, then ten years before the census they were aged 
20–24, and 20 years before the census they were aged 10–
14. Therefore, on the assumption that childbearing begins at 
age 15, the children ever born reported by women aged up 
to 35 at the time of the census reflect the cumulated fertility 
experience of the women over the preceding 20 years. If 
mortality and migration are assumed to be unrelated to 
the fertility experience of women, and fertility rates can 
be calculated for those 20 years, average parity equivalents 
for each cohort can be constructed and compared with the 
reported average parity of women at the time of the census.

The difficulty with applying this general idea is that 
a cohort represented by a conventional five-year age 
group at the time of the census would not have been in a 
conventional five-year age group in each of the earlier years. 
Thus, the population in age group 30–34 at the time of a 
census would have been aged 29–33 a year earlier, 28–32 
two years earlier and so on. If registered births are tabulated 
by single year of age of mother, this problem is not serious, 
because single-year fertility rates can be calculated for each 
year and then relatively easily summed by cohort. The cross-
tabulations and calculations would be lengthy, however, and 
age-heaping might have a non-trivial effect on the fertility 
rates. It is therefore convenient to have an approach that can 
be applied to rates for conventional five-year age groups.

Importantly, the method also finds use as a means of 
evaluating the completeness of birth registration in a vital 
registration system. The method described here circumvents 
many of the interpolation problems described in its initial 
formulation in Manual X (UN Population Division 1983: 
45–55) by reformulating the approach as another variant of 
the relational Gompertz model.



CHAPTER 14 COMPARISON OF MEAN NUMBER OF BIRTHS REGISTERED  |  129

Data required
The data required for this method are:
•	 The number of children ever born, or average parities, by 

five-year age group of mother, taken from a recent census.
•	 Registered births by five-year age group of mother for 

each of 15 or 20 years preceding the census.
•	 The number of women in each age group from the census, 

and from one or more earlier censuses, to allow the 
estimation of the female population by five-year age group 
for each of the 15 or 20 years preceding the final census.

Assumptions
Most of the assumptions are those associated with the 
relational Gompertz model, namely:
•	 The standard fertility schedule chosen for use in the fitting 

procedure appropriately reflects the shape of the fertility 
distribution in the population.

•	 Any inter-survey changes in fertility have been smooth 
and gradual and have affected all age groups in a broadly 
similar way.

•	 Errors in the pre-adjustment fertility rates are propor-
tionately the same for women in the central age groups 
(20–39), so that the age pattern of fertility described by 
reported births in the past year is reasonably accurate.
The method also makes the assumption that the popula-

tions used as denominators in the derivation of fertility rates 
have been corrected for under-enumeration, or other errors. 
This is particularly important because the numerator and 
denominator of the rates come from different sources.

Preparatory work and preliminary 
investigations
Before commencing analysis of fertility levels using this 
method, analysts should investigate the quality of the data 
at least in the following dimensions:
•	 age and sex structure of the population;
•	 reported births in the last year; and
•	 average parities and whether an el-Badry correction is 

necessary.

Caveats and warnings
The objective of this method is to estimate the recent levels 
of fertility and to measure the completeness of birth registra-
tion, with a view to adjusting births registered during a recent 
period to compensate for omission. The effects of other errors, 
such as changes in the completeness of census enumeration 

through time, should therefore be allowed for before cumu-
lating age-specific fertility rates for comparison with average 
parities. Hence, when there is evidence suggesting that there 
have been changes in the completeness of enumeration, the 
censuses should, if at all possible, be adjusted before calculat-
ing the population denominators. It is not necessary to adjust 
each census for absolute under-enumeration; it is only neces-
sary to ensure that the relative completeness of enumeration of 
the earlier censuses is the same as that of the most recent one.

Application of method
The following steps are required for the computational 
procedure.

Step 1: Calculate the reported average parities
Calculate the average parities at the last census, 5Px, of 
women in each age group [x ,x+5), for x = 15,20… 45 if this 
has not been done already as part of earlier analyses.

Step 2: Estimate the mid-year female population by age 
group for each year preceding the last census
The exact procedure to be followed in estimating the series 
of mid-year female populations by age group depends 
upon the dates of the census enumerations available. The 
procedure is therefore discussed here in general terms.

It is assumed that census enumerations cover, or almost 
cover, the years for which registered fertility rates are to be 
cumulated, since it is preferable that the procedure described 
below is used only for interpolation of the population 
between census dates, rather than for extrapolation to dates 
before or after those covered by the censuses.

Define the reference date, ta, of each census, a, taking 
into account the fraction of the year up to and including 
the exact date, or central reference date for the census. Thus, 
for example, the number representing the date of a census 
conducted on the night of 9–10 October 2001 would be 
calculated by summing up the days of the year preceding 
the census night as1

( )31 28 31 30 31 30 31 31 30 9
2001

365
282 2001   2001.773.
365

+ + + + + + + + +
+

= + =

1	 The formula for decimalizing dates in Excel is: YEAR(<cellref>) 
+YEARFRAC(DATE(YEAR(<cellref>),1,0), <cellref>–1,1) 
 where <cellref> is the cell where the date is captured.
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The exponential growth rate, r(i,a), of each age group 
i between census a and census a + 1 is then obtained by 
dividing the difference between the natural logarithms of 
the female population of age group i at the second and first 
censuses, N(i,ta + 1) and N(i,ta) respectively, by the length of 
the intercensal period in years:

	

1

1

( , )ln
( , )

( , )

a

a

a a

N i t
N i t

r i a
t t

+

+

 
 
 =

−
.	 (1)

If there are three censuses covering the period of investigation, 
one would derive r(i,1) for the period between the first and 
second census, and r(i,2) covering the period between the 
second and third census.

The estimated mid-year population for each year for each 
age group can then be calculated for each year between ta 
and ta + 1 by expanding exponentially the initial population:

( )( , ) ( , )exp ( , )( 0.5 )a aN i t N i t r i a t t= + −
	 for ta<t<ta + 1. 	 (2)

If it is necessary to extrapolate to dates before the first census 
or after the last one, the growth rate in the closest intercensal 
interval should be used.

As the N(i,t) are estimated mid-year populations in age 
group i at time t, they represent approximate denominators 
for the calculation of age-specific fertility rates in that year.

Step 3: Calculate age-specific fertility rates from births 
registered during the years preceding the census
Age-specific fertility rates are required for a total of 15 
calendar years less than the upper age for which parities will 
be used. For example, if parities up to age 35 (i.e. the 30–34 
age group) will be used, a series of fertility rates stretching 
back 20 years is required. The rate for age group i and 
calendar year t, f (i,t), is calculated as

( , )( , )
( , )

B i tf i t
N i t

=

where B(i,t) is the number of births registered in calendar 
year t as having occurred to women of age group I in 
calendar year t.

If registered births by age of mother are not available 
for a few of the 20 calendar years required, the application 
of the method will be only slightly affected if rates for the 
missing year(s) are interpolated from neighbouring rates. 

For example, if fertility rates are only available for the last 16 
of the 20 years required to analyse registration completeness 
for women under age 35, the rates for the earliest available 
calendar year can be adopted for the four preceding years 
without much danger of introducing sizeable errors, since 
the imputed values used in the analysis would pertain to 
women aged 15–19 at the time, an age range where fertility 
is generally relatively low. However, it would be unwise to 
extrapolate data from the past to impute values for the most 
recent years because the imputation would affect more age 
groups, including the years of peak childbearing in which 
fertility changes over time are more likely to take place.

Step 4: Cumulate registered fertility for different female 
birth cohorts to estimate parity equivalents
Birth data are tabulated by calendar year, so age-specific 
fertility rates will be calculated for calendar years. Cumulating 
rates to the end of each age group will therefore produce 
fertility cumulants that correspond to the ends of calendar 
years. The census providing average parities is unlikely to 
have as its reference date exactly the end of a year, but since 
average parities for a specified age group change only slowly 
even when fertility is changing rapidly, the parities from the 
census can be regarded as referring to the year-end nearest to 
the census date, and registered rates can be cumulated up to 
the nearest year-end. Thus, if the census date is on or before 
30 June, registered fertility rates would be cumulated to the 
end of the preceding calendar year, whereas if the census date 
is after 30 June, registered fertility rates would be cumulated 
to the end of the calendar year during which the census took 
place. More accurate and refined approaches (for example 
using exponential extrapolation) are unwarranted given the 
overall uncertainties and errors in the method.

To estimate the current fertility parity equivalents, a 
relational Gompertz model is applied to the age-specific 
fertility rates derived in the previous step. First, the age-
specific fertility rates in each year are cumulated to ages 
20, 25, 30 and 35. Then, as with the standard relational 
Gompertz model, the gompits of the ratios of adjacent 
cumulated fertility estimates are taken. These correspond to 
the z(x) in the conventional formulation of the model.

Second, estimates of the parameters are derived from 
the values of z(x) calculated for each year. This is done in 
a manner analogous to the fitting of a relational Gompertz 
model only to the F-points in the conventional formulation 
of the model. We again assume a 20-year run of registration 
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data on ages 15–34. A regression of z(x)–e(x) against g(x), 
where e(x) and g(x) are derived from the standard fertility 
schedule, across the three ages 20, 25 and 30, then allows 
estimates of (t) and (t) to be derived. (t) is the slope of 
the linear regression based on the three values of z(x) in year 
t ; the intercept is given by (t) + ( (t)–1)2.c/2, where c is a 
constant derived from the fertility standard used.

Third, the relational Gompertz model is used to produce 
estimates of fertility by single ages for each calendar year. The 
values of (t) and (t) derived in the previous step are used 
to determine the shape of the fertility schedule, while the 
level is derived from the fertility cumulated to each of ages 
25, 30 and 35. The estimate of total fertility associated with 
the fertility cumulated to age x in a given year t is given by

	
( )( )

( , )( , )
exp exp ( ) ( ) ( )s

F x tTF x t
t t Y xα β

=
− − −

	 (3)

where F(x,t) is cumulated fertility to age x in year t and Y s(x) 
is the gompit at age x of the modified Zaba standard fertility 
schedule. The resulting three estimates of total fertility are 
averaged to provide an estimate of the total fertility in each 
year. Having solved for TF(x,t), it is a simple matter to 
estimate the fertility between ages x and x + 1 at time t, f (x,t):

( )( )
( )( )

( , )

exp exp ( ) ( ) ( 1)
( , )

exp exp ( ) ( ) ( )

f x t

t t Ys x
TF x t

t t Ys x

α β

α β

 − − − +
= ⋅ 

 − − − − 
.
	 (4)

Fourth, the parity equivalents are derived by summing 
the single-age, single-year fertility rates for each five-year 
cohort, and dividing by five (the width of the age interval). 
If we denote these parity equivalents as E(i,s), where i = 1 
corresponds to the 15–19 age group, i = 2 to the 20–24 age 
group etc. and s denotes the last year for which estimates will 
be derived, then

	
5 3 5 13

0 5 9

( ) ( , )
i i

j m i

E i f m j s j
+ +

= = +

= − −∑ ∑ .	 (5)

Step 5: Estimate the completeness of birth registration
The cumulated cohort fertility from registered births, E(i), 
calculated in the previous step has been constructed so as to 
be comparable to reported cohort parity, P(i), at the final 
census. Therefore, the ratio E(i)/P(i) provides a measure of 

the average completeness of registration of the births that 
occurred to cohort i. If the completeness of registration had 
remained approximately constant over a period of 15 years 
or so, the E/P ratios should have more or less the same values 
for all cohorts, and an average of the ratios for age groups 
20–24, 25–29 and 30–34 can be used as an estimate of 
the completeness of birth registration over the period. Its 
reciprocal can be used as an adjustment factor for any or all 
of the age-specific fertility schedules calculated in Step 3.

Two forces are in opposition in the interpretation of these 
E/P ratios. First, in general, if the completeness of birth 
registration has been improving over time, the E/P ratios for 
the younger cohorts will be higher than for older cohorts. In 
such a situation, the most recent fertility schedule (based on 
the registered births) may be adjusted by P(2)/E(2), the ratio 
reflecting the most recent level of completeness. (P(1)/E(1) 
should usually not be used as an adjustment factor because 
of the intrinsic difficulty in approximating E(1) accurately.) 
However, when the E/P ratios indicate that completeness 
has been improving over time, no obvious basis exists for 
adjusting the fertility schedules referring to earlier years.

The second force arises because the E/P ratios may be 
lower for younger women than for older women as a result 
of less reliable and punctual registration of births among 
younger mothers. If this is the case, choosing the E/P ratio 
at a younger age will give an inaccurate portrayal of the 
completeness of the vital registration data. By contrast, the 
estimates of completeness based on the reports of women 
aged 25–29 and 30–34 are affected relatively little by excess 
omission at early ages, so a case could be made for using the 
average of these two E/P ratios to determine completeness.

Interpretation and diagnostics
An important assumption of this method is that the denom-
inators used to calculate the age-specific fertility rates are 
accurate. Because the numerator and denominator for the 
estimated age-specific fertility rates do not come from the 
same source, age-reporting errors that affect birth registra-
tion and population enumeration differently will distort the 
pattern of period age-specific fertility rates. Erratic variation 
in the age-specific growth rates might suggest problems with 
age-reporting, but the effects of age misreporting on the final 
estimates of completeness are very hard to predict. Denomi-
nators may also be distorted by changes in the completeness 
of enumeration from one census to the next and differential 
completeness of enumeration by age group might affect the 
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results. Changes in enumeration completeness might also 
affect average parities. For example, if women with children 
are more likely to be enumerated than women without, 
average parities will be inflated by omission.

Worked example
The example presented here uses data from three censuses 
conducted in Chile in April 1970, April 1982 and April 
1992 respectively. The original tabulations were taken 
from the United Nations Statistics Division Demographic 
Yearbooks, using tabulations on number of women by age 
group at various censuses; reported births by age of mother 
and year; mean children ever born at the last census. The 
method has been implemented in an accompanying Excel 
workbook (see website).

Step 1: Calculate the reported average parities for ages 
15–19 … 30–34 from the final census
The average parities by age from the 1992 Census shown in 
Table 14.1 are those presented in the Demographic Year
book.

Table 14.1  Average parities, Chile, 1992 Census

Age group 15–19 20–24 25–29 30–34

Average 
parity 0.14 0.69 1.37 2.02

No check is possible on these data as the underlying tabula-
tions are not readily available.

Step 2: Estimate the mid-year female population by age 
group for each year preceding the last census
Table 14.2 gives the numbers of women by age group enu-
merated in each of the three censuses, as downloaded from 
the Demographic Yearbook.

The reference dates for the censuses are 1970.304, 
1982.304 and 1992.306. (The reference date for the 1992 
census reference date is slightly different from the other 
two because 1992 is a leap year. The reference date is cal-
culated as 1992 + (31 + 29 + 31 + 21)/366 = 1992.306, on the 
assumption that the census date refers to the night of the 
21–22 April in each case.

The growth rate in each intercensal period is then derived 
using Equation 1 as shown in Table 14.3.

Table 14.2  Numbers of women by age group enumerated in the 
1970, 1982 and 1992 Chile Censuses

Age group

a Census date 
(ta)

15–19 20–24 25–29 30–34

1 22-Apr-70 466,736 398,383 324,130 267,312
2 22-Apr-82 652,552 595,598 479,199 399,344
3 22-Apr-92 600,563 608,933 623,305 576,710

Table 14.3  Intercensal age-specific growth rates, Chile, 1970, 
1982 and 1992 Censuses

Age group

Intercensal period 15–19 20–24 25–29 30–34

1970–1982 0.0279 0.0335 0.0326 0.0335
1982–1992 –0.0083 0.0022 0.0263 0.0367

Thus, for example, the growth rate in the 30–34 age group 
between the 1982 and 1992 Censuses is given by

576,710ln
399,344(3,2) 0.0367

1992.306 1982.304
r

 
 
 = =

−
.

The growth rates tend to increase with age group and decline 
over time. This is suggestive of a declining fertility pattern 
that may have begun some decades earlier, reinforcing the 
need for an analytical method that does not assume un-
changing fertility.

On the basis of these growth rates, the estimated mid-
year population of women by age group can be derived for 
each calendar year using Equation 2. The resulting values of 
N(i,t) are shown in Table 14.4.

For example the population of 15–19 year old women in 
mid-1990 is given by

( )(1,1990) 652,552exp 0.0083(1990.5 1982.3)
609,634.

N = − −
=

Step 3: Calculate age-specific fertility rates from births 
registered during the years preceding the census
The number of births reported by age group and year, and 
downloaded from the Demographic Yearbook is shown in 
Table 14.5.

Age-specific fertility rates are derived by dividing the 
births (Table 14.5) by the estimated mid-year population 
for each age group and year (Table 14.4). The results are 
shown in Table 14.6.



CHAPTER 14 COMPARISON OF MEAN NUMBER OF BIRTHS REGISTERED  |  133

Table 14.4  Estimated mid-year populations by age group, Chile

Age group
Year 15–19 20–24 25–29 30–34
1972 496,255 428,806 348,169 287,686
1973 510,309 443,420 359,700 297,472
1974 524,761 458,532 371,612 307,591
1975 539,623 474,159 383,919 318,054
1976 554,906 490,318 396,633 328,873
1977 570,621 507,029 409,769 340,060
1978 586,781 524,308 423,340 351,628
1979 603,400 542,177 437,359 363,589
1980 620,488 560,655 451,844 375,957
1981 638,061 579,762 466,808 388,746
1982 651,492 599,521 482,267 401,969
1983 646,106 597,177 494,503 417,283
1984 640,765 598,500 507,674 432,902
1985 635,469 599,827 521,196 449,104
1986 630,215 601,156 535,078 465,913
1987 625,006 602,489 549,331 483,352
1988 619,839 603,824 563,962 501,443
1989 614,715 605,162 578,984 520,211
1990 609,634 606,503 594,405 539,681
1991 604,595 607,847 610,238 559,880

Step 4: Cumulate registered fertility for different female 
birth cohorts to estimate parity equivalents
The derivation of the parity equivalents proceeds as follows. 
The age-specific fertility rates in Table 14.6 are cumulated 
to the upper limit of each age group. Thus, for example, the 
cumulated fertility to age 25 in 1972 would be calculated 
from 5(0.0803 + 0.1876) = 1.3392. The cumulated fertility 
to age 30 in 1972 is 5(0.0803 + 0.1876 + 0.1856) = 2.2673. 
The cumulated rates are shown in Table 14.7.

For each year, the ratio of cumulated fertility in a given 
age group to that in the next oldest age group is calculated. 
Thus in the example in the previous paragraph, the ratio 
of cumulated fertility at age 25 to that at age 30 would be 
1.3392/2.2673 = 0.5907. The ratios are shown in the first 
three columns of Table 14.8.

Next, a gompit (double negative-log) transform is applied 
to the ratios to produce a value of z(x) for each of ages 25, 
30 and 35 in each year. Using the same example, the value 
of z(25) in 1972 would be –ln(ln(0.5907)) = 0.6415. The 
gompits are shown in the last three columns of Table 14.8.

Table 14.5  Reported births by age group of mother and year, Chile

Age group
Year 15–19 20–24 25–29 30–34
1972 39,839 80,430 64,624 38,937
1973 40,241 82,108 63,949 38,499
1974 39,884 79,316 63,477 37,880
1975 39,086 75,519 59,365 35,863
1976 37,658 73,889 57,171 34,129
1977 36,104 71,445 53,467 32,190
1978 37,138 73,224 53,725 31,832
1979 36,833 75,905 55,361 32,537
1980 38,562 79,724 59,771 33,769
1981 40,252 86,037 64,849 36,494
1982 39,298 86,061 68,029 38,406
1983 36,077 81,213 65,236 37,506
1984 37,571 83,960 67,266 39,105
1985 34,946 80,735 69,180 39,828
1986 35,925 83,434 72,876 42,605
1987 35,633 84,674 75,416 45,037
1988 37,354 87,484 80,527 48,290
1989 39,095 86,990 82,919 50,875
1990 39,543 85,292 84,336 52,942
1991 38,324 79,406 81,907 53,425

Values of e(x) and g(x) are tabulated without an age-shift since 
the data on fertility comes from a vital registration system and 
hence reflects the age of the mother at the birth of the child. 
The values are derived from Zaba’s modified version of the 
Booth fertility standard, the only peer-reviewed standard for 
women currently available. (The standard, and the process of 
deriving e(x) and g(x), are described in detail in the description 
of the relational Gompertz method.) The values of e(x) and 
g(x) for the ages required to fit a relational Gompertz model 
to the observed fertility data are shown in Table 14.9.

In each year, therefore, it is possible to derive values of 
z(x)–e(x) for three ages, and to regress these values against 
the tabulated values of g(x) for the same ages. The value 
of  in the relational Gompertz model is the slope of the 
regression equation, while  is estimated from

2intercept ( 1) .
2
cα β= − −

where c is a constant (=0.95739) derived from the modified 
Zaba fertility standard. The resulting values of  and  for 
each year are shown in the first two columns of Table 14.10.
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Table 14.6  Age-specific fertility rates by age group and year, Chile

Age group
Year 15–19 20–24 25–29 30–34
1972 0.0803 0.1876 0.1856 0.1353
1973 0.0789 0.1852 0.1778 0.1294
1974 0.0760 0.1730 0.1708 0.1232
1975 0.0724 0.1593 0.1546 0.1128
1976 0.0679 0.1507 0.1441 0.1038
1977 0.0633 0.1409 0.1305 0.0947
1978 0.0633 0.1397 0.1269 0.0905
1979 0.0610 0.1400 0.1266 0.0895
1980 0.0621 0.1422 0.1323 0.0898
1981 0.0631 0.1484 0.1389 0.0939
1982 0.0603 0.1435 0.1411 0.0955
1983 0.0558 0.1360 0.1319 0.0899
1984 0.0586 0.1403 0.1325 0.0903
1985 0.0550 0.1346 0.1327 0.0887
1986 0.0570 0.1388 0.1362 0.0914
1987 0.0570 0.1405 0.1373 0.0932
1988 0.0603 0.1449 0.1428 0.0963
1989 0.0636 0.1437 0.1432 0.0978
1990 0.0649 0.1406 0.1419 0.0981
1991 0.0634 0.1306 0.1342 0.0954

Table 14.7  Cumulated fertility to age x, by year, Chile

Age group
Year 20 25 30 35
1972 0.4014 1.3392 2.2673 2.9440
1973 0.3943 1.3201 2.2091 2.8562
1974 0.3800 1.2449 2.0990 2.7147
1975 0.3622 1.1585 1.9317 2.4954
1976 0.3393 1.0928 1.8135 2.3324
1977 0.3164 1.0209 1.6733 2.1466
1978 0.3165 1.0147 1.6493 2.1019
1979 0.3052 1.0052 1.6381 2.0856
1980 0.3107 1.0217 1.6831 2.1322
1981 0.3154 1.0574 1.7520 2.2214
1982 0.3016 1.0193 1.7247 2.2024
1983 0.2792 0.9592 1.6188 2.0682
1984 0.2932 0.9946 1.6571 2.1087
1985 0.2750 0.9479 1.6116 2.0550
1986 0.2850 0.9790 1.6600 2.1172
1987 0.2851 0.9878 1.6742 2.1401
1988 0.3013 1.0257 1.7397 2.2212
1989 0.3180 1.0367 1.7528 2.2418
1990 0.3243 1.0275 1.7369 2.2274
1991 0.3169 0.9701 1.6412 2.1183

The estimates of Total Fertility (TF) associated with 
cumulated fertility to age x are given by Equation 3. Thus, 
for example, the estimated Total Fertility implied by the 
cumulated fertility to age 25 in 1972 is

( )( )
1.3392 3.5205

exp exp 0.0049 1.1367 ( )sY x
=

− − −
.

Averaging the three estimates gives a final estimate of the 
implied total fertility in each year. Using these estimates in 
combination with the series of estimates of  and , one can 
derive a series of single-year age-specific fertility rates for each 
calendar year, again using the relational Gompertz model.

Fertility rates by single years of age for each calendar year 
are derived using Equation 4. As the matrix produced is 
large (20 years and 25 ages), only an extract from it is shown 
in Table 14.11. As an example, the age-specific fertility rate 
between 16 and 17 in 1990 is given by

( )( )
( )( )

( )( )
( )( )

(16,1990)

exp exp (1990) (1990) (17)
(16,1990)

exp exp (1990) (1990) (16)

exp exp 0.0388 1.1404 (17)
2.6516

exp exp 0.0388 1.1404 (16)

0.0348.

s

s

s

s

f

Y
TF

Y

Y

Y

α β

α β

 − − −
 = ⋅
 − − − − 

 − − −
 = ⋅
 − − − 

=

Finally, the values of E(i) are derived by applying Equation 5 
to the fertility rates in Table 14.11. E(1), the parity equiva-
lent in the 15–19 age group is therefore calculated from

8 18

0 14

(1) ( , )

(14,1991) (15,1991)
... (18,1991) (13,1990)
... (17,1990) ... (6,1983) ... (10,1983)

0.07394.
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f f

f f f

= =

= − −

= +
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+ + + +

=
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Table 14.8  Ratios of cumulated fertility to age x and their 
gompits, by year, Chile

Ratios Gompits z(x)
Year 20 25 30 20 25 30
1972 0.2997 0.5907 0.7701 –0.1864 0.6415 1.3425
1973 0.2987 0.5976 0.7734 –0.1893 0.6639 1.3590
1974 0.3053 0.5931 0.7732 –0.1711 0.6493 1.3577
1975 0.3126 0.5997 0.7741 –0.1508 0.6709 1.3622
1976 0.3105 0.6026 0.7775 –0.1566 0.6802 1.3798
1977 0.3099 0.6101 0.7795 –0.1583 0.7050 1.3900
1978 0.3119 0.6153 0.7847 –0.1529 0.7222 1.4167
1979 0.3036 0.6136 0.7855 –0.1756 0.7167 1.4209
1980 0.3041 0.6070 0.7894 –0.1742 0.6948 1.4417
1981 0.2983 0.6035 0.7887 –0.1904 0.6833 1.4381
1982 0.2959 0.5910 0.7831 –0.1971 0.6427 1.4085
1983 0.2911 0.5925 0.7827 –0.2104 0.6475 1.4065
1984 0.2948 0.6002 0.7858 –0.2001 0.6724 1.4228
1985 0.2901 0.5882 0.7842 –0.2132 0.6336 1.4145
1986 0.2911 0.5898 0.7840 –0.2102 0.6386 1.4135
1987 0.2886 0.5900 0.7823 –0.2173 0.6393 1.4044
1988 0.2938 0.5896 0.7832 –0.2029 0.6381 1.4092
1989 0.3067 0.5915 0.7819 –0.1670 0.6441 1.4022
1990 0.3156 0.5916 0.7798 –0.1425 0.6444 1.3914
1991 0.3267 0.5911 0.7748 –0.1122 0.6429 1.3658

Table 14.9  Values of e(x) and g(x) from the modified Zaba 
standard (no age shift), selected ages

Age x e(x) g(x)
20 1.3539 –1.3753
25 1.4127 –0.6748
30 1.2750 0.0393

Table 14.10  Alpha and Beta parameters of a relational Gompertz 
model fitted to ages 20, 25 and 30, by year, Chile

TF based on cumulant to 
age

Year Alpha Beta 25 30 35 Average
1972 0.0049 1.1367 3.5205 3.5525 3.5434 3.5388
1973 0.0242 1.1504 3.4057 3.4173 3.4130 3.4120
1974 0.0177 1.1367 3.2326 3.2701 3.2598 3.2542
1975 0.0270 1.1255 2.9825 3.0074 3.0004 2.9968
1976 0.0430 1.1420 2.7704 2.7897 2.7840 2.7814
1977 0.0585 1.1503 2.5509 2.5508 2.5498 2.5505
1978 0.0828 1.1653 2.4796 2.4782 2.4773 2.4784
1979 0.0844 1.1843 2.4518 2.4466 2.4462 2.4482
1980 0.0912 1.1982 2.4761 2.4973 2.4902 2.4879
1981 0.0850 1.2071 2.5762 2.5995 2.5916 2.5891
1982 0.0516 1.1910 2.5607 2.6054 2.5928 2.5863
1983 0.0520 1.1990 2.4083 2.4396 2.4300 2.4260
1984 0.0712 1.2032 2.4537 2.4750 2.4677 2.4654
1985 0.0527 1.2067 2.3781 2.4227 2.4099 2.4035
1986 0.0537 1.2038 2.4538 2.4963 2.4840 2.4781
1987 0.0479 1.2024 2.4892 2.5248 2.5141 2.5094
1988 0.0506 1.1956 2.5788 2.6257 2.6124 2.6057
1989 0.0472 1.1654 2.6166 2.6728 2.6579 2.6491
1990 0.0388 1.1404 2.6152 2.6780 2.6617 2.6516
1991 0.0179 1.1009 2.5207 2.5856 2.5689 2.5584

Although fertility at ages below 10 can safely be assumed to 
be zero, these ages are included in the formula for ease of 
presenting the summations.

Step 5: Estimate the completeness of birth registration
For each cohort (defined by age at the end of the final 
year), the completeness of birth registration is estimated 
as the ratio of the parity equivalent, E(i ), calculated from 
registered births to reported average parity, P(i ), as obtained 
from the final census (shown in Table 14.1). The results are 
presented in Table 14.12.

The completeness estimate for the cohort aged 15–19 

at the end of 1991 is 0.07/0.14 = 0.5281, or 52 per cent 
complete. The estimates of completeness of registration of 
births for women aged 25–29 and 30–34 are both higher 
and more consistent with each other, suggesting an average 
level of completeness of around 94 per cent. The estimate 
for women aged 15–19 is much lower and that for women 
aged 20–24 suggests that completeness is of the order of 
80 per cent. It seems likely that registration of births is 
substantially less complete among very young mothers while 
the cumulated completeness of mothers aged 20–24 is also 
lower because births that they experienced as teenagers are a 
substantial fraction of their total births.

The estimates of completeness based on the reports of 
women aged 25–29 and 30–34 are affected relatively little by 
the excess omission at early ages, so that in this case the best 
estimate of the completeness of birth registration is probably 
the average of 0.9382 and 0.9515. The final estimate is 
therefore 0.9449. Hence, an improved estimate of fertility 
for 1991 could be obtained by inflating the registered age-
specific fertility rates for that year by a factor of 1/0.9449, 
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or about 5.83 per cent. It should be noted, however, that 
the adjusted fertility schedule might not be a good indicator 
of the age pattern of childbearing because of the apparent 
relatively higher omission of births by young women.

The results presented in Table 14.12 do not suggest that 
birth registration completeness has been improving over 
time, so the adjustment factor of 1.0583 can also be applied 
to the observed age-specific fertility rates for years preceding 
1991. However, because the analysis has been truncated at 
age 30–34 the contributions of fertility rates registered before 
1982 to cumulated cohort fertility are small. The estimated 
adjustment factor thus cannot be validly applied to the fertility 
rates registered before that date. Although not observed in the 
case of Chile, where there is evidence of a trend towards more 
complete registration, such as a tendency for the estimates 
of completeness to decline with age, registered births for 
particular years should not be adjusted using a scaling factor 
derived from an average over many years.

However, none of these considerations explains adequately 
the low estimates of completeness obtained for the cohorts 
aged 15–19 and, to a lesser extent, those aged 20–24. Of 
course, the procedure used to split the period fertility rates 
is not perfect and it is most likely to be inaccurate at 15–
19, but possible methodological inaccuracy cannot explain 
the large differential observed. Furthermore, since average 
parities were calculated without making any adjustment for 
non-response, they are more likely to be too small than too 
large. Hence, on the basis of this evidence alone, it would 
appear that birth registration in Chile is less complete for 
young mothers than for older women.

Table 14.12  Estimates of completeness of birth registration, Chile 
1991

Age group

15–19 20–24 25–29 30–34
MCEB from last 
census (applies to 
end year)

1991 0.14 0.69 1.37 2.02

Parity equivalents 
(applies to end year) 1991 0.07 0.57 1.29 1.92

Completeness  0.5281 0.8207 0.9382 0.9515
Average 
completeness   0.9449

Further variants
An extension of the method, using parities from two surveys 
five or ten years apart, combined with vital registration 
data covering births over a 20-year period, is described on 
pages 55ff of Manual X (UN Population Division 1983). 
The main assumptions made in the version described above 
to adjust period fertility on the basis of cumulated cohort 
fertility from the beginning of childbearing – namely, that 
registration completeness be constant both by age of mother 
and by period – are no longer required. However, parity 
increments are very sensitive to changes in the completeness 
of reporting of children ever born, as a result of which 
the estimates of registration completeness obtained by the 
method described on pages 55ff of Manual X are also quite 
sensitive to such changes, which are generally most marked 
for older women.

Age
Year 10 11 12 13 14 15 16 17 18
1982 0.0000 0.0000 0.0000 0.0001 0.0012 0.0081 0.0290 0.0574 0.0883
1983 0.0000 0.0000 0.0000 0.0000 0.0010 0.0072 0.0263 0.0530 0.0822
1984 0.0000 0.0000 0.0000 0.0000 0.0011 0.0078 0.0282 0.0562 0.0864
1985 0.0000 0.0000 0.0000 0.0000 0.0009 0.0067 0.0253 0.0517 0.0809
1986 0.0000 0.0000 0.0000 0.0000 0.0010 0.0071 0.0265 0.0538 0.0839
1987 0.0000 0.0000 0.0000 0.0000 0.0010 0.0071 0.0264 0.0538 0.0841
1988 0.0000 0.0000 0.0000 0.0000 0.0011 0.0079 0.0285 0.0571 0.0884
1989 0.0000 0.0000 0.0000 0.0001 0.0016 0.0099 0.0325 0.0615 0.0919
1990 0.0000 0.0000 0.0000 0.0001 0.0021 0.0113 0.0348 0.0634 0.0927
1991 0.0000 0.0000 0.0000 0.0002 0.0027 0.0129 0.0363 0.0627 0.0890

Table 14.11  Age-specific fertility rates by single-years of age and 
year, Chile
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The main differences between the procedure described on 
pages 55ff of Manual X and that described above are that all 
calculations in the variant approach are limited to the inter-
survey period, and all cohorts of reproductive age at the 
time of the second survey are considered. In doing so, the 
method compares the increments in fertility according to 
the registration system over the inter-survey period, rather 

than completely cumulated fertility for cohorts of women 
from the start of their childbearing. There is a similar 
difference in respect of inter-survey parity increments for 
cohorts. The measure of completeness is thus based on the 
ratio of inter-survey cumulated fertility, and inter-survey 
parity increments.

Further reading and references
The method was originally set out on pages 45–55 of 
Manual X (UN Population Division 1983). Given its 
dependence on a long series of vital registration data, the 
method has not been applied widely. However, as more 
developing countries seek to implement or improve systems 
of vital registration, the method might become more 
important in future as a check on the quality of those data.

The only substantial change made in the implementation 
of the method as described here is that, whereas the original 
formulation relied on tabulated coefficients based on the 
Brass fertility schedule to apportion fertility to non-standard 
age groups – a long, tedious and error-prone process – 
the approach adopted here is simpler, making use of the 
relational Gompertz model to do the same thing. In effect, 
what is now done is that a separate relational Gompertz 
model is fitted to the fertility rates observed in the vital 
registration data in each year. The values of the parameters 

alpha and beta so derived can then produce estimates of the 
implied total fertility based on the observed fertility to each 
of ages 25, 30 and 35. The average of these three estimates of 
total fertility is then taken as the estimate of total fertility in 
each year, thereby permitting the calculation of age-specific 
fertility rates by single years of age in each calendar year. 
Using these, the calculation of cumulated cohort fertility is 
simple, as the relevant fertility rates in each year simply need 
to be summed.
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Chapter 15  Introduction to child mortality analysis
Kenneth Hill

The level of child mortality in a country has long been 
treated as an index of general development. Over the last 
two decades, the international community has established 
periodic targets for the reduction of child mortality. The 
World Summit for Children in 1990 set the goal of reducing 
5q0 by one-third, or to below 70 per thousand, between 
1990 and 2000. The 1994 International Conference on 
Population and Development reiterated this goal, but set 
the additional longer-term target of reducing 5q0 to below 
45 per thousand by 2015. The Millennium Summit in 2000 
then adopted a set of eight development goals, of which 
the fourth included a target of reducing 5q0 by two-thirds 
between 1990 and 2015. The report of the Commission on 
Information and Accountability for Women’s and Children’s 
Health, established by the Secretary-General of the United 
Nations, has recently reaffirmed the importance of frequent 
reporting on 5q0. It is thus clear that the measurement of 
infant and child mortality has a very high priority both at 
the national and at the international level. This introduction 
discusses broad options for such measurement, with details 
of the various methods discussed in other chapters.

Data for estimating under-5 mortality
Data on child mortality from sources other than civil 
registration systems (and often the data in civil registration 
systems as well) come almost exclusively from mothers. 
The data are collected either about all (generally live-born) 
children or about a specified child or group of children. 
They are collected with varying amounts of detail, bearing 
in mind the difficulty of recalling details of births long in the 
past. Lack of detail in data collection may subsequently be 
compensated for at the analysis stage by making assumptions, 
primarily about past age patterns of child mortality and 
fertility, but with increased uncertainty.

The fact that data are collected from mothers is important, 
because it raises the issue of selection bias. If all the children 

(alive or dead) in a target population over an extended 
period had mothers who were still alive and also still in 
the population, then each child has an equal probability 
of being reported and there will be no bias. However, in 
practice mothers are themselves subject to mortality and 
migration risks and, as a result, at a subsequent date it will 
no longer be the case that all children in a target population 
and only those children in the target population will be 
reported. The largest threat in terms of bias is in populations 
substantially affected by HIV/AIDS. In such populations, in 
the absence of extensive use of antiretrovirals, there will be 
a strong correlation between the mortality risks of mothers 
and of their children, such that child mortality as reported 
by surviving women will underestimate true child mortality. 
This issue is discussed in more detail in Effects of HIV on 
methods of child mortality estimation. The longer the time 
lag between the birth of a child and the data collection, the 
greater the potential for such biases.

We distinguish below between data collected through a 
household interview (including data collection exercises that 
aim for universal coverage of a population, such as a census, 
and those that collect data from a representative sample of 
a population, such as Demographic and Health Surveys) on 
the one hand and data collected at a health facility, such as a 
birthing centre, on the other.

Data collected by household 
interviews
Surveys collecting data through household interviews can 
range from universal (a population census) to small and 
focused samples. The amount and complexity of data that can 
be collected in an interview varies by survey size: in general, 
large surveys permit only short questionnaires and limited 
interviewer training, whereas small surveys can (subject to 
financial constraints) use much longer questionnaires and 
interviewers can be trained more carefully to collect much 
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more detailed information. More detailed information can 
support analysis of a wider range of indicators, whereas 
simple data for a larger sample or for the whole population 
permit much greater disaggregation by geography or socio-
economic factors. The two sources may thus be seen as 
complementary rather than competing. In this section, 
we describe types of data from the most complex to the 
simplest. We then proceed to describe the process of data 
evaluation and analysis.

The full birth history
A full birth history (FBH) collects information from surveyed 
mothers about each live-born child to whom the woman has 
ever given birth. In most settings, information is collected 
from all women of reproductive age (normally 15 to 49). 
However, in situations where it is considered inappropriate 
to ask never-married women about childbearing, questions 
may be limited to ever-married women. The minimum 
information collected about each child is name, date of 
birth (often collected as month and year), whether the 
child is still alive, and if the child has died, age at death. 
In Demographic and Health Surveys (DHS) age at death is 
collected in days if the child dies before 28 days, in months 
if the child dies between 28 days and 24 months, and in 
years thereafter. From an analyst’s point of view the use of 
years as units is less than optimal since deaths cannot be 
located with adequate precision in calendar time.

In the DHS, data are collected by order of the birth from 
the earliest to the latest, with probes between each to make 
sure no child is unreported. Additional information is often 
collected on whether the child was one of a multiple birth, 
the child’s sex, whether the child is living with the mother, 
and, if so, the line number of the child on the household 
listing. The data collected thus allow the location of each 
birth and, if the child has died, its death in time, permitting 
the calculation of conventional occurrence-exposure rates 
and use of standard life table analytic methods to estimate 
mortality risks for age ranges of childhood.

In the DHS, the full birth history is prefaced by a detailed 
summary birth history (SBH), whereby each woman is asked 
about the number of sons and daughters living at home, 
the number of sons and daughters living elsewhere, and the 
number of sons and daughters that have died. The FBH is 
then collected, and the FBH and SBH are field-edited to 
ensure consistency. Because this edit is done in the field, 
DHS provides no evidence on the frequency, magnitude or 

direction of discrepancies between the FBH and the initial 
SBH.

Some surveys have collected full pregnancy histories, add-
ing all pregnancies that did not result in a live birth. This has 
not been the norm in the DHS, although the model ques-
tionnaire does include the collection of data about pregnancy 
losses that occurred in the five years or so before the survey. 
It has been argued that a pregnancy history will collect better 
data about live births than a birth history, by increasing the 
likelihood that very early neonatal deaths will get reported, 
but there are no experimental data to bear this out.

As will be clear, the FBH is a complex data collection 
instrument that requires extensive fieldworker training and 
careful field supervision. It is only used when the woman 
herself can be interviewed; proxy reports are not allowed. 
It is not appropriate for very large-scale data collection 
exercises such as a population census.

The truncated birth history
Some surveys have used truncated birth histories (TBH) to 
reduce fieldwork costs and possible interviewee fatigue. A 
TBH collects the same information as a FBH about each 
birth, but limits the number of births for which information 
is collected either by time period (for example, to births in 
the preceding 5 years) or by number (for example, for the 
most recent births up to a limit of three). Experience suggests 
that TBHs are a risky form of data collection for both 
theoretical and practical reasons. A time limitation drastically 
reduces information about mortality risks of somewhat older 
children (for example with a five-year cut-off, only children 
born between 4 and 5 years ago will provide information 
about mortality between the ages of 4 and 5, and will provide 
no information about mortality above age 5). It also runs a 
practical risk that children that have died may be intentionally 
shifted out of the time window. A number limitation raises 
concerns about selection bias (women with more than 
3 recent births will only report on the most recent 3) and 
also selective reporting (potentially favouring reporting on 
surviving children rather than children who have died).

The summary birth history
In a summary birth history (SBH), the only information 
collected is aggregate numbers of children ever born and 
children still alive (or dead). The amount of detail varies, 
from just two questions (number of children ever born 
and number of children still alive) to the detailed SBH 
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asking about boys and girls separately, and enquiring 
about surviving children living at home versus those living 
elsewhere, as described above for the DHS FBH sequence 
of questions. It is believed, without any empirical basis as 
far as we know, that the more detailed form of the questions 
improves data quality. Unlike the FBH, the SBH is often 
used with proxy reports. In a census, for example, a single 
household informant will usually provide the information. 
The informant will sometimes be the woman herself, but by 
no means always. In some cases a male head of household 
will provide information for all the women living there.

The SBH does not provide a basis for direct calculation of 
standard mortality indicators. Events (deaths) are not located 
explicitly in time, and there is no basis for calculating precise 
exposure times. Thus conventional occurrence-exposure 
rates cannot be calculated from the data. Instead, the data 
are analysed using an indirect estimation of child mortality 
approach, whereby the age (or sometimes the duration of 
marriage or the time since first birth) of a group of women 
is taken as an indicator of the average exposure time of their 
children to the risk of dying, and model age patterns of 
fertility and mortality are used to convert the proportions 
dead of children ever borne by women in a group into a 
standard life table function.

Survival of a recent birth
The SBH does not in practice provide a very recent estimate 
of child mortality, for reasons explained in Chapter 16. 
Censuses and large-scale surveys have attempted to obtain a 
more recent estimate by asking about the survival or otherwise 
of a recent child. (Information on a recent birth is also used 
as a basis for fertility estimation.) There are essentially two 
forms of the questions in common use. One asks whether a 
woman had a live birth in a specified time period (such as 
the 12 months before the survey) and whether that child is 
still alive. The other asks for the date (month and year) of 
the woman’s most recent live birth and whether the child is 
still alive. Either form of question can be used to calculate 
the proportion alive of (a large majority of ) children born 
in the 12 months before the survey. If births are distributed 
evenly across the 12 months, the proportion alive estimates 
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The second form of question can also be used to calculate 
survival to later ages of childhood, as proposed by the Brass-
Blacker procedure below.

In practice, as described in Chapter 4, the number of 
births reported in the last 12 months is often implausible 
(usually too low), raising issues about selectivity or reporting 
bias possibly related to a child’s survival. Conversion of the 
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 into the generally-used index 5q0 is 

also dependent on the choice of a model life table system.
Blacker and Brass (2005) suggest using data from the 

second format (date of most recent birth) to estimate child 
mortality from survival of most recent births in the two years 
before a census or survey. The authors show that for typical 
age patterns of child mortality, the proportion dead among 
such births can in the absence of selection bias be converted 
into an estimate of the infant mortality rate 1q0 simply by 
multiplying by a factor of 1.09. However, this adjustment 
factor is based on the assumption that the most recent births 
in the last 24 months are not selected from all births in the 
last 24 months (i.e. including all births of women with more 
than one birth in the period) on the basis of survival. This 
assumption turns out to be surprisingly far off the mark. 
Analysis of DHS full birth history data shows that for 
women with more than one birth in the period, the earlier 
birth(s) are much less likely to have survived than the most 
recent. A major reason for this is that birth intervals after an 
early child death are systematically shorter than those after a 
child that survives infancy, with the consequence that births 
in the last 24 months that do not survive are more likely to 
be followed by a subsequent (potentially surviving) birth. 
When this happens, the child that died does not get reported 
as a most recent birth. In a sample of African DHSs, the 
proportion dead of most recent births in the last 24 months 
is biased downwards relative to the proportion dead among 
all births in the 24 months by over 20 percent on average. 
Even in Bangladesh, a population with long birth intervals 
where the effect would be expected to be smaller, the bias 
still reaches almost 16 percent.

In view of concerns about both data quality in the case 
of survival of most recent births in the 12 months before a 
survey and selection bias when data for 24 months are used, 
the analysis of information on survival of most recent births 
is not recommended.

Data collected at health facilities
A major expense of household surveys is the cost of getting an 
interviewer to the (correct) household. Much of this expense 
can be eliminated by taking advantage of respondents 
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coming to the interviewer, such as on visits to health 
facilities. Health facilities are also likely to record births and 
deaths that occur at the facility as part of a routine health 
management information system. The problem with using 
such data for child mortality estimation is selection bias in 
that we can never be sure that the women who visit a facility 
are representative of all mothers. To improve coverage, 
experiments are being conducted to find out whether 
health extension workers or other health staff working in 
communities can collect adequate data on births and deaths. 
Such an approach is akin to a sample registration system.

Two approaches to collecting data from women at the 
health facility have been proposed, and one, the preceding 
birth technique (PBT), has been extensively developed 
(Brass and Macrae 1984). In essence, what this method does 
is ask women coming to a facility to give birth whether their 
previous birth, if they had one, is still alive. Given typical 
birth interval distributions, the proportion of previous births 
that have died can be interpreted as a probability of dying 
by an exact age of childhood. The data are extremely easy 
and inexpensive to collect, and can provide an indication of 
child mortality trends even if the level may be affected by 
selection bias. Such trends, however, will not be accurate if 
the selection bias changes materially over time.

The second approach starts with the assumption that 
women who visit a health facility are a biased sample of all 
mothers, but does not assume a priori the direction of the 
bias. Instead of assuming that women with healthier than 
average children or women with less healthy children will 
predominate, it aims to estimate the selection probabilities 
so as to be able to adjust for bias. For example, women 
visiting a health facility could be asked their age, children 
ever born and children still alive, plus a number of additional 
questions about their socio-economic characteristics. The 
children ever born and children still alive could then be 
modelled onto the socio-economic structure of the whole 
population, available for example from a population census. 
To our knowledge, this approach has never been tested.

Effects of HIV on methods of 
child mortality estimation
All estimation methods for child mortality based on 
mother’s reports on the survival of their children are subject 
to selection biases. Although migration and selective non-
response may introduce bias, the greatest threat to child 
mortality estimates based on reports of women arises from 

a generalized HIV/AIDS epidemic. Vertical transmission 
of HIV from mother to child during pregnancy, delivery 
and through breastfeeding in the first few months of life 
increases the risk that the child will be HIV-positive (HIV) 
by as much as 35 per cent in the absence of antiretrovirals 
(ARVs), and over 60 per cent of HIV+ children will die 
before their 5th birthday in the absence of treatment with 
ARVs (Schneider, Zwahlen and Egger 2004; Todd, Glynn, 
Marston et al. 2007). Since the mothers also suffer elevated 
mortality risks, the deaths of many of these HIV+ children, 
particularly those born 5 years or more before interview, 
will not be reported. Overall child mortality will therefore 
be under-estimated, whether using direct child mortality 
estimation or indirect child mortality estimation.

Effects on direct child mortality estimation
Only one known analysis of the magnitude of bias in direct 
child mortality estimates has been carried out using real data 
rather than simulations. Hallett, Gregson, Kurwa et al. (2010) 
use data from a prospective open cohort in Manicaland, 
Zimbabwe to measure the bias introduced by deaths of 
HIV+ mothers. The cohort was interviewed between July 
1998 and February 2000, with follow-up interviews at three 
and five years. From 1998 to 2005, HIV prevalence in the 
study population fell from 22 per cent to 18 per cent. In 
the final round in 2005, a full birth history was collected 
from surviving women, and U5MR was estimated for the 
period 1998 to 2005, a seven-year period as opposed to the 
usual DHS five-year period. The direct estimates were then 
compared to true values, adding back the child mortality 
experience of women who had died before 2005. The bias, 
calculated as the estimates from surviving mothers divided 
by the estimates for all mothers, was 6.7 per cent for the 
IMR and 9.8 per cent for U5MR. Hallett, Gregson, Kurwa 
et al. (2010) also developed a model of bias, which they 
applied to Zimbabwe and six other countries with moderate 
or high HIV prevalence for the period 1980 to 2015. They 
did this using UNAIDS prevalence data and DHS estimates 
for pre-epidemic periods. The model indicates that bias 
in direct estimates increases with (a) the duration of the 
epidemic; and (b) the time before survey of the estimate. 
Conversely, bias in direct estimates decreases with the level 
of background, non-HIV child mortality.

Walker, Hill and Zhao (2012) developed a simple cohort 
component projection model, separating births into those 
to HIV-negative (HIV–) mothers (where the children are 
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assumed not to be infected), those to HIV+ mothers but 
where the children are not themselves infected, and those 
to HIV+ mothers where the children are infected at birth or 
subsequently. The first two streams are assumed to experience 
background mortality (from model life tables) whereas the 
third stream is assumed to experience a probability of dying 
by age 5 of 62 per cent. HIV+ mothers are then aged forward 
to the date of a survey allowing for their excess mortality, 
and the U5MR estimated from reports of surviving women 
is compared to that which would have been observed had 
all women survived to the survey. No adjustment is made 
for prevention or treatment. As with the analysis by Hallett, 
Gregson, Kurwa et al. (2010), the extent of bias depends 
on the HIV prevalence and its past trajectory, the level of 
background under-5 mortality and the time period before 
the survey to which the estimate refers. It is thus not possible 
to provide a simple way to assess the magnitude of bias. 
However, as a general guide, some estimates of bias for 
countries collecting birth histories around the middle of the 
last decade, before ARV treatments were widely available, 
are shown in Table 15.1 for time periods 1–5, 6–10 and 
11–15 years before each survey. It is important to remember, 
however, that bias is a function of non-HIV child mortality, 
which is not easy to estimate, and HIV prevalence, which is 
usually estimated with error.

Bias is highest for the period 6–10 years before the survey, 
exceeding 10 per cent if the HIV prevalence has exceeded 
5 per cent. It is important to remember that ARV use to 
prevent mother-to-child transmission and to extend survival 
times will have a quick effect on reducing bias for the most 
recent time period, but bias for past time periods will persist 
for a decade or more after effective therapy is introduced.

Effects on indirect child mortality estimation
Few studies have explored the impact of HIV on indirect 
estimates of child mortality. HIV will affect the accuracy 
of indirect estimates not only because of the association 
between mortality of children and that of their mothers but 
also because of the effects of HIV on age patterns of child 
mortality, and its implications for approaches that infer 
fertility patterns from observed parity ratios. Child mortality 
risks can also no longer be assumed to be independent of 
the age of the mother. However, in one respect, indirect 
estimates may be less affected by selection for maternal 
survival than direct estimates, because the analysis is carried 
out by age group. Mothers under the age of 25 are unlikely 
to have died from HIV/AIDS, so reports of child survival 
based on age groups 15–19 and 20–24, and even 25–29, 
may be little biased by HIV. However, it is the age groups 
15–19 and 20–24 that are most biased by other selection 
effects, so this may not be a huge help.

Ward and Zaba (2008) estimate likely bias from HIV on 
indirect child mortality estimates given a stable (constant 
incidence and mortality effects) epidemic. Their model 
shows that the bias for estimates based on women under age 
30 for adult prevalence of 10 per cent or less will not exceed 
5 per cent, and even for prevalence up to 30 per cent will 
scarcely exceed 10 per cent. These findings are reassuring. Of 
course, the HIV epidemic has been anything but stable, rising 
sharply across many countries to around 2000 and declining 
both in prevalence and impact since then. However, the 
dynamic of the epidemic will tend to reduce bias below the 
levels estimated by the Ward and Zaba model.

Mutemaringa (2011) compares indirect estimates derived 
from DHSs for Zimbabwe, Kenya, Lesotho, Malawi, 

Country DHS 
Year

Approx. HIV 
prevalence 
2005 (%)

Assumed 
background

U5MR

Estimated bias by period 
before survey (%)

1–5 6–10 11–15

Cote d’Ivoire 2005 4.6 125 4.0 6.6 3.3
Kenya 2003 7.1 75 8.0 14.1 6.7
Lesotho 2004 23.4 75 13.2 15.7 2.1
Namibia 2006–07 15.3 50 13.7 22.7 10.4
Zambia 2007 15.0 150 6.8 13.9 13.0
Zimbabwe 2005 18.0 75 16.6 31.4 25.6
Source: Walker, Hill and Zhao (2012)

Table 15.1  Estimates of bias for estimates 
of U5MR for periods 1–5, 6–10 and 11–15 
years before each survey: selected sub-Saharan 
African countries
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Namibia and Zambia to direct estimates from the same 
surveys. The author confirms that the bias primarily arises 
from the survivorship correlation. The bias in the estimate 
based on reports of women aged 25–29 is in three cases out 
of six less than 5 per cent, although in two cases, Zimbabwe 
and Namibia, the bias exceeds 20 per cent. The bias of 
estimates based on reports of women aged 30–34 and 35–39 
generally exceeds 20 per cent, and in Kenya and Namibia 
exceeds 30 per cent.

The conclusion we draw from these analyses is that es-
timates of child mortality derived from reports of women 
aged 25–29 concerning their children ever borne and sur-
viving will not be greatly affected by even a generalized HIV 
epidemic. Drawing on the pattern of bias by HIV preva-
lence found by Ward and Zaba (2008), the child mortality 
estimate obtained by standard analysis of a summary birth 
history could be adjusted upwards by three points per thou-
sand for every 10 percentage points of HIV prevalence.

Further reading and references
In addition to the works cited above, the interested reader is 
directed to the work of Hill (1984, 1991), and Manual X (UN 
Population Division 1983) for further historical reading on 
indirect estimation; to Rajaratnam, Tran, Lopez et al. (2010) 
for recent developments in modelling under-5 mortality, as 
well as Preston (1985) and Rutstein and Rojas (2003) for 
a description of direct estimation of child mortality from 
survey data.
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Chapter 16  Indirect estimation of child mortality
Kenneth Hill

Description of the method
Indirect methods, pioneered by Brass and Coale (1968), 
estimate child mortality from information on aggregate 
numbers of children ever born and children still alive 
(or dead) reported by women classified by age group (or 
alternatively grouped by time since first birth, or marital 
duration). Such information is described as a summary 
birth history (SBH). The amount of detail collected varies, 
from just two questions (number of children ever born 
and number of children still alive) to the most detailed 
SBH asking separately about boys and girls, and enquiring 
separately about surviving children living at home versus 
those living elsewhere described in Chapter 15 as part of 
the DHS full birth history sequence of questions. The 
proportion dead of children born to women by age (or time 
since first birth, or duration of marriage) reflects the level of 
child mortality, but is also affected by other things, primarily 
the age pattern of childbearing and the age pattern of child 
mortality. Young mothers generally have young children, 
who have been exposed to the risk of death for short, recent 
periods; the proportion dead for such mothers thus reflects 
child mortality risks to an early age. Older mothers, in 
contrast, have a mix of young and older children exposed 
to the risk of dying for longer periods on average further in 
the past. Through models of fertility and child mortality, the 
proportions dead are converted into probabilities of dying 
by exact ages of childhood, nq0. The older the women, the 
greater the value of n.

If mortality has changed over time, the estimated proba-
bilities of dying reflect the mortality rates that have prevailed 
at a range of ages and dates. Fortunately, a ‘time location’ 
method has been developed that estimates how many years 
previously each proportion dead approximates period prob-
abilities of dying. These intervals increase with the age of 
respondents. Thus, if the probabilities of dying estimated 
from the reports of different age groups of woman are 

translated into a common index of mortality, these statis-
tics will refer to different dates and can be used to infer the 
broad trend in mortality over time.

Data requirements and assumptions
Tabulations of data required
•	 Number of women, grouped by five-year age, duration of 

marriage, or time since first birth.
•	 Number of children ever born alive by women by relevant 

(age, time since first birth, or marriage duration) five-year 
group.

•	 Number of children born alive by the women that have 
died before (or are still alive at) the time of the survey, by 
relevant five-year group.

•	 Number of births in the year before the survey by five-
year age group (optional).

Important assumptions
•	 Population age patterns of fertility and child mortality 

are adequately represented by the model patterns used in 
developing the method.

•	 In any time period, mortality of children does not vary by 
five-year grouping of mothers.

•	 No correlation exists between mortality risks of children 
and survival of mothers (by mortality or migration) in 
the population (see Effects of HIV on methods of child 
mortality estimation, in Chapter 15).

•	 Any changes in child mortality in the recent past have 
been gradual and unidirectional.

•	 Cross-sectional average numbers of children ever born 
by age (or by duration of marriage or time since first 
birth) adequately reflect the appropriately-defined cohort 
patterns of childbearing.
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Preparatory work and preliminary 
investigations
Data quality assessment for an SBH involves a subset of 
analyses described for the analysis of a full birth history 
(FBH) in Chapter 17. Since an SBH contains no informa-
tion on dates of individual births, assessment is limited to 
analysis of aggregates, tabulated by age group of mother (or 
duration of marriage or time since first birth, if such in-
formation is available); single-year tabulations can also be 
revealing if there is substantial age heaping. Once again, 
assessments are carried out of internal plausibility within 
the data set itself, and of external consistency with other 
data sets for the population. Of internal assessments, a first 
check should be of the average number of children ever born 
(CEB) in each group of women. (Note that the appropri-
ate denominator for these calculations is all women, not the 
number of mothers or number of ever-married women). 
Unless fertility has been rising, the average number of CEB 
should increase with five-year group. A second check should 
be of the average number of children dead (CD) by each 
five-year group. Unless child mortality or fertility has been 
increasing, the average number of CD should also increase 
with age. If information is available by sex of children ever 
born, sex ratios of births should be calculated. As with the 
FBH, any tendency for such ratios to deviate far from 100 
to 106 males per 100 females, or to rise with age (or marital 
duration or time since first birth) should be interpreted as 
warning signs unless the population is known to practice 
sex-selective abortion. Among external checks, the cohort 
comparisons of CEB and CD described for the FBH in Di-
rect estimation of child mortality are often revealing.

Caveats and warnings
•	 Care is needed with data editing. Women with missing 

data on numbers of children ever borne, or numbers of 
children dead (or surviving), or both, should be excluded 
from the analysis. However, women with no children 
must be included in the analysis.

•	 Care is also needed with imputation. Information on CEB 
in large surveys is often differentially missing for childless 
women (see Chapter 4, but note that for this purpose 
the correction is not needed because it would affect each 
average parity by the same proportional amount). Hot-
deck imputation may cause serious bias.

•	 The assumption that mortality of children does not vary 
by five-year grouping of mothers is generally incorrect 

when the time dimension is age. Children of young 
mothers appear to have systematically higher mortality 
than children born to women after age 25. As a result, 
indirect estimates derived from women aged 15–19 
(particularly) and 20–24 (to some extent) tend to over-
estimate the population-level child mortality. Corrections 
for these effects are not widely used (Collumbien and 
Sloggett 2001). It is in part this distortion that has led 
to the development of methods based on duration of 
marriage or time since first birth. However, these variants 
have their own limitations, as described later.

•	 Application of the method in populations with generalized 
HIV epidemics requires great care (see Effects of HIV on 
methods for child mortality estimation in Chapter 15).

Application of method
Summary birth history by five-year age group/time 
since first birth/duration of marriage of mother
Step 1: Calculate proportions dead of children ever born, 

5PDx

For each five-year group (x,x + 5) of women, the proportions 
of children dead are calculated by dividing the number of 
children dead by the number ever born.

Step 2: Calculate average numbers of children ever born 
to women in each five-year group, 5Px

For each five-year group of women, divide the reported 
number of children born 5CEBx by the number of women 
5Nx in the group. Note that if the classifying variable being 
used is age, the denominator should be all women, regardless 
of marital status or childbearing history.

Step 3: Select a model life table family
The age pattern of child mortality has an important bearing 
on the translation of a proportion dead into a standard nq0, 
and on the translation of that nq0 into a common index such 
as U5MR. In a population for which fairly recent FBH data 
exist, the model can be selected on the basis of the FBH 
by plotting estimates of 4q1 against those of 1q0 on a graph 
showing the corresponding relationships in Coale-Demeny 
and United Nations model life tables. If no appropriate 
FBH estimates exist, the selection of a model can be based 
on child mortality patterns in a neighbouring population. A 
perfect fit of the data to any model is unlikely. The analyst 
should select the model that best represents the range of 
observations available. The same model family should 
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be used in Steps 4, 5 and 6. Steps 4 and 5 have different 
variants, depending on whether the data being analysed are 
classified by age of mother (stream a), time since first birth 
of mother (stream b), or duration of marriage of mother 
(stream c).

Data classified by age of mother (stream a)
Step 4a(1): Estimate the mean age of the age-specific 
fertility schedule
This sub-step is only required for analysis using one of the 
United Nations model life tables for developing countries. 
It is calculated from age-specific fertility rates 5 fx as follows:

45

5
15,5

45

5
15,5

.( 2)x
x

x
x

f x
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=

=

+
=
∑

∑
.

The (x + 2) term in the numerator represents the mid-point 
of the age group x to x + 5 at the time when the births 
occurred. This assumes that age-specific fertility rates are 
calculated from information on births in the year before 
the survey classified by age of woman at the time of the 
survey (see Chapter 5 for more details). If age-specific rates 
are calculated from registered births by age of mother at 
the birth, the term would be (x + 2.5). Note that it is only 
the relative pattern of fertility by age that determines the 
mean, so there is no need to adjust level by, for example, a 
relational Gompertz model, before calculating it.

Step 4a(2): Estimate nq0 from each 5PDx

Once a model life table family j has been identified, appro-
priate parameters a(x,j), b(x,j) and c(x,j) (and d(x,j) if a UN 
model life table is being used) are substituted into the fol-
lowing equation:

( ) ( )

( ) ( )

5 150
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5 25
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Pq a x j b x j
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P
c x j d x j m

P

= + ×

+ × + × .

Note that d(x,j) is zero unless using the UN model life tables.
For each age group (x,x + 5), nq0 is estimated by multiply-

ing the right-hand side of the equation by the empirically 
observed 5PDx (Table 16.1).

Step 5a: Estimate the time reference t(x) of each 
estimated nq0

Using the model life table family j identified as being 
appropriate, parameters e(x,j), f (x,j) and g(x,j) are substituted 
into the following equation:

( ) ( ) ( ) ( )5 15 5 20

5 20 5 25

, , ,
P P

t x e x j f x j f x j
P P

= + × + × .

The location of the estimates in calendar time is readily 
achieved by subtracting the t(x) from the census or survey 
date (Table 16.2).

Data classified by time since first birth of mother 
(stream b)
Step 4b: Estimate nq0 from each 5PDx

Once a model life table family j has been identified, 
appropriate parameters a(x,j), b(x,j) and c(x,j) are substituted 
into the following equation:

( ) ( ) ( )5 15 5 200

5 5 20 5 25

, , ,n

x

P Pq a x j b x j c x j
PD P P

= + × + × .

Note: the coefficients and values of n in nq0 have been 
updated by Hill from those published in Hill and Figueroa 
(2001).

For each age group (x,x + 5), nq0 is estimated by multiply-
ing the right-hand side of the equation by the empirically 
observed 5PDx (Table 16.3).

Step 5b: Estimate the time reference t(x) of each 
estimated nq0

Using the model life table family j identified as being 
appropriate, parameters e(x,j), f (x,j) and g(x,j) are substituted 
into the following equation:

( ) ( ) ( ) ( )5 15 5 20

5 20 5 25

, , ,
P P

t x e x j f x j g x j
P P

= + × + × .

The results are presented in Table 16.4. Note: the coefficients 
and values of n in nq0 have been updated by Hill from those 
published in Hill and Figueroa (2001).

Data classified by duration of marriage of mother 
(stream c)
Step 4c: Estimate nq0 from each 5PDx

Once a model life table family j has been identified, appro-
priate parameters a(x,j), b(x,j) and c(x,j) are substituted into 
the following equation:
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( ) ( ) ( )5 15 5 200

5 5 20 5 25

, , ,n

x

P Pq a x j b x j c x j
PD P P

= + × + × .
For each duration of marriage group (x,x+5), nq0 is 
estimated by multiplying the right-hand side of the 
equation by the empirically-observed 5PDx (Table 16.5).

Age group of mother and value of n in nq0

Family j
15–19 20–24 25–29 30–34 35–39 40–44 45–49

1 2 3 5 10 15 20
Princeton ‘North’ a(x,j) 1.1119 1.2390 1.1884 1.2046 1.2586 1.2240 1.1772

b(x,j) –2.9287 –0.6865 0.0421 0.3037 0.4236 0.4222 0.3486
c(x,j) 0.8507 –0.2745 –0.5156 –0.5656 –0.5898 –0.5456 –0.4624

Princeton ‘South’ a(x,j) 1.0819 1.2846 1.2223 1.1905 1.1911 1.1564 1.1307
b(x,j) –3.0005 –0.6181 0.0851 0.2631 0.3152 0.3017 0.2596
c(x,j) 0.8689 –0.3024 –0.4704 –0.4487 –0.4291 –0.3958 –0.3538

Princeton ‘East’ a(x,j) 1.1461 1.2231 1.1593 1.1404 1.1540 1.1336 1.1201
b(x,j) –2.2536 –0.4301 0.0581 0.1991 0.2511 0.2556 0.2362
c(x,j) 0.6259 –0.2245 –0.3479 –0.3487 –0.3506 –0.3428 –0.3268

Princeton ‘West’ a(x,j) 1.1415 1.2563 1.1851 1.1720 1.1865 1.1746 1.1639
b(x,j) –2.7070 –0.5381 0.0633 0.2341 0.3080 0.3314 0.3190
c(x,j) 0.7663 –0.2637 –0.4177 –0.4272 –0.4452 –0.4537 –0.4435

United Nations
‘Latin America’

a(x,j) 0.6892 1.3625 1.0877 0.7500 0.5605 0.5024 0.5326
b(x,j) –1.6937 –0.3778 0.0197 0.0532 0.0222 0.0028 0.0052
c(x,j) 0.6464 –0.2892 –0.2986 –0.1106 0.0170 0.0048 0.0256
d(x,j) 0.0106 –0.0041 0.0024 0.0115 0.0171 0.0180 0.0168

United Nations ‘Chilean’ a(x,j) 0.8274 1.3129 1.0632 0.8236 0.6895 0.6098 0.5615
b(x,j) –1.5854 –0.2457 0.0196 0.0293 0.0068 –0.0014 0.0040
c(x,j) 0.5949 –0.2329 –0.1996 –0.0684 0.0032 0.0166 0.0073
d(x,j) 0.0097 –0.0031 0.0021 0.0081 0.0119 0.0141 0.0159

United Nations
‘South Asian’

a(x,j) 0.6749 1.3716 1.0899 0.7694 0.6156 0.6077 0.6952
b(x,j) –1.7580 –0.3652 0.0299 0.0548 0.0231 0.0040 0.0018
c(x,j) 0.6805 –0.2966 –0.2887 –0.0934 0.0298 0.0573 0.0306
d(x,j) 0.0109 –0.0041 0.0024 0.0108 0.0149 0.0141 0.0109

United Nations
‘Far Eastern’

a(x,j) 0.7194 1.2671 1.0668 0.7833 0.5765 0.4115 0.3071
b(x,j) –1.3143 –0.2996 0.0017 0.0307 0.0068 0.0014 0.0111
c(x,j) 0.5432 –0.2105 –0.2424 –0.1103 –0.0202 0.0083 0.0129
d(x,j) 0.0093 –0.0029 0.0019 0.0098 0.0165 0.0213 0.0251

United Nations ‘General’ a(x,j) 0.7210 1.3115 1.0768 0.7682 0.5769 0.4845 0.4760
b(x,j) –1.4686 –0.3360 0.0109 0.0439 0.0176 0.0034 0.0071
c(x,j) 0.5746 –0.2475 –0.2695 –0.1090 0.0038 0.0036 0.0246
d(x,j) 0.0095 –0.0034 0.0021 0.0105 0.0165 0.0187 0.0189

Sources: Princeton models: UN Population Division (1983); UN Models:  UN Population Division  (1991)

Table 16.1  Values of a(x,j), b(x,j), c(x,j) and optional d(x,j) for 
estimating probabilities of dying by exact ages of childhood from 
proportions dead of children ever born classified by age of mother
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Age group of mother and value of n in nq0

Family j
15–19 20–24 25–29 30–34 35–39 40–44 45–49

1 2 3 5 10 15 20
Princeton ‘North’ e(x,j) 1.0921 1.3207 1.5996 2.0779 2.7705 4.1520 6.9650

f (x,j) 5.4732 5.3751 2.6268 –1.7908 –7.3403 –12.2448 –13.9160
g(x,j) –1.9672 0.2133 4.3701 9.4126 14.9352 19.2349 19.9542

Princeton ‘South’ e(x,j) 1.0900 1.3079 1.5173 1.9399 2.6157 4.0794 7.1796
f (x,j) 5.4443 5.5568 2.6755 –2.2739 –8.4819 –13.8308 –15.3880
g(x,j) –1.9721 0.2021 4.7471 10.3876 16.5153 21.1866 21.7892

Princeton ‘East’ e(x,j) 1.0959 1.2921 1.5021 1.9347 2.6197 4.1317 7.3657
f (x,j) 5.5864 5.5897 2.4692 –2.6419 –8.9693 –14.3550 –15.8083
g(x,j) –1.9949 0.3631 5.0927 10.8533 17.0981 21.8247 22.3005

Princeton ‘West’ e(x,j) 1.0970 1.3062 1.5305 1.9991 2.7632 4.3468 7.5242
f (x,j) 5.5628 5.5677 2.5528 –2.4261 –8.4065 –13.2436 –14.2013
g(x,j) –1.9956 0.2962 4.8962 10.4282 16.1787 20.1990 20.0162

United Nations
‘Latin America’

e(x,j) 1.1703 1.6955 1.8296 2.1783 2.8836 4.4580 6.9351
f (x,j) 0.5129 4.1320 2.9020 –2.5688 –10.3282 –17.1809 –19.3871
g(x,j) –0.3850 –0.1635 3.4707 9.0883 15.4301 20.4296 23.4007

United Nations  
‘Chilean’

e(x,j) 1.3092 1.6897 1.8368 2.2036 2.9955 4.7734 7.4495
f (x,j) 1.9474 4.6176 2.6370 –3.3520 –11.4013 –17.8850 –19.0513
g(x,j) –0.7982 –0.0173 4.0305 9.9233 16.3441 20.8883 23.0529

United Nations
‘South Asian’

e(x,j) 1.1922 1.7173 1.8631 2.1808 2.7654 4.1378 6.4885
f (x,j) 0.7940 4.3117 2.8767 –2.7219 –10.8808 –18.6219 –22.2001
g(x,j) –0.5425 –0.1653 3.5848 9.3705 16.2255 22.2390 26.4911

United Nations
‘Far Eastern’

e(x,j) 1.2779 1.7471 1.9107 2.3172 3.2087 5.1141 7.6383
f (x,j) 1.5714 4.2638 2.7285 –2.6259 –9.8891 –15.3263 –15.5739
g(x,j) –0.6994 –0.0752 3.5881 9.0238 14.7339 18.2507 19.7669

United Nations 
‘General’

e(x,j) 1.2136 1.7025 1.8360 2.1882 2.9682 4.6526 7.1425
f (x,j) 0.9740 4.1569 2.8632 –2.6521 –10.3053 –16.6920 –18.3021
g(x,j) –0.5247 –0.1232 3.5220 9.1961 15.3161 19.8534 22.4168

Sources: Princeton models: UN Population Division (1983); UN Models:  UN Population Division  (1991)

Table 16.2  Values of e(x,j), f (x,j) and g(x,j) for estimating 
the reference period t(x) for probabilities of dying by exact ages of 
childhood from proportions dead of children ever born classified by 
age of mother

Step 5c: Estimate the time reference t(x) of each 
estimated nq0

Using the model life table family j identified as being 
appropriate, parameters e(x,j), f (x,j) and g(x,j) are substituted 
into the following equation:

( ) ( ) ( ) ( )5 15 5 20

5 20 5 25

, , ,
P P

t x e x j f x j g x j
P P

= + × + × .

The results are presented in Table 16.6.
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Time since first birth of mother and value of n in nq0

Family j
0–4 5–9 10–14 15–19 20–24

2 5 5 5 10
Princeton 
‘North’

a(x,j) 1.1980 1.2248 1.2076 1.2030 1.3292
b(x,j) –0.1266 –0.1919 –0.0105 0.0896 0.1598
c(x,j) 0.0038 –0.0870 –0.2911 –0.4265 –0.5778

Princeton 
‘South’

a(x,j) 1.1705 1.3166 1.2952 1.2836 1.5269
b(x,j) –0.1461 –0.3157 –0.0423 0.1308 0.2659
c(x,j) 0.0051 –0.0971 –0.4295 –0.6496 –0.9174

Princeton ‘East’ a(x,j) 1.2182 1.2769 1.2731 1.2585 1.3410
b(x,j) –0.1809 –0.2268 0.0005 0.1216 0.1749
c(x,j) 0.0214 –0.1052 –0.3720 –0.5013 –0.5964

Princeton 
‘West’

a(x,j) 1.2049 1.2573 1.2431 1.2469 1.4258
b(x,j) –0.1553 –0.2266 –0.0230 0.0999 0.1948
c(x,j) 0.0135 –0.0944 –0.3409 –0.5267 –0.7454

Time since first birth of mother and value of n in nq0

Family j
0–4 5–9 10–14 15–19 20–24

2 5 5 5 10
Princeton 
‘North’

e(x,j) 1.71 2.16 0.66 –1.96 –3.85
f (x,j) 1.07 4.36 3.50 –0.90 –6.42
g(x,j) –0.35 0.12 6.65 17.66 28.94

Princeton 
‘South’

e(x,j) 1.68 2.29 1.19 –1.01 –2.68
f (x,j) 0.96 3.84 3.45 –0.18 –5.06
g(x,j) –0.32 –0.01 5.41 15.03 25.21

Princeton ‘East’ e(x,j) 1.68 2.19 0.71 –1.96 –4.06
f (x,j) 0.99 4.28 3.63 –0.71 –6.35
g(x,j) –0.33 0.02 6.36 17.42 29.14

Princeton 
‘West’

e(x,j) 1.70 2.20 0.86 –1.46 –2.97
f (x,j) 1.03 4.20 3.47 –0.69 –5.80
g(x,j) –0.34 0.06 6.21 16.49 26.65

Duration of marriage of mother and value of n in nq0

Family j
0–4 5–9 10–14 15–19 20–24 25–29

2 3 5 10 15 20
Princeton ‘North’ a(x,j) 1.2615 1.1957 1.3067 1.4701 1.5039 1.4798

b(x,j) –0.5340 –0.4103 –0.0103 0.1763 0.0039 –0.2487
c(x,j) 0.1252 –0.0930 –0.4618 –0.7268 –0.7071 –0.5582

Princeton ‘South’ a(x,j) 1.3103 1.2309 1.2774 1.3493 1.3592 1.3532
b(x,j) –0.5856 –0.3463 0.0336 0.1366 –0.0315 –0.1978
c(x,j) 0.1367 –0.1073 –0.3987 –0.5403 –0.4944 –0.4099

Princeton ‘East’ a(x,j) 1.2299 1.1611 1.2036 1.2773 1.3014 1.3160
b(x,j) –0.3998 –0.2451 0.0171 0.1015 –0.0219 –0.1630
c(x,j) 0.0910 –0.0797 –0.2992 –0.4276 –0.4195 –0.3751

Princeton ‘West’ a(x,j) 1.2584 1.1841 1.2446 1.3353 1.3875 1.4227
b(x,j) –0.4683 –0.3006 0.0131 0.1157 –0.0193 –0.1954
c(x,j) 0.1080 –0.0892 –0.3555 –0.5245 –0.5472 –0.5127

Table 16.3  Values of a(x,j), b(x,j), c(x,j) 
for estimating probabilities of dying by exact 
ages of childhood from proportions dead of 
children ever born classified by time since 
first birth of mother

Table 16.4  Values of e(x,j), f (x,j) and 
g(x,j) for estimating the reference period t(x) 
for probabilities of dying by exact ages of 
childhood from proportions dead of children 
ever born classified by time since first birth 
of mother

Table 16.5 (below)  Values of a(x,j), b(x,j), 
c(x,j) for estimating probabilities of dying by 
exact ages of childhood from proportions dead 
of children ever born classified by duration of 
marriage of mother
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Duration of marriage of mother and value of n in nq0

Family j
0–4 5–9 10–14 15–19 20–24 25–29

2 3 5 10 15 20
Princeton ‘North’ e(x,j) 1.03 1.70 1.43 –0.08 –1.97 –2.19

f (x,j) 1.31 4.21 3.27 –1.08 –3.48 0.61
g(x,j) –0.33 –0.02 4.41 12.93 21.33 23.94

Princeton ‘South’ e(x,j) 1.02 1.66 1.21 –0.65 –2.91 –3.16
f(x,j) 1.31 4.51 3.47 –1.60 –4.14 1.21
g(x,j) –0.33 –0.03 4.95 14.68 24.01 26.35

Princeton ‘East’ e(x,j) 1.04 1.64 1.11 –0.86 –3.22 –3.39
f(x,j) 1.42 4.70 3.30 –1.97 –4.11 1.67
g(x,j) –0.35 0.06 5.45 15.52 24.86 26.98

Princeton ‘West’ e(x,j) 1.03 1.67 1.21 –0.54 –2.47 –2.21
f(x,j) 1.37 4.59 3.33 –1.77 –3.92 1.31
g(x,j) –0.34 0.02 5.14 14.64 23.10 24.45

Table 16.6  Values of e(x,j), f (x,j) and g(x,j) for estimating 
reference period t(x) for probabilities of dying by exact ages of 
childhood from proportions dead of children ever born classified by 
duration of marriage of mother

Step 6: Convert each estimate of nq0 into an estimate of 

5q0

In the applications of the indirect child mortality estimation 
method presented here, each of the probabilities of dying 
by exact ages of childhood, nq0, is converted into a value of 
, the level parameter of a system of relational logit model 
life tables. The  is then used to estimate the corresponding 
probability of dying between birth and exact age 5, 5q0:
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where the estimates of nq0 come from Step 4 and the Y s(n) 
values are logit transformations of the standard life table. 
Thus, one obtains a series of values of  corresponding to the 
probabilities of dying estimated from data on the different 
age groups of respondents. Then for each :

( )

( )

2 (5)

5 0 2 (5)
ˆ

1

s

s

Y

Y

eq
e

α

α

+

+
=

+
.

To apply the relational model approach, it is necessary to 
choose a standard life table. In order to apply the indirect 
estimation procedure, it is necessary for Steps 4 and 5 to 
identify an appropriate model pattern, and the standard 
should be drawn from the same model family. The precise 
level of mortality within the family is less important than 

the family itself (the appropriate selection of which allows 
 to be assumed to be 1 in the relational logit model life 
table). We therefore recommend choosing a standard with a 
life expectancy of 60 years.

Step 7: Identify and interpret the results
The resulting estimates of nq0 for each age group, the corre-
sponding estimates of 5q0, the time location estimates, and 
the time trend in 5q0 must then be assessed. Plotted against 
time, the series of values of 5q0 will give an indication of the 
time trend in levels of child mortality. If data from more 
than one census or survey are available, estimates of 5q0 can 
be compared for the same time periods to evaluate the con-
sistency and reliability of the data.

Worked example
The example uses data on children ever born and children 
surviving by age of mother from the 2008 Census of 
Malawi. The method is implemented in the associated Excel 
workbook (see website).

Step 1: Calculate proportions dead of children ever born, 

5PDx

Table 16.7 shows the basic data on number of women, 
number of children ever born, and number of children 
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surviving by five-year age group of mother from the 
2008 Malawi Census. The proportion dead of children 
ever born 5PDx is calculated by dividing the number of 
surviving children by the number of children ever born, and 
subtracting the result from 1:

5
5

5

1 x
x

x

CS
PD

CEB
= − .

The results are shown in the fifth column of Table 16.7.

Step 2: Calculate average numbers of children ever born 
to women in each five-year group, 5Px

Although the average number of children born to women 
in each five-year age group, 5Px , is only needed for the 
age groups 15–19, 20–24 and 25–29, it is recommended 
to calculate these values for all age groups as part of data 
evaluation. The average is calculated simply by dividing 
children ever born by the number of women in the age 
group:

5
5

5

x
x

x

CEB
P

N
= .

The results are shown in the sixth column of Table 16.7. The 
required parity ratios are then calculated as follows: 

5 15

5 20

0.2833 0.1850
1.5316

P
p

= =

and
5 20

5 25

1.5316 0.5376
2.8487

P
P

= = .

Step 3: Select a model life table family
A single set of proportions dead by age of mother contains 
essentially no information about the age pattern of child 
mortality in a population. However, in an actual country 
analysis, there would invariably be some other relevant 
information to guide a choice. The ideal information is the 
age pattern of child mortality from a full birth history for the 
same population. The comparison is of 1q0 and 4q1, and it is 
generally made graphically, superimposing observed points 
over curves showing the relationship at different mortality 
levels in each model family.

Several full birth history surveys have been conducted 
in Malawi. Figure 16.1 plots direct estimates for the 0 to 
4 years before the DHS surveys of 1992, 2000 and 2004 
(and also the 5 to 9 years before the 2000 survey) against 
model patterns. (Note that only three of the United Nations 
patterns are shown. This is because the General, South Asian, 
and Far Eastern patterns are indistinguishable in their age 
pattern of mortality under age 5.) All the observations show 
higher 4q1 relative to 1q0 than any of the model patterns. The 
optimal model choice in this instance would probably be the 
Princeton ‘North’ family, and it is this model that we use in 
what follows.

Step 4a(1): Estimate the mean age of the age-specific 
fertility schedule
We are using the Princeton ‘North’ family of model life 
tables, but for illustrative purposes, we estimate the mean age 
of the fertility schedule. The 2008 Malawi Census included 
a question for women of reproductive age on how many 
births they had in the year before the census. Table 16.8 
shows the basic data, and the calculation of m . m is then 
calculated as the sum of column (vi) divided by the sum of 
column (iv), = 29.817/1.0375 = 28.74.

Age group 
x,x + 4

Number of 
women

Children  
ever born

Children 
surviving

Mean 
children ever 

born

Mean 
children 
surviving

15–19 635,927 180,178 161,541 0.2833 0.2540
20–24 678,071 1,038,556 919,584 1.5316 1.3562
25–29 566,350 1,613,374 1,398,776 2.8487 2.4698
30–34 405,602 1,697,566 1,426,516 4.1853 3.5170
35–39 298,004 1,553,676 1,266,514 5.2136 4.2500
40–44 221,274 1,335,242 1,043,357 6.0343 4.7152
45–49 174,875 1,128,423 851,048 6.4527 4.8666

Table 16.7  Children ever born and 
children surviving, Malawi, 2008 Census
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Figure 16.1  Direct estimates of 4q1 and 1q0 from Malawi DHSs, 
and the relationships in Princeton and UN model life tables

Age group 
x,x +4 at census Number of women Births in previous 

12 months
Age-specific fertility 

rates, 5 fx

Mid-point of age 
group (x + 2) 5 fx.(x + 2)

15–19 635,927 70,737 0.1112 17 1.891
20–24 678,071 169,406 0.2498 22 5.496
25–29 566,350 130,331 0.2301 27 6.213
30–34 405,602 79,232 0.1953 32 6.251
35–39 298,004 43,747 0.1468 37 5.432
40–44 221,274 13,956 0.0721 42 3.029
45–49 174,875 5,599 0.0320 47 1.505
Sum 1.0375 29.817

Table 16.8  Calculation of m  from births data from Malawi, 
2008 Census

Step 4a(2): Estimate nq0 from each 5PDx

Each 5PDx is then converted into an estimated nq0 using the 
appropriate coefficients from Table 16.4, as shown in Table 
16.9. Thus for the age group 30–34,

( )
( )5 0

1.2046 0.3037 0.1850
0.1597. 0.1528

0.5656 0.5376
q

+ × 
= =  + − × 

.

Step 5: Estimate the time reference t(x) of each estimated 

nq0

The time reference t(x) of each estimate before the survey or 
census is then obtained, using the appropriate coefficients 
from Table 16.4, as shown in Table 16.10. Thus for the age 
group 30–34,
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( ) ( )30 2.0779 1.7908 0.1850
9.4126 0.5377 6.81.

t = + − ×
+ × =

The Census was taken between 8 and 28 June 2008, so the 
estimated reference date can be found by subtracting t from 
2008.46 (the decimal year representation of 18 June 2008). 
Results are shown in the last column of Table 16.10.

Step 6: Convert each estimate of nq0 into an estimate of 

5q0

The final step is to convert each estimated nq0 into an 
estimate of the common index 5 0̂q . This will make it 
possible to compare estimates across age groups. Each nq0 
is converted into its logit Y(n) by means of the identity 
Y(n) = 0.5.ln(nq0/(1 – nq0)). The value of  is then found by 
subtracting the standard logit Y s(n), from the North joint-
sex model life tables with an expectation of life at birth of 
60 years (column (vi)) from Y(n). Each  is then used with 
the standard Y s(5) to get the estimated 5 0̂q . Thus for the age 
group 25–29, Y(3) = 0.5.ln(0.1222/(1–0.1222)) = –0.9857, 
and  = –0.9857 – (–1.1664) = 0.1806. Then,

( )( )

( )( )

2 0.1806 1.0900

5 0 2 0.1806 1.0900
ˆ 0.1396

1
eq

e

+ −

+ −
= =

+
.

Estimates of 1 0q̂  are derived in analogous fashion using the 
standard logit for age 1.

Figure 16.2 plots each estimate of 1 0q̂  and 5 0̂q  against 
the corresponding reference date. The figure indicates a 
declining trend in under-five mortality over time, from 
around 185 per 1000 in the early 1990s to around 140 in 
2005. The apparent uptick in child mortality in 2007 is to 
be disregarded owing to the likely exaggeration of mortality 
estimated from very young mothers, as discussed above.

Diagnostics, analysis and interpretation
Checks and validation
Regardless of how data have been collected, or of one’s 
knowledge of how thoroughly interviewers were trained and 
supervised, careful data quality review is an essential first 
step of any analysis. All data sets contain errors, which can 
result from many sources, such as an interviewer cutting 
corners or an interviewee simply not knowing the correct 
answer to a question.

Age group Proportion 
dead of CEB

Regression coefficients for nq0 
(Princeton ‘North’ Model) nq0

a(i ) b(i ) c(i )
15–19 0.1034 1.1119 –2.9287 0.8507 0.1063
20–24 0.1146 1.2390 –0.6865 –0.2745 0.1105
25–29 0.1330 1.1884 0.0421 –0.5156 0.1222
30–34 0.1597 1.2046 0.3037 –0.5656 0.1528
35–39 0.1848 1.2586 0.4236 –0.5898 0.1885
40–44 0.2186 1.2240 0.4222 –0.5456 0.2205
45–49 0.2458 1.1772 0.3486 –0.4624 0.2441

Regression coefficients for time ago: 
Princeton ‘North’ model Time ago t Reference 

date
Age group e(i ) f (i ) g(i ) (2008.46–t )

15–19 1.0921 5.4732 –1.9672 1.05 2007.42
20–24 1.3207 5.3751 0.2133 2.43 2006.03
25–29 1.5996 2.6268 4.3701 4.44 2004.03
30–34 2.0779 –1.7908 9.4126 6.81 2001.66
35–39 2.7705 –7.3403 14.9352 9.44 1999.02
40–44 4.1520 –12.2448 19.2349 12.23 1996.24
45–49 6.9650 –13.9160 19.9542 15.12 1993.35

Table 16.9  Estimation of nq0 from each 
5PDx, Malawi, 2008 Census

Table 16.10  Estimation of time reference 
t(x) of each estimate in years before the 
census, Malawi, 2008 Census
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Figure 16.2  Estimated under-five and under-one mortality over 
time, Malawi, 2008 Census

Age 
group nq0 n logit 

Y(n)

Standard 
logit 
Y s(n)

 1 0q̂ 5 0q̂

15–19 0.1063 1 –1.0647 –1.3300 0.2653 0.1063 0.1612
20–24 0.1105 2 –1.0431 –1.2273 0.1842 0.0918 0.1405
25–29 0.1222 3 –0.9857 –1.1664 0.1806 0.0912 0.1396
30–34 0.1528 5 –0.8566 –1.0900 0.2334 0.1004 0.1528
35–39 0.1885 10 –0.7299 –1.0091 0.2791 0.1089 0.1650
40–44 0.2205 15 –0.6313 –0.9664 0.3350 0.1203 0.1809
45–49 0.2441 20 –0.5652 –0.9138 0.3487 0.1232 0.1850

Table 16.11  Estimating the logit life table 
parameter  for each estimate, and deriving 
a set of 1 0q̂  and 5 0q̂ , Malawi, 2008 Census

One specific aspect of summary birth history data needs 
to be emphasized for the data checking, and that is the 
failure of assumption 2, that mortality risks of children for 
a particular time period do not vary by age of mother. In 
many applications it is abundantly clear that this assumption 
does not hold. The risks for children of women aged 15–19 
(and the indirect estimate of child mortality based on CEB 
and CD for this age group) are frequently higher, sometimes 
very substantially so, than the population average. The 

same is true to a lesser extent for the children of mothers 
aged 20–24. Two factors account for this distortion: the 
distribution of children by birth order and socio-economic 
factors. First births are known to be at higher risk of dying 
than higher-order births, and the children born to younger 
women clearly consist of an above-average proportion of 
first births. Women having children at early ages also tend 
to come from below-average socio-economic groups, and 
their children are thus exposed to above-average mortality 
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risks. Consequently the estimates of mortality derived from 
women aged 15–19 should be treated with a high degree of 
circumspection, or ignored altogether.

Interpretation
Two key characteristics of this method need to be borne in 
mind when interpreting results. First, there is no information 
about specific dates or ages in the basic data. The only timing 
information in the number of children ever borne by a 
woman is that those births occurred at some point between 
when she had her first birth and her age at the time of the 
survey. Even less information is available from the number 
of those children that have died about ages at death, since 
possible age ranges depend on time distributions of births. 
It is thus impossible to draw conclusions about short-term 
fluctuations in child mortality from a SBH. Reports of two 
women of the same age (duration of marriage, time since 
first birth) reporting the same numbers of children ever 
born and died can reflect experiences of different mortality 
conditions. The best that a summary birth history can 
offer is a broad indication of an average past trend. Even 
this average trend needs to be interpreted with care for the 
recent past because of the selection biases affecting reports of 
women aged 15–19 and, though to a lesser extent, 20–24.

The second characteristic is that information is provided 
only for surviving women who still live in surveyed house-
holds, with an associated risk of respondent selection bias. 
The mortality experience of children born in a community 
whose mothers no longer live in the community will not 
be included in the measures. If such children have higher 
mortality than those born to mothers who do still live in 
the community, mortality will be under-estimated. The 
most severe form of this bias is likely to result from sub-
stantial levels of HIV prevalence in the community, since 
such prevalence in the absence of widespread antiretroviral 
therapy will result in a strong positive correlation between 
survival of child and survival of mother (described in the 
section on the effects of HIV on methods for child mortality 
estimation in Chapter 15). However, some positive correla-
tion between mother and child survival is almost certain in 
any population.

There are also other possible sources of respondent 
selection bias. For example, high in-migration rates will 
result in women reporting on the survival of children born 
and raised elsewhere, while high out-migration will remove 
responses about children who were born and raised in the 

community. Though it is impossible to know a priori the 
direction or magnitude of such biases, the analyst needs 
to keep in mind their potential effect. Non-response itself 
may actually be a smaller problem for the summary birth 
history than the full birth history, since information is often 
collected from third parties, not necessarily from the woman 
herself. Thus a summary birth history for a woman absent 
from the community on an extended trip might be collected 
when a full birth history for the same woman would not be 
since she could not be interviewed in person.

Detailed description of method
The idea that proportions of children dead among children 
ever born were indicators of child mortality has a long history. 
Questions on children ever born and children surviving 
were included in the 1900 Census of the United States 
(Preston and Haines 1991), the 1911 Census of Britain, and 
the 1940 Census of Brazil, among others. However, the first 
methodology for translating such proportions into standard 
life table indicators was proposed by Brass and Coale (1968).

To illustrate the basic idea, take a simple if implausible 
example of a population in which all women have exactly one 
child, born at exact age 25, that all the women survive from 
age 25 to age 30, and that there is no migration. In a sur-
vey, the proportion dead among children borne by women of 
exact age 30 will precisely measure the cohort probability of 
dying between birth and exact age 5, 5q0. In another popula-
tion, all women also have exactly one child, but at age 27; in 
this population, the proportion dead will precisely measure 
the cohort probability of dying by age 3, 3q0.

These two examples illustrate a number of important 
points. First, age of the women is a proxy for the exposure 
to risk of their children. Other things being equal, the older 
the mother, the longer on average her children have been 
exposed to the risk of dying. Second, the interpretation of a 
proportion dead of children ever born in terms of a standard 
life table measure depends on the age of childbearing. Third, 
equivalence of a proportion dead to a life table measure 
requires that there be no selection effects by mortality or 
out-migration, nor contamination effects by in-migration. 
Fourth, the measures obtained are for cohorts (or averages 
across cohorts) rather than for time periods.

Of course in real populations children are born at a range 
of ages of mother and are exposed to age-specific mortality 
risks that may change over time. Estimation methods use 
model age patterns of fertility and child mortality to create 
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model proportions dead of children ever born that can then 
be related to underlying life table parameters. A common 
feature of data on survival of children classified by age group 
of mother is that proportions dead for women aged 15–19 
and 20–24 are higher than for subsequent age groups, 
despite the fact that they reflect shorter average exposure 
times of children. The problem arises because young women 
who have children are generally of below average socio-
economic status, and their children are disproportionately 
first births, both of which are known risk factors for high 
child mortality. The experience of the children of such young 
mothers is therefore not representative of all children born 
in the population. Partly to address this bias, methods have 
been developed classifying women by duration of marriage 
(Sullivan 1972) and time since first birth (Hill and Figueroa 
2001). It is also argued that these methods are less affected 
by fertility change.

The method was originally developed by Brass without 
explicit consideration of the effects on the estimates of 
mortality change, though he notes that under conditions 
of change “the estimates of q(2) and q(3) would be 
representative of the average mortality for a short period (less 
than a decade) before the census or survey” (Brass and Coale, 
1968: 116). It is clear today that child mortality has been 
declining globally, and very rapidly in some populations. 
Following pioneering work by Feeney (1976, 1980), 
methods were developed to estimate a ‘time reference’ for 
the estimate derived from each age/duration group (Coale 
and Trussell (1977); Palloni and Heligman (1985); Hill and 
Figueroa (2001)). The proportion dead of CEB for a group 
of women represents an average of mortality risks across all 
the birth cohorts of their children. The older the women, 
or the longer their exposure, the further back in time the 
cohorts stretch, and the further back the reference time for 
a child mortality estimate based on the proportion dead. 
Since child mortality risks are highly concentrated at young 
ages, the reference date is not in practice very different from 
the average number of years ago that the births occurred 
if mortality trends have been fairly stable over time. The 
exact calendar year reference dates for the child mortality 
estimates thus have to be treated as central points in time 
with a distribution of deaths around them. As a result, the 
child mortality estimates derived from SBHs and variants 
of the Brass indirect methods cannot be used to identify 
mortality changes or crises located at a particular point in 
time. The method provides a good description of general 

trends in child mortality but smoothed in comparison 
with the true year-to-year fluctuations seen in almost every 
population. Other methods of measurement (such as FBH) 
are thus needed to estimate the temporal impact of, for 
example, health interventions on child survival.

Mathematical exposition (Manual X and 
UN Model Life Table methods)
The proportion dead of children ever borne by women of 
exact age x, PD(x), is a birth-weighted average of cohort 
probabilities of dying,
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of dying by age (x – y) for the cohort born (x – y) years earlier, 
and  is the earliest age of childbearing. The expression is 
exactly the same for duration of marriage and time since 
first birth, except that  becomes 0. Proportions dead for 
five-year age or duration groups can then be estimated by 
averaging point PD estimates across the group, weighting 
for assumed population distributions Nx at each x. It is 
typically assumed that the underlying population can be 
regarded as stable, with a growth rate appropriate for the 
demographic parameters underlying the PD(x), and that 
the underlying life table at adult ages is that used in the 
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Model schedules of f, q and N are used to model the 5PDx 
values, which are then related to appropriate q values by 
regression analysis using parity ratios as the independent 
variables (see estimating equations above).

Extensions of the method
Variants by duration of marriage or time since first birth
As described above, though not illustrated in detail, variants 
of the original method have been developed, classifying 
women by duration of marriage (Sullivan 1972) or time 
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since first birth (Hill and Figueroa 2001). The methods were 
developed to address two potential sources of error in the 
age-based method: effects of changing fertility (primarily 
through distorting the parity ratios) and the above-average 
mortality risks of children born to young mothers.

While these variants are illustrated below, the two refine-
ments suffer from limitations of their own. First, many pop-
ulation censuses do not routinely collect the information 
needed to tabulate women and their children by duration 
of marriage or time since first birth. Second, with regard 
to the duration of marriage approach, in many developing 
countries marriage is not a prerequisite for commencement 
of childbearing. Further, the mortality of children of unmar-
ried mothers may well be higher than that of mothers who 
are married. Thus distortions may also arise in the results 
of these variants. Where such data are collected, as in many 
Arab countries with low proportions of births outside mar-
riage, they can provide important insights into the relative 
performance of the different approaches.

Some surveys, for instance the MICS (Multiple Indicator 

Cluster Surveys, conducted under the auspices of UNICEF) 
carried out before about 2010, have collected summary birth 
histories and the necessary information on date of marriage 
and first birth. The question thus arises as to which variant 
of the methodology should be preferred.

To explore this question, we have used a full birth history 
survey, the 1999–2000 Bangladesh Demographic and 
Health Survey. The data have been tabulated in all three 
formats, and analysed using the Princeton ‘South’ family 
of model life tables. Figure 16.3 shows the estimates of 
5q0 derived from each approach. (It may be noted that this 
particular data set does not show a strong over-estimation 
of mortality based on the most recent (15–19) age group.)

If one ignores in each series the most recent point (15–19 
for age, 0–4 for both duration of marriage and time since 
first birth) the general trends of the estimates are very similar. 
The marital duration and time since first birth methods 
show similar levels, but from age group 25–29 onwards, 
the age estimates are always highest, averaging 20 per 
1,000 higher (155 per 1,000) than either of the other two 

Figure 16.3  Estimates of under-five mortality derived from 
proportions dead of children ever born classified by age group, 
marital duration group and time since first birth group of mother, 
Bangladesh, 1999–2000 DHS
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Age method

Parity ratio Time of survey Cohort aged 
25–29

Cohort aged 
30–34

Cohort aged 
35–39

Cohort aged 
40–44

Cohort aged 
45–49

P(1)/P(2) 0.269 0.342 0.311 0.327 0.361 0.336
P(2)/P(3) 0.544 0.660 0.639 0.603 0.632 0.619

Duration of marriage method
Parity ratio Time of survey Cohort 10–14 Cohort 15–19 Cohort 20–24 Cohort 25–29
P(1)/P(2) 0.353 0.352 0.288 0.274 0.287
P(2)/P(3) 0.635 0.682 0.650 0.598 0.603

Time since first birth method
Parity ratio Time of survey Cohort 10–14 Cohort 15–19 Cohort 20–24
P(1)/P(2) 0.553 0.544 0.495 0.505
P(2)/P(3) 0.709 0.775 0.753 0.723

Table 16.12  Parity ratios P(1)/P(2) and P(2)/P(3) calculated at 
the time of survey versus for true cohorts, Bangladesh, 1999–2000 
DHS

Figure 16.4  Indirect estimates of under-five mortality using 
parity ratios observed at the survey versus ratios for true cohorts, 
Bangladesh, 1999–2000 DHS
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methods. Straight averages of all the duration of marriage 
and time since first birth estimates for all points except the 
most recent give almost the same result, 133 for marriage 
duration and 136 from time since first birth, although the 
estimates span slightly different periods.

There are several points of interest in this application. 
First, the marriage duration and time since first birth 
methods were developed in part to try to circumvent the 
problem of selection bias in the age-based points for women 
aged 15–19 and 20–24. In this application, however, these 
two methods show jumps for the most recent point as large 
as or larger than that for the age-based estimates. This could 
be the case if the dominant selection bias is for first births, 
all (time since first birth) or almost all (marriage duration) 
of which will be concentrated in the first category, whereas 
they will be more spread out across age groups.

A second issue is the use of parity ratios as observed at the 
time of the survey to reflect the time distribution of births 
in the past. As noted above, if fertility is declining (even 
if the relative age pattern of fertility is not changing), the 
parities for the younger women will be lower and those for 
the older women higher, reducing the parity ratios below the 
values for any true cohort. This will give the appearance of 
more recent childbearing (and thus lower average duration 
of child exposure to the risk of dying) than is really the case, 
and thus lead to over-estimates of child mortality.

Bangladesh experienced a substantial fertility decline 
from the mid-1980s to the time of the 1999–2000 DHS, so 
it is interesting to explore the size of this possible bias. Since 
the data come from a full birth history, we can calculate 
cohort parities at points 5, 10, 15 etc. years in the past 
by subtracting recent births from children ever born, and 
then calculate parity ratios for true cohorts. We can only 
use the standard methodology (using ratios P(1)/P(2) and 
P(2)/P(3)) for cohorts that have reached the third age or 

duration group, thus age groups 25–29 and up or time since 
first birth/marriage duration categories of 10–14 and up.

The first panel of Table 16.12 compares parity ratios at the 
time of survey and cohort parity ratios. The expected pattern 
is quite clear for the age method, with the time of survey 
ratios being clearly below any of the cohort ratios, which 
are themselves rather stable across cohorts. The picture is 
less clear for the marital duration and time since first birth 
methods however: the P(2)/P(3) ratios are generally larger 
than the time of survey ratios, whereas the P(1)/P(2) ratios 
are uniformly lower.

To get a sense of the magnitude of this effect on the 
estimates, we can use cohort parity ratios for each proportion 
dead of children ever born (for age groups 25–29 and over, 
and duration groups 10–14 and over). The three panels of 
Figure 16.4 show the original and cohort-based estimates 
by reference date, for age groups, marital duration groups 
and time since first birth groups respectively. The use of 
cohort ratios reduces the estimates based on age groups 
25–29 and 30–34, but has little effect on the estimates from 
the other two methods. One possible explanation would 
be that the fertility decline in Bangladesh over this period 
was primarily an increase in age at childbearing, with small 
effects by duration of marriage or time since first birth. The 
net effect of using cohort ratios is to improve consistency 
across methods, but at the rather high cost of losing the 
most recent estimates.

The bottom line is that the age-based method will tend to 
over-estimate child mortality if fertility is changing rapidly, 
whereas the effects on the other two approaches appear to 
be small. If the data are available, it is advisable to use one 
of the other two variants rather than the age-based method, 
but it may not be worth including an extra question in a 
census just to get this information.
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Chapter 17  Direct estimation of child mortality 
from birth histories

Kenneth Hill

In this chapter, we focus on the use of data from full birth his-
tories (FBH) or truncated birth histories (TBH) to estimate 
child mortality. The key characteristics of such data are that 
for each birth included, the date of birth, survival status and 
(if dead) age at death are recorded. Analysis of the data typi-
cally uses life table approaches. Indirect estimation of child 
mortality, and estimation of child mortality from survival of 
a recent birth, are covered in Chapters 16 and 18 respectively.

Data requirements and assumptions
Data required
For each woman of reproductive age (in some settings for 
cultural reasons information collection is limited to ever-
married women):
•	 the name of each child born alive;
•	 the month and year of birth of each child;
•	 the child’s sex (optional);
•	 whether the child is still alive; and
•	 if the child has died, the age at death (age at death in 

a DHS programme is collected in days for deaths that 
occur in the first 28 days of life, in months for deaths at 
ages one to 23 months, and in years thereafter).

Important assumptions
•	 Children still alive and children dead are reported with 

similar accuracy.
•	 Dates of birth and ages at death are reported with 

reasonable accuracy.
•	 No correlation exists between mortality risks of children 

and survival rates of mothers (whether as a result of 
mortality or migration) in the population.

Caveats and warnings
The dangers associated with working with directly-collected 
data arise from two sources. The first is the risk of survivor 

bias as only living mothers are asked the detailed birth 
histories used to generate the data. In situations where it is 
anticipated that deceased mothers might have had different 
fertility, or different mortality among their children, from 
surviving mothers, there is a risk of appreciable bias in the 
estimates derived. Aspects of survivor bias are discussed in 
Chapter 15 in the section on the effects of HIV on child 
mortality estimation.

The second danger is that if an upper age limit is applied 
to the women from whom detailed birth history data are 
collected, truncation bias becomes more significant the 
further back in time one looks. If an age limit of 49 is applied 
to the collection of the data, this means that for the period 
10 years before the survey, information is only available for 
women who were then aged up to age 39. Hence, child 
mortality estimated from such data for earlier time periods 
will be increasingly based on the experience of younger 
women. In turn, this might lead to measurement bias, as 
this truncation results in an over-representation of first 
births among younger women, meaning that child mortality 
thus estimated is likely to be increasingly overestimated for 
earlier time periods. There is some evidence that such over-
estimation is counter-balanced by underestimation arising 
from recall bias (and selective omission of children who have 
died in periods longer in the past).

Data evaluation and data analysis
Regardless of how data have been collected, or of one’s 
knowledge of how thoroughly interviewers were trained and 
supervised, careful review of data quality is an essential first 
step of any analysis. All data sets contain errors. These can result 
from many sources, such as an interviewer cutting corners 
or an interviewee simply not knowing the correct answer 
to a question. Each section below starts with a description 
of data evaluation techniques before progressing to analysis 



CHAPTER 17 DIRECT ESTIMATION OF CHILD MORTALITY FROM BIRTH HISTORIES  |  167

methods. These evaluation techniques examine both internal 
consistency within a data set, and external consistency with 
other data sets for the same population. It should be noted in 
passing that the presence of data errors does not necessarily 
mean that a data set should not be analysed; the important 
thing is to know how large the errors are, and take them into 
account when interpreting the findings.

The full birth history: data quality assessment
The first step in a thorough data quality assessment is to 
examine the extent of missing values. In an FBH, values 
may be missing for a number of reasons. For example, 
whole households included in the original sampling frame 
may be missing. Further, eligible women within interviewed 
households may have no data because the woman could not 
be interviewed. In addition, individual items within an FBH 
may be missing because the interviewed woman did not 
know a child’s birth date, or whether a child was still alive, 
or (if the child had died) the age at death. The proportions 
of events potentially affected by these errors need to be 
examined. Missing items may be imputed during data 
cleaning, but imputed values should be flagged. The absence 
of missing values should not be taken as strong evidence 
of data quality, and may in fact be taken as a warning flag: 
in some surveys, interviewers and supervisors are trained to 
avoid missing values, and in such cases data may be more or 
less made up by the interviewer.

The second step in the data quality assessment is to 
examine the aggregate results for implausible irregularities. 
The irregularities most often identified are in sex ratios at 
birth, in annual distributions of live births, and in ages at 
death. In the absence of intervention, sex ratios in human 
populations are generally in the range of 100 to 106 males per 
100 females. Sex ratios for birth cohorts outside this range 
are probably indicative of error. Sex ratios that increase for 
cohorts born a longer time before the survey are particularly 
clear indicators of an error, in this case under-reporting of 
female births that occurred in the distant past.

In the absence of major positive or negative events, births 
will normally be fairly smoothly distributed by calendar 
year in that while seasonality is common, this should not 
affect the annual numbers. Possible errors can be identified

by calculating ‘birth ratios’, defined as 
1 1

2 t

t t

B
B B− ++ , where Bt

is the number of births reported in a given year, t. An error 
commonly found in DHS data sets has come to be called 

“birth transference”. DHS surveys collect a substantial 
amount of additional data about children born since 
some cut-off date, usually 1 January of the calendar year 
five years before the survey. It is often the case that births 
that occurred in that year are reported as occurring in 
the previous year, presumably to reduce work load. This 
results in a deficit of births in the year following the cut-
off, and a surplus in the year immediately before the cut-
off. Birth ratios will highlight this error, since the birth 
ratio for the year starting with the cut-off will be low, and 
that for the preceding year will be high. Very often, this 
birth transference is greater for children who have died 
than for those who are still alive, so it is good practice to 
calculate separate ratios for surviving and dead children.

Irregularities in reporting ages at death can similarly be 
identified by calculating ratios of deaths at some age x to the 
average number of deaths at ages (x – 1) and (x + 1). In DHS 
data sets, there is generally an excess of deaths at age 7 days, 
to a lesser extent at age 14 days, and at age 12 months.

DHS conveniently publishes these data quality indicators 
at aggregate (national) level in survey reports (often in 
Appendix C). Analysts wishing to carry out sub-national 
analyses will need to calculate indicators themselves.

The data quality indicators described above measure 
internal plausibility. However, data can be internally 
plausible and still wrong. Data should also be evaluated by 
comparison with other surveys for the same population. 
Cohort comparisons are particularly powerful, for example 
comparing the average number of children ever borne by 
women aged 30–34 reported in one survey to the average 
number borne by women aged 35–39 reported in another 
survey five years later. Similar comparisons can be made 
of average numbers of children dead. Sequences of births 
by single calendar year for overlapping periods can also be 
compared, though one has to bear in mind that births in the 
past are increasingly truncated in birth histories limited to 
women aged 15–49 at the time of the survey.

The full birth history: Calculation of 
child mortality indicators for birth 
cohorts
Widely used indicators of child mortality are expressed 
as probabilities. Thus the Infant Mortality Rate (IMR) is 
(approximately – as conventionally defined, the IMR is 
infant deaths in a year divided by births in the year, a value 
which closely approximates 1q0) the probability of dying by 



168  |  CHILD MORTALITY SURVEY DATA METHODS

exact age 1, 1q0, and the Under-five Mortality Rate (U5MR) 
is the probability of dying by age 5, 5q0. Strictly speaking, 
probabilities are real cohort measures, even though most life 
tables calculate synthetic cohort measures for specified time 
periods from age-period mortality rates. Calculating cohort 
probabilities from FBH data is very straightforward. For 
example, the cohort IMR for births in the 12 to 23 months 
before the survey is simply the number of such births that 
died before the age of 1 divided by the number of births. 
Similarly, the cohort U5MR for births 5 to 9 years before 
the survey is the number of such births reported to have 
died before exact age 5 divided by the number of such 
births. Figure 17.1 shows the Lexis diagram representation 
of the age-cohort probability of dying by age 1 for the cohort 
born in July 2001 (in grey), and the age-period mortality of 
5-month olds in calendar year 2002 (the black rectangle, 
relating to the example used later in this section).

Table 17.1 shows the relevant numbers and calculations for 
age-cohort probability of dying by age 1 for the cohort born 
in the 12–23 months before the survey and for the probability 
of dying by age 5 for the cohort born in the 5 to 9 years before 
the survey, using data from the 2004 Malawi DHS.

Table 17.1  Calculation of IMR and U5MR for cohorts: Malawi, 
2004 DHS

Period of births
12–23 months 

before the survey
60–119 months 
before the survey

Births 2,229 7,178
Of which, deaths before 
12 months 143

Of which, deaths before 
5 years 1,568

Child mortality indicator 1q0 5q0

Cohort estimate per  
1 000 births 64.2 218.4

Note: weighted data; events in month of interview excluded

Note that there is no period interpretation of such cohort 
values; in the U5MR example, the cohort probability re-
flects mortality risks in every one of the 10 years before the 
survey. Also note that the probability of dying by age x can 
only be calculated for cohorts that were born at least x years 
before the survey. Both these considerations limit the value 
of the cohort measures, since for most purposes analysts and 
policy-makers are more interested in time period measures.

Figure 17.1  Lexis diagram representation of age-cohort mortality 
by age 1 (in grey) and age-period mortality for 5-month olds (in 
black)
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The full birth history: Calculation of 
child mortality indicators for time 
periods
Period-specific measures are estimated using the synthetic 
cohort concept. Mortality rates for narrow age ranges and 
defined calendar periods are calculated on the basis of events 
and exposure in these rectangles in the Lexis Diagram. The 
rates are then converted into implied probabilities, using 
standard demographic relations (see, for example, Preston, 
Heuveline and Guillot (2001)) and making generally 
mild assumptions about the distribution of deaths in each 
rectangle. Finally, the probabilities of dying are applied 
successively to an initial hypothetical cohort of births to 
compute a survivorship curve l(x) for each age x, from which 
it is easy to derive probabilities of dying.

FBH data lend themselves to these life table calculations 
quite easily. If data are collected following the standard 
DHS practice – as month and year of birth and age at death 
in days, months or years, depending on the age – deaths can 
be located with little ambiguity in age-period rectangles of 
the Lexis Diagram. (There will be some residual ambiguity, 
because of the imprecision of the information on date 
of birth and age at death, but the impact will depend on 
the sizes of the rectangles.) Here we describe an approach 
based on the calculation of age-specific mortality rates for 
a single calendar year (age-period rates) for mortality up to 
age 5. Extension to other time periods is straightforward. It 
is assumed that data are in standard DHS format, that is, 
birth dates are recorded in century month (CMC) format, 
and ages at death in days, months or years. Unit record data 
must be available. The unit of age used is the month. The 
basic calculations are therefore of age-specific mortality rates 
by month of age and calendar year. These rates are converted 
into corresponding probabilities of dying in each month. 
These probabilities are then converted into probabilities of 
surviving, and are chained together over whatever age range 
is required (typically up to age 5). The key to the calculation 
is to assign deaths and exposure time to one-month age 
segments across a calendar year.

Data manipulation
Four variables in a DHS birth data set are required:
1)  b3, date of birth in CMC;
2)  b5, whether child is still alive;
3)  �b6, age at death, where the first digit represents the unit 

(1 indicating days; 2, months; and 3, years) and the 

second and third digits represent the value given that 
unit; and

4)  v005, sample weight, expressed in millions.
Note that variable b7, age at death (months-imputed) is 

not used. This variable does not lend itself to the mortality 
rate approach described here because in cases in which age 
at death is recorded in years, the ‘imputed’ month is actually 
the lower bound of the age interval; that it, if age at death 
is recorded as ‘3 years’, the imputed age at death in months 
is recorded as 36 months. Using this variable will result in 
systematic mis-location of deaths in time.

Application of method
Step 1: Manipulation of age at death and calculation of 
estimated birth date and age at death
We want to locate deaths in a calendar month of occurrence. 
Since we do not have a precise date of birth (only CMC), 
and in general we do not have a precise age at death (except 
for neonatal deaths), we need to impute both a date of birth 
and an age at death. We can perform this imputation using 
random numbers.

It is evidently undesirable – for reasons of lack of repro-
ducibility, amongst others – to make use of a true random 
number generator to produce the random numbers referred 
to above. In addition, ‘true’ randomization risks creating a 
spurious impression of precision. As an alternative, we pro-
pose creating pseudo-random numbers from variables that 
are routinely available in DHS data and that can be applied 
in the algorithm above. It is an easy matter to create new 
variables apportioning the records into deciles based on the 
reported day of interview (v016 in a DHS) and household 
number (v002). (These variables have been chosen on the 
grounds that there is unlikely to be any correlation between 
them and child mortality). These new variables will take 
the values in the range (0, 1 … 9). Dividing each by 10, 
and adding 0.05 results in two new uniformly distributed 
variables, random1 and random2, taking values in the range 
(0.05, 0.15, … , 0.95).

It is then straightforward to impute a date of birth (dob, 
in months) if births in the month of interview are excluded 
from analysis by adding random1 to b3 (the CMC of the 
child’s date of birth). The method for imputing an age at 
death (in units of months) depends on the ‘unit’. For ‘unit’ 
= 1 (i.e. age at death measured in days), age at death (aad) 
can be estimated as (‘value’+ random2 )/31 (for age at death 
in days this is not necessary, but is described for symmetry); 
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for ‘unit’ = 2, age at death is ‘value’ + random2; and for ‘unit’ 
= 3, age at death is (‘value’ + random2 )*12.

Step 2: Location of deaths in target year
For each month-of-age mortality rate, the events consist 
of deaths at that age in the period of investigation. Step 1 
has imputed age at death in months. The date of death dod 
is given by the sum of imputed month of birth dob and 
imputed age of death aad. If imputed age at death is within 
the age range and the imputed date of death falls within the 
period of investigation, we have a relevant event.

Step 3: Derivation of exposure to risk
The calculation of exposure to risk is intricate, but relatively 
straightforward. The age range of the investigation refers to 
those ages (defined in appropriate units) for which we want 
to measure mortality. We define the lower bound of the age 
range to be xl , and the upper bound to be xh.

The period of investigation is the measure of the time 
period for which we seek to estimate mortality, and is 
defined as the period (t2 – t1), where t2 is the end date of the 

period of investigation, and t1 the start date, measured in the 
same units as that defined by the age range.

Graphically, then, we seek to measure mortality in the age 
and period defined by the heavy lines in Figure 17.2.

An individual’s life course by age and period is 
represented by the diagonal lines (as with a conventional 
Lexis diagram). Five possible scenarios (labelled (a) through 
(e)) are portrayed. Any individual’s position in the space can 
be defined by their age at t1, xt1. It follows, further, that any 
person aged x at t1, if she or he does not die before t2, would 
be aged xt2 = xt1 +(t2 – t1) at time t2. We define the age at death 
of those deaths that occur in the specified age range in the 
period of investigation to be xd . The relative contribution of 
each scenario to the exposure to risk is determined by the 
algorithms in Table 17.2.

Applying these rules to define the exposure in the age 
range in the period of investigation for each individual and 
aggregating gives the total exposure to risk, which is the 
denominator for the mortality rate. Summing the deaths 
occurring in the age range in the period of investigation 
provides the numerator.

Figure 17.2  Lexis diagram showing calculation of exposure to risk
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Step 4: Weighting and cumulating events and exposure 
time
The sample weight variable in a standard DHS recode file 
is v005. This variable has a mean of 1,000,000. To avoid 
the appearance of huge sample sizes (and much too narrow 
confidence intervals) it is recommended first to recalculate 
the weight as (v005/1,000,000). Let us call this new variable 
wgt. Mortality rates can be calculated by considering the 
contributions of each of the N children in the survey to 
the number of events and the total exposure time. The age-
specific mortality rate age x to x + 1 (in months) in a period, 
j, is
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where D(i,x,j ) is a binary variable indicating the death of 
child i at age x in year j (1 if the death occurs, 0 otherwise), 
E(i,x,j ) is the exposure time of child i at age x in year j, and 
wgt(i ) is the sample weight (mean 1.0) of child i.

Step 5: Calculating probabilities of dying from age-
specific mortality rates
The rates calculated in Step 4 are per month of age exposure. 
It is therefore necessary to adapt the standard formula for 
deriving a period probability of dying from a rate to take 
this into account. Given that we have made a number of 
simplifying assumptions and are working with narrow 

age ranges, it is adequate to assume that deaths are evenly 
distributed across each single month age range. We can then 
calculate q(x) as
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Survivorship probabilities from birth to any age can then be 
obtained by chaining together survivorship by month (i.e. 
(1–q(x,j ))) terms. Thus for instance
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Worked example
As noted above, direct estimation of child mortality from a 
birth history requires working with unit record data rather 
than tabulations. As a worked example, we will therefore 
illustrate with a limited number of records adapted from a 
DHS, specifically the mortality of 5-month olds in 2002 
from the 2004 Malawi DHS. Only children born between 
1 July 2001 and 31 July 2002 are at risk of dying at age 
5 months in calendar year 2002 (children born before 1 July 
2001 would be aged 6 months or more by the beginning of 
calendar year 2002, and those born after 31 July 2002 would 
not have reached age 5 months in the year). Only relevant 
records are shown, that is, those for births between month 
1218 and 1230 in CMC terms (July 2001 to July 2002). In 
practice, we would also exclude any births that died before 

Scenario Description Defining rule(s) Exposure for survivors in 
the period of investigation

Exposure for decedents 
(where death occurs in the 

period of investigation)

(a) Aged older than xh at t1 xt1 > xh 0 0

(b) Aged between xl and xh at t1. Attains 
xh in the period of investigation

xl < xt1 < xh
xt1 + (t2 – t1) > xh

xh – xt1 xd – xt1

(c) Attains xl and xh in the period of 
investigation 

xl > xt1
xt1 + (t2 – t1) > xh

xh – xl xd – xl

(d) 
Attains xl in the period of 
investigation but period ends before 
attainment of xh

xl > xt1
xl < xt1 + (t2 – t1) < xh

xt1 + (t2 – t1) > xl xd – xl

(e) Does not attain xl in the period of 
investigation xt1 + (t2 – t1) < xl 0 0

Table 17.2  Algorithm for determining exposure to risk
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five months of age, but we will include them in the example 
to show that we exclude them from calculations.

Table 17.3 shows the key variables for 50 records from 
the 2004 Malawi DHS; note that these are birth records, 
not woman records.

Step 1: Manipulation of age at death and calculation of 
estimated birth date and age at death
Random numbers random1 and random2 are derived as 
described above, resulting in revised values of dates of birth 
and age at death, dob' and aad'. The date of death dod' is 
estimated as the sum of the imputed month of birth dob' 
and imputed month of death aad'. Column 10 of Table 17.4 
shows dod'.

Step 2: Location of deaths in target year
A relevant death in terms of period is one with a CMC  
between 1224 to 1235. The deaths in records 3, 6, 31 and 
41 of Table 17.4 are therefore not relevant because they 
are deemed not to have occurred in 2002. The deaths in 
records 11 and 45 are not relevant because the child died at 
2 months (11) or 1 month (45) of age, and therefore was not 
exposed to the risk of dying at age 5 months.

Step 3: Derivation of exposure to risk
Table 17.5 presents the calculation of the exposure to risk 
for the 50 cases described above. The rule used to determine 
the exposure is presented in the column headed ‘Scenario’. 
The resulting exposure is presented in the following two 
columns for those who survive the period of investigation 
and those that die during the period.

Table 17.3  Basic birth history data for direct estimation of child 
mortality

Record b3 b5 b6 v005
1 1223 yes . 469061
2 1223 yes . 469061
3 1222 no 107 469061
4 1224 yes . 469061
5 1223 yes . 469061
6 1218 no 205 469061
7 1230 yes . 2171218
8 1225 yes . 704240
9 1230 yes . 704240
10 1224 yes . 704240
11 1224 no 202 704240
12 1221 yes . 1106470
13 1225 yes . 1106470
14 1224 no 205 1106470
15 1221 yes . 1106470
16 1221 yes . 1106470
17 1218 no 205 1106470
18 1229 yes . 3900164
19 1230 yes . 1247934
20 1224 yes . 1247934
21 1226 no 201 1247934
22 1221 yes . 537170
23 1218 yes . 537170
24 1227 yes . 537170
25 1226 yes . 537170

Record b3 b5 b6 v005
26 1224 yes . 1095220
27 1230 no 205 1594776
28 1225 yes . 1594776
29 1221 yes . 1594776
30 1225 yes . 1594776
31 1229 no 208 1538303
32 1223 yes . 1538303
33 1220 yes . 1538303
34 1226 yes . 1538303
35 1225 yes . 1538303
36 1220 yes . 1538303
37 1224 no 205 1538303
38 1228 yes . 1538303
39 1219 yes . 3789587
40 1228 yes . 2011510
41 1223 no 302 2011510
42 1220 yes . 2011510
43 1220 yes . 2011510
44 1221 yes . 686252
45 1228 no 201 686252
46 1229 yes . 2451926
47 1219 yes . 2451926
48 1219 yes . 1043244
49 1224 yes . 1043244
50 1230 no 205 1043244
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Record b3 b5 b6 v005 random1 random2 dob' aad' dod'
1 1223 yes . 469061 0.55 1223.55
2 1223 yes . 469061 0.85 1223.85
3 1222 no 107 469061 0.15 0.05 1222.15 0.28 1222.43
4 1224 yes . 469061 0.25 1224.25
5 1223 yes . 469061 0.25 1223.25
6 1218 no 205 469061 0.05 0.45 1218.05 5.45 1223.5
7 1230 yes . 2171218 0.55 1230.55
8 1225 yes . 704240 0.55 1225.55
9 1230 yes . 704240 0.25 1230.25

10 1224 yes . 704240 0.35 1224.35
11 1224 no 202 704240 0.55 0.75 1224.55 2.75 1227.3
12 1221 yes . 1106470 0.45 1221.45
13 1225 yes . 1106470 0.75 1225.75
14 1224 no 205 1106470 0.85 0.25 1224.85 5.25 1230.1
15 1221 yes . 1106470 0.35 1221.35
16 1221 yes . 1106470 0.45 1221.45
17 1218 no 205 1106470 0.95 0.65 1218.95 5.65 1224.6
18 1229 yes . 3900164 0.45 1229.45
19 1230 yes . 1247934 0.65 1230.65
20 1224 yes . 1247934 0.65 1224.65
21 1226 no 201 1247934 0.75 0.85 1226.75 1.85 1228.6
22 1221 yes . 537170 0.65 1221.65
23 1218 yes . 537170 0.85 1218.85
24 1227 yes . 537170 0.95 1227.95
25 1226 yes . 537170 0.85 1226.85
26 1224 yes . 1095220 0.95 1224.95
27 1230 no 205 1594776 0.15 0.65 1230.15 5.65 1235.8
28 1225 yes . 1594776 0.15 1225.15
29 1221 yes . 1594776 0.85 1221.85
30 1225 yes . 1594776 0.05 1225.05
31 1229 no 208 1538303 0.65 0.85 1229.65 8.85 1238.5
32 1223 yes . 1538303 0.45 1223.45
33 1220 yes . 1538303 0.15 1220.15
34 1226 yes . 1538303 0.55 1226.55
35 1225 yes . 1538303 0.95 1225.95
36 1220 yes . 1538303 0.45 1220.45
37 1224 no 205 1538303 0.25 0.85 1224.25 5.85 1230.1
38 1228 yes . 1538303 0.35 1228.35
39 1219 yes . 3789587 0.35 1219.35
40 1228 yes . 2011510 0.15 1228.15
41 1223 no 302 2011510 0.65 0.55 1223.65 30.6 1254.25
42 1220 yes . 2011510 0.35 1220.35
43 1220 yes . 2011510 0.25 1220.25
44 1221 yes . 686252 0.95 1221.95
45 1228 no 201 686252 0.85 0.35 1228.85 1.35 1230.2
46 1229 yes . 2451926 0.25 1229.25
47 1219 yes . 2451926 0.05 1219.05
48 1219 yes . 1043244 0.85 1219.85
49 1224 yes . 1043244 0.95 1224.95
50 1230 no 205 1043244 0.35 0.35 1230.35 5.35 1235.7

Table 17.4  Derivation of imputed date of birth, age at death and  
date of death, Malawi, 2004 DHS (50 cases)
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For children who survive to age 6 months, those born in 
months 1219 to 1229 contribute a full month of exposure 
time to the age-period of interest (i.e. from exactly 5 to exactly 
6 months). Thus record 1 (born 1223.55) contributes a full 
month. A child born in month 1218 will contribute (dob– 
1218) months, so record 23 (born 1218.85) contributes 0.85 
of a month; and a child born in month 1230 will contribute 
(1231–dob) months, so record 7 contributes 1231–1230.55 
= 0.45 months. The children born in months 1219 to 1229 
who die at age 5 months will contribute (aad–5) months of 
exposure; thus the death in record 14 occurs at 5.25 months 
and contributes 0.25 months of exposure.

Step 4: Weighting and cumulating events and exposure time
The final step before calculating the death rate is to take 
account of the record sample weight in both the deaths and 
the exposure time, and then sum the weighted deaths and 
exposure. Columns 6 and 7 of Table 17.5 show the exposure 
to risk for survivors and relevant deaths. Columns 8 and 9 
then multiply columns 6 and 7 respectively by the sample 
weight v005/1,000,000. The age-specific mortality rate 
M(5,2002) is then calculated by dividing the sum of the 
weighted deaths by the sum of the weighted exposure time:
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Step 5: Calculating probabilities of dying from age-
specific mortality rates
The rates calculated in Step 4 are per month of exposure. 
It is therefore necessary to adapt the standard formula for 
deriving a period probability of dying from a rate. Given 
that we have made a number of simplifying assumptions 
and are working with narrow age ranges, it is adequate to 
assume that deaths are evenly distributed across each single 
month age range, even for the first month of life. We can 
then calculate q(x) as

( )
( )

( )

5,2002 0.1077
12 125,2002

0.10775,2002 11 2424
.008975 0.008935.

1 0.004488

M

q
M

= =
   ++      

= =
+

Once all the q(x,j ) have been calculated, they can be 
converted into their complements, probabilities of surviving, 
and chained together to produce survivorship probabilities 
and probabilities of dying from birth to any desired age.

To obtain rates and probabilities for periods longer than 
a single calendar year, the weighted sums obtained in Step 4 
are summed across years as required. Step 5 remains exactly 
the same.

Note that the procedure described here differs from that 
used by DHS. The DHS approach calculates probabilities 
directly for quasi-cohorts (Rutstein and Rojas 2003). Calcu-
lations are made for eight age groups: neonatal, 1–2 months, 
3–5 months, 6–11 months, and years from age 1 to age 4. 
For each age range, period deaths are derived from date of 
birth and age at death. The risk set is an approximation of 
the number of children who enter that age range during the 
period. This approximation is the sum of all children who 
enter the age range and leave the age range (or would do so 
if they survived) during the time period, plus half of those 
who enter the age range during the period but would leave 
it after the period, plus half of those who enter the age range 
before the period but would leave it during the period.

Whichever procedure is used, individual-level data from 
the FBH will be required. Although the calculations could 
be carried out from detailed tables, it would be very tedious 
to do so. Use of a suitable computer routine is strongly 
recommended.

Interpretation
The key characteristic of direct child mortality estimation, 
namely that information is provided by surviving women 
who still live in surveyed households, needs to be borne 
in mind when interpreting results as there is risk of 
respondent selection bias. In particular, the mortality 
experience of children born in a community whose mothers 
no longer live in the community will not be included in 
the measures. If such children have higher mortality than 
those born to mothers who do still live in the community, 
mortality will be under-estimated. The most severe form of 
this bias is likely to result from substantial levels of HIV 
prevalence in the community, since such prevalence in the 
absence of widespread antiretroviral therapy will result 
in a strong positive correlation between survival of child 
and survival of mother (see Chapter 15). However, some 
positive correlation between mother and child survival is 
almost certain in any population. Other reasons for bias
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Exposure to risk Weighted
Record dob' aad' dod' v005 Scenario Survivors Deaths Exposure Deaths

1 1223.55 469061 c 1 0.469
2 1223.85 469061 c 1 0.469
3 1222.15 0.25 1222.4 469061 N/A N/A N/A 0.000
4 1224.25 469061 c 1 0.469
5 1223.25 469061 c 1 0.469
6 1218.05 5.45 1223.5 469061 N/A N/A N/A 0.000
7 1230.55 2171218 d 0.45 0.977
8 1225.55 704240 c 1 0.704
9 1230.25 704240 d 0.75 0.528
10 1224.35 704240 c 1 0.704
11 1224.55 2.75 1227.3 704240 c 1 0.704
12 1221.45 1106470 c 1 1.106
13 1225.75 1106470 c 1 1.106
14 1224.85 5.25 1230.1 1106470 c 0.25 0.277 1.106
15 1221.35 1106470 c 1 1.106
16 1221.45 1106470 c 1 1.106
17 1218.95 5.65 1224.6 1106470 b 0.6 0.664 1.106
18 1229.45 3900164 c 1 3.900
19 1230.65 1247934 d 0.35 0.437
20 1224.65 1247934 c 1 1.248
21 1226.75 1.85 1228.6 1247934 c 1 1.248
22 1221.65 537170 c 1 0.537
23 1218.85 537170 b 0.85 0.457
24 1227.95 537170 c 1 0.537
25 1226.85 537170 c 1 0.537
26 1224.95 1095220 c 1 1.095
27 1230.15 5.65 1235.8 1594776 d 0.65 1.037 1.595
28 1225.15 1594776 c 1 1.595
29 1221.85 1594776 c 1 1.595
30 1225.05 1594776 c 1 1.595
31 1229.65 8.85 1238.5 1538303 c 1 1.538
32 1223.45 1538303 c 1 1.538
33 1220.15 1538303 c 1 1.538
34 1226.55 1538303 c 1 1.538
35 1225.95 1538303 c 1 1.538
36 1220.45 1538303 c 1 1.538
37 1224.25 5.85 1230.1 1538303 c 0.85 1.308 1.538
38 1228.35 1538303 c 1 1.538
39 1219.35 3789587 c 1 3.790
40 1228.15 2011510 c 1 2.012
41 1223.65 32.35 1256 2011510 c 1 2.012
42 1220.35 2011510 c 1 2.012
43 1220.25 2011510 c 1 2.012
44 1221.95 686252 c 1 0.686
45 1228.85 1.35 1230.2 686252 c 1 0.686
46 1229.25 2451926 c 1 2.452
47 1219.05 2451926 c 1 2.452
48 1219.85 1043244 c 1 1.043
49 1224.95 1043244 c 1 1.043
50 1230.35 5.35 1235.7 1043244 d 0.35 0.365 1.043

TOTAL 59.317 6.389

Table 17.5  Derivation of exposure to risk for estimation of child  
mortality, Malawi, 2004 DHS (50 cases)
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may exist. For example, high in-migration rates will result in 
women reporting on the survival of children born and raised 
elsewhere, while high out-migration will remove responses 
about children who were born and raised in the community. 
Although it is impossible to know a priori the direction or 
magnitude of such biases, the analyst needs to keep in mind 
their potential effect. Non-response may also be an issue if 
women absent from the community for an extended period 
cannot be interviewed in person, but may have experienced 
different risks to their children, or may not be present in 
part because their children have experienced different risks.

Extension to the method: 
Truncated birth histories
The truncated birth history:  
Data quality assessment
The truncated birth history (TBH) provides fewer oppor-
tunities for data quality checks than the full birth history 
(FBH) because the time series of events reported is by defi-
nition truncated. If the truncation is by time period, the 
events reported should be representative of the time period 
covered, whereas if the truncation is by number of events, 
the events reported may be representative only of all events 
in quite a short period prior to the survey, and this will com-
plicate any assessment of the sequence of events in time.

As with the full birth history, the first step should be to 
examine the data for missing values. The second step should 
involve the examination of sex ratios at birth and heaping 
on ages at death.

No direct assessment of birth transference will be possible, 
because no detailed information about dates of births is 

available prior to the truncation point. However, an indirect 
assessment is possible. A TBH should always involve the 
initial collection of a summary birth history. The births 
and child deaths for an age group of women defined as at 
the survey date can therefore be calculated both at the time 
of the survey (from the summary birth history) and (only 
approximately for the deaths) at the truncation point, by 
subtracting the births and child deaths reported in the TBH. 
The calculation for births is precise, but for child deaths is 
approximate because some of the child deaths reported in 
the summary birth history (SBH) will have occurred during 
the post-truncation period to children born before the 
truncation point; typically, however, the number of such 
extra deaths will be small given that child mortality risks 
drop rapidly with age of child. The data quality assessment 
is therefore the comparison of the proportion dead (by age 
group of mother at the time of the survey) of the children 
born after the cut-off date to that of the children born before 
the cut-off date.

There are two reasons why the former proportion will 
generally be smaller than the latter. First, the children will 
have been exposed to the risk of dying for a shorter period. 
Second, if child mortality is falling over time, they will have 
been exposed to lower age-specific risks as well. However, 
if children who have died are systematically omitted from 
the post-truncation period, or if they are reported in the 
summary birth history but not reported as having been born 
in the period, the ratio of the two will be inflated by data 
error. We can estimate a plausible error-free ratio if data are 
available from a full birth history for the same population 
at an earlier or later date. Table 17.6 shows data from 

Age group
RHS 1998 (FBH) RHS 2003 (TBH) RHS 2008 (TBH)

Proportion dead
Ratio

Proportion dead
Ratio

Proportion dead
Ratio

Before After Before After Before After
20–24 0.106 0.070 1.5 0.222 0.035 6.3 0.052 0.041 1.2
25–29 0.140 0.061 2.3 0.122 0.036 3.4 0.083 0.024 3.5
30–34 0.128 0.082 1.6 0.117 0.022 5.4 0.081 0.015 5.3
35–39 0.072 0.064 1.1 0.120 0.025 4.7 0.097 0.010 10.2
40–44 0.119 0.068 1.8 0.150 0.051 3.0 0.095 0.010 9.6
45–49 0.213 0.000 * 0.066 0.048 1.4 0.119 0.000 *

Table 17.6  Proportions of children dead by whether the birth 
occurred before or during the TBH date window, Mongolia, 1998, 
2003 and 2008 RHS
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Mongolia: three Reproductive Health Surveys, one in 1998 
that included a full birth history and two – one in 2003 
and one in 2008 – that collected only TBHs. The 1998 full 
birth history data are used to calculate proportions dead for 
children born before and after a comparably-defined cut-off 
date, and compared to the proportions calculated from the 
2003 and 2008 TBH data. As can be seen, the TBH ratios 
are several times larger than the full birth history ratios, 
providing compelling evidence of transference of dead 
children out of the post-truncation period. In the absence 
of a country-specific baseline, such as that provided here by 
the 1998 RHS survey, ratios of 3 or higher should be taken 
as evidence of probable omission of dead children from the 
recent reference period.

The truncated birth history: 
Calculation of child mortality indicators for cohorts
The calculation of cohort probabilities of dying from a TBH 
follows the same principle as that followed with a FBH: the 
probability of dying by age x is calculated as the number of 
dead children to the number of children ever born in some 
defined cohort born no less than x years before the survey. 
There is an important difference, however, as made clear in 

the Lexis Diagram in Figure 17.1, namely that the value of 
x is constrained by the truncation date. For example, if the 
truncation date is 5 years before the survey, no birth cohort 
will have been fully exposed to the full risk of dying by age 5, 
and the cohorts exposed fully to risks up to age 2 are limited 
to births 2, 3 and 4 years before the survey. Thus there are 
limits to the range of ages for which mortality indicators can 
be derived.

The truncated birth history:  
Calculation of child mortality indicators for time periods
The basic approach to calculating standard indicators from a 
TBH follows the same principles as that used for a full birth 
history: to calculate age-specific rates for a specified time 
period, convert them into estimates of probabilities of dying 
in successive age intervals, and apply the probabilities to a 
synthetic cohort of births to create the life table. The problem 
with analysing a TBH in this way is the same, however, as 
that faced in calculating cohort indicators, namely that cases 
and exposure time become progressively more restricted as 
age increases. Thus if the cut-off point is five years before the 
survey, the measures for ages 3 and 4 will be based on small 
numbers and have wide sampling errors.
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Chapter 18  Childhood mortality estimated from health 
facility data: The Preceding Birth Technique

Allan G Hill

In the introduction to child mortality (Chapter 15), we 
have already drawn attention to the possibility of using 
data collected at health facilities to measure early childhood 
mortality. Setting selection issues aside for the moment, 
the most useful technique for obtaining such mortality 
measures is based on a simple question put to a mother 
when expecting or delivering her next child, here referred to 
as the index child. At the time of the pregnancy or delivery, 
the supplementary information needed is whether or not 
the previous live birth is alive or dead at the time of the 
subsequent pregnancy or birth of the index child. For a set 
of mothers (generally not less than 1,000 respondents), the 
proportions dead amongst the previous live-born children 
are then converted into a measure of early childhood 
mortality. This measure is usually close to 2q0, but can be 
closer to 3q0 when birth intervals are long. Variations of the 
method also allow the proportions of preceding children 
dead obtained before the delivery of the index child, for 
example at the time of an antenatal visit, or after the delivery 
of the index child, to be converted into measures of early 
childhood survival.

There are several attractive features of child survival 
information gathered in this way from hospitals, clinics and 
other health centres. First, the information often forms part 
of the routine health system reporting so the need for special 
studies and surveys is obviated. Second, when such infor-
mation comes from health facilities, additional information 
which is difficult to obtain in retrospective surveys can be 
obtained relatively easily. This includes characteristics of the 
mother as well as key attributes of the births including sex 
and birth order, and birth weight. Third, the data can be dis-
aggregated to provide detailed estimates for particular health 
facilities (when the population in the clinic’s catchment area 
is sufficiently large), for towns and small provinces. Such 

local or facility-based information could be useful to health 
authorities intent on targeting the communities with the 
worst infant and child mortality rates. Trends at the local 
level can also be used to assess the effectiveness of past health 
interventions. Finally, we can expect the data in health 
facilities to be reasonably accurate as they are mostly being 
collected by literate professionals. Further, clinic-based 
respondents may be more prepared than mothers to report 
events which are otherwise seen as stigmatizing (distinguish-
ing live births, still births, abortions and miscarriages) or 
painful to recall (a neonatal or infant death).

Origin of the Preceding Birth 
Technique methods
The technique has its origins in a study of mortality in the 
Solomon Islands in the 1980s. In the course of this study 
it was noted that amongst the information routinely col-
lected in maternity centres were answers to the questions on 
children ever-borne and surviving as well as a question on 
the survival of the preceding born child if the mother was 
delivering her second or subsequent child, the index birth 
(see Figure 18.1). Brass and Macrae set out to ascertain how 
these data could be related to conventional measures of 
child survival estimated from summary birth histories and 
the proportions dead of preceding births (Brass and Macrae 
1984, 1985). Two methods were proposed. The Preceding 
Birth Technique (PBT) has attracted most attention since 
it provides a running estimate of early childhood mortal-
ity close to the current period. The theoretical basis of the 
method has been expanded and developed to allow applica-
tions to data on the survival of preceding children collected 
before and after a birth (Aguirre 1994; Aguirre and Hill 
1988; Hill and Aguirre 1990). The second method (Brass 
and Macrae 1985), based on the total numbers of children 
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ever-borne and surviving requires more refinement, is more 
complicated to apply and is not discussed further here.

Subsequently, others have applied the PBT in a variety 
of circumstances for different purposes – for example, 
in refugee camps, to measure abortion rates in antenatal 
clinics, for small area estimation and to measure the impact 
of health interventions (Bicego, Augustin, Musgrave et 
al. 1989; Madi 2000; Oliveras, Ahiadeke, Adanu et al. 
2008; Rowe, Onikpo, Lama et al. 2011). Research in a 
demographic surveillance site where births and deaths had 
been accurately and independently recorded showed that 
good results could be obtained when contraception had 
become widespread and birth intervals had lengthened as 
well as when the data had been collected at antenatal rather 
than maternity clinics or at the time of the first vaccination 
of the new born (Bairagi, Shuaib and Hill 1997).

CAVEATS AND WARNINGS
The analyst faces several difficulties in making use of facility-
based data on child mortality. The most important of these is 
that the population attending the facilities is not randomly 
selected. The resulting selection biases are important in three 
main ways.

The first bias in facility-based data arises because of the 
incomplete coverage of the population by health facilities, 
both public and private. This selection can work in different 
ways. Often, the urban population has easier access to health 
facilities than the rural population. The better off and better 
educated often make greater use of modern health services 
than the poor and the illiterate. This bias would likely result 
in estimates that are too optimistic in respect of infant and 
child mortality. In some cases, however, the bias can work in 
the other direction. The tertiary referral centres, which are 
generally the central maternity or teaching hospitals, often 
have much worse outcomes than peripheral centres simply 
because most complicated cases requiring surgery and 
other forms of advanced care are referred to these centres. 
Estimates based on such facilities will therefore tend to be 
over-estimate infant and child mortality.

The extent of this first bias is reduced when the coverage 
rates of health facilities used as a source of data are high. Even 
in sub-Saharan Africa, using the most recent DHS surveys for 
38 countries, we find that 51 per cent of mothers delivered 
in a health facility, 76.5 per cent of mothers in urban areas. 
For antenatal visits, an even higher proportion, 93 per cent, 
were seen by a doctor or a health professional in urban areas 

in sub-Saharan Africa with a surprising 76 per cent being 
seen for antenatal care by a doctor or health professional 
even in rural areas (Macro International Inc 2012). With 
these high coverage figures, it is possible to address some 
of the biases associated with incomplete coverage of the 
population. We therefore present below a method to estimate 
early child mortality from the proportions of preceding born 
children dead when mothers attend antenatal clinics or even 
vaccination clinics. These options are discussed below in the 
section entitled ‘Extensions’.

When coverage of the population by the health facilities 
is much lower, selection bias is clearly more important. 
Survey or census data for the whole population may be 
used to adjust the figures coming from health facilities by 
comparison of the characteristics of users and non-users of 
the health services. An added complication is that many 
countries are trying hard to extend the coverage of their 
health services. This may add new sub-populations with 
distinctive mortality patterns to the pool of information 
on child survival. Such changes in coverage can make the 
interpretation of trends over time difficult. In most large 
populations, however, new facilities take time to add and 
thus the coverage of existing facilities changes quite slowly.

The second source of systematic bias is that virtually all 
the women seen in maternity hospitals and health centres 
are attending these facilities because they are about to have a 
baby. Any information gathered from these women is specific 
to these moments in their reproductive careers. By contrast, 
in random sample surveys, women are interviewed without 
any reference to the current stage of their reproductive life 
and so the information obtained from them is representative 
of the reports from all, or all parous, women. An adjustment 
has been proposed to make the facility-based reports on 
total children ever-born and dead more like the reports in 
household surveys. The adjustment, however, now seems 
too dependent on various assumptions such as the effect 
of birth order on child survival and the location in time of 
child deaths (Brass and Macrae 1985).

A third selection bias that arises with this method is the 
fact that each woman’s last birth is never reported because 
there is no subsequent ‘index’ birth. This bias is probably 
trivial in high fertility settings, but in a population in which 
many women have only two children, there will be an over-
representation of first births, which typically have above 
average mortality. In a population in which a substantial 
proportion of women have only one birth, the preceding 
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birth technique will also not provide unbiased estimates of 
early childhood mortality.

Detailed Description of the method
A diagram helps to understand the terms used in this 
explanation. Figure 18.1 shows an idealized birth interval Ī 
for a woman with the three possible points of contact with 
the health services – for an antenatal visit, at the time of the 
delivery, and after the delivery for a post-partum check-up 
or vaccination of the new born infant.

Models and empirical data have shown that the proportions 
dead amongst preceding birth children, Q, collected close to 
the time of the delivery of the index birth are close to the 
probability of dying by an age which is close to 80 per cent 
of the mean live birth interval, Ī. Tabulation of the median 
birth intervals for 35 of the most recent surveys covering 
the period 1990–2010 in sub-Saharan African countries 
shows that the median birth interval was 34.8 months 
(Macro International Inc 2012). The only countries with 
median birth intervals over 40 months were Ghana (40), 
Namibia (42), South Africa (47) and Zimbabwe (47). The 
proportions of preceding births dead at the time of delivery 
of the index child is thus close to the proportions dead by 
the second birthday, in life table notation, 2q0.

The reason that the proportion of previously born children 
who have died by the time of a subsequent birth closely 
approximates 2q0 in a life table is because the proportion dead 

is the integrated product of two asymmetrical functions. 
One function is the distribution of births over time before 
the most recent birth, b(x). The second function is the 
cumulative probability of dying, q(x), taken from the early 
part of a life table. The monthly distribution of previous 
births is skewed, with no live births occurring during the 
nine months preceding the current maternity but with a 
concentration of births around the mean birth interval, and 
a long tail stretching back in time before the most recent 
birth. The cumulative probabilities of dying in childhood in 
any life table rise quickly during the first two years of life but 
thereafter the cumulative proportions dead, qx, flatten out 
beyond the age of two years (Hill and Aguirre 1990).

Figure 18.2 illustrates the shape of these two functions 
using real birth interval data (hence the slight irregularities 
attributable to date misreporting) and the probabilities of 
dying by month since birth taken from the UN General 
Model life table with a life expectancy at birth of 60 years.

We see that the proportion of previously born children 
who have died, Q, is thus the integrated product of these 
two functions. Mathematically,

	
0

( ) ( )Q b x q x dx
∞

= ∫ 	 (1)

where b(x) is the number of births which occurred x months 
before the current maternity, and q(x) is the cumulative 
probability of dying by age x.

Figure 18.1  An idealized birth interval with possible points of 
contact with the health services
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Since the method is primarily designed to measure year-
to-year changes in child survival by facility, the main interest 
will be in the value of the index rather than in its exact 
representation in the life table. The main confounding effect 
in comparing results across different populations or over 
time will result from differences in birth interval length. As 
Rutstein’s analysis has shown, however, median birth intervals 
have changed very slowly between the first and last DHS 
surveys in each country and especially in sub-Saharan Africa, 
so temporal effect changes in birth interval length are probably 
of minor importance (see Rutstein (2011: Table 2.2a)). The 
convention is that the proportions of preceding children dead 
collected at the time of a subsequent birth are simply referred 
to as the “index of early childhood mortality”, and taken as a 
close approximation to 2q0 in most populations and to 2.7q0 in 
populations with birth intervals closer to 40 months. Clearly, 
many low fertility countries have longer birth intervals but 
most such countries have good vital registration systems and 
so will not be the main users of the PBT.

We can estimate the possible effects of birth intervals 
differing from 30 months on the child mortality measures 
by using model life tables. We use the UN General Stand-
ard model for both sexes combined with a life expectancy 
at birth of 60 years to calculate the monthly probabili-
ties of dying up to age 5. We then calculate the percent-
age differences in the measure of early childhood mortality 
when the birth interval differs from 30 months and the 
exposure time is not 0.8 * I or 24 months (2q0). When the 
birth interval is 25 months and hence the exposure time 
is 25 * 0.8 = 20 months, as might occur if the data are col-
lected at antenatal visits, then the proportions of preceding 
children dead is closer to 1.7q0 or 5 per cent lower than if 
the birth interval had been 30 months. With birth intervals 
as long as 40 months, the proportions of preceding birth 
children dead approximates to 2.7q0, a 7 per cent difference 
from the central value of 2q0 associated with a birth inter-
val of 30 months. If the interval between the birth of the 
preceding birth and the time the data are collected is as long 

Figure 18.2  Typical distributions of birth interval length by time 
since preceding birth and the cumulative risks of dying by age (x)
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as 45 months, as might occur if the mothers are seen some 
time after the birth of the index child, then the child mor-
tality measure estimated is approximately 3q0 or 9 per cent 
more than 2q0 in the model life table. Although important, 
these differences are not large and the percentages are likely 
to remain the same in the short term.

Model life tables can be used to interpolate between 
the various measures of child mortality derived from the 
PBT. With birth intervals of 30 months, we are estimating 
approximately 2q0. By using logit transformations of model 
life tables, however, we can readily derive corresponding 
values of 1q0 (infant mortality) and 5q0 (the U5MR used by 
UNICEF). An example of the interpolation method is shown 
in Table 18.2. The same procedures can be used to derive 2q0 
when the intervals between the preceding birth and the index 
birth are not 30 months if the birth interval is curtailed by 
collection of the data at antenatal visits or if the time since the 
birth of the preceding birth is extended by collection of the 
data say, at first vaccination of the index child. The associated 
worksheet (see website) shows, in detail, how to do this.

Numerous questions arise from the simple result that Q≈ 
(Ī .0.8)q0. First is the issue of the omission of women with only 
one birth and thus no preceding birth. In most populations 
lacking full vital registration, however, most women proceed 
to have at least a second child so the mortality experience of 
first births is not omitted from the data and consequently 
this bias is small. There may, however, still be a concern in 
low fertility populations that first births are over-represented 
in the data. Second, women who die in childbirth may not 
survive long enough to report on the survival of their previous 
children, although clinical records are often available ahead 
of the death. We know that the risks of losing subsequent 
children are strongly associated with a maternal death, as the 
Bamako data bear out (Hill and Aguirre 1990). Fortunately 
maternal deaths are sufficiently rare as to have only a small 
effect on the data collected this way.

It is important to establish the time reference of the 
PBT estimates. Again Figure 18.2 helps us to estimate the 
mean time at death of preceding children who died before 
the index birth. The combination of relatively high risks of 
dying early in life (see the q(x) function) combined with 
the concentration of births around the mean birth interval 
points to a mean age at death substantially less than half the 
birth interval. From models, Aguirre (1990) showed that the 
mean time location of deaths of the preceding born children 
was about two-thirds of the birth interval length before the 

date of birth of the index children. From empirical data with 
a wide range of birth intervals, the range was between 54 per 
cent and 74 per cent of the birth interval in months before 
the dates of birth of the index children. In most applications, 
it is recommended that analysts take the time reference to be 
two-thirds of the preceding birth interval before the birth of 
the index children. This assumption has been built into the 
accompanying estimation spreadsheets (see website).

Data requirements
The key sequence of essential questions for this technique 
is simple, assuming the woman being interviewed in the 
health facility is pregnant (antenatal visit), newly delivered 
(in a maternity clinic or hospital) or has brought a young 
infant for immunization:
•	 ‘Were you pregnant another time before this current 

pregnancy/birth?’
If ‘yes’, continue. If ‘no’, stop.

•	 ‘What was the result of this previous pregnancy?’ (live birth, 
still birth, miscarriage or abortion – spontaneous or 
induced).
If ‘live birth’ continue. If other, stop.

•	 ‘Is this previous born child still alive today?’ (yes/no)

Date of interview (usually date of the delivery of the index 
child) is also needed but this generally forms part of the 
standard administrative records.

The above are the basic questions. Others related to the 
care of the mother and her children are often added, such as 
the date of birth of the preceding child, its sex, its birth weight 
(if known), whether a singleton or multiple birth, whether 
still being fully breastfed and so on, depending on needs 
and circumstances. Similarly, some additional information 
on the mother (such as age, education residence) as well as 
information on the current delivery such as birth weight and 
place and type of delivery (normal vaginal, forceps, vacuum, 
caesarean etc.) can be relevant for maternal and child health 
care (if the mother is seen post-partum). Collecting the 
date of the birth of the child preceding the current delivery 
provides useful information on the average birth intervals in 
the population under study.

Often, the data are obtained in clinics in the form of 
registers or ledgers. An example of one is shown in Table 18.1 
below. The content of each of the columns can be varied for 
different purposes but the key questions for the estimation 
of early child mortality are clearly the questions in columns 
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(7) and (8). Note that in health systems gravidity (total 
number of pregnancies, however short their duration) often 
replaces the total number of live births but with training, 
health workers can readily distinguish the more medical 
definitions (gravidity, parity, confinements) from the more 
demographic terms (pregnancies, live births and living 
children).

Worked example
The basic form of the analysis is very simple. It consists of 
dividing the number of preceding children dead (Row B in 
Table 18.2) as at the time of the index birth by the total 
number of preceding live-born children. Still births are 
excluded from the calculations.

In cases where there is an interest in estimating other 
life table measures, infant and under-5 mortality can 
be estimated using a standard from model life tables and 
logit transformations. In Table 18.3, we illustrate the steps 
involved in using logit transformations of model life tables 
values to produce values of 1q0 and 5q0. These methods are 
included in the associated spreadsheets (see website).

In some circumstances, information on the survival of 
the second-to-last born children, the child born before the 
preceding birth (if any), is also collected and utilized. In 

crude terms, the period of exposure to the risks of dying for 
this second-to-last born child will be slightly shorter than 
twice the mean birth interval, Ī. Taking Ī = 30 months, the 
proportions of second-to-last children dead at the time of the 
current maternity will thus be approximately 2.Ī q0, i.e. 5q0. 
The reported proportion of second-to-last children who have 
died is close to the probability of dying during the first five 
years of life and not some younger age in this case, as the 
monthly birth distribution and the cumulative probabilities 
of dying are much flatter around the age of five than around 
the age of two years. The difficulty is that these data on the 
second-last child can be obtained only from mothers who 
have had at least three deliveries or at least two deliveries and 
a third pregnancy. Thus, the systematic selection of women 
with higher parities and probably with higher fecundity 
(shorter birth intervals) exacerbates biases relative to the case 
of the simple preceding birth version of the method (Hill 
and Aguirre 1990). Although included in the illustration 
below, the use of information on the survival of second-to-
last born children to estimate recent child mortality is not 
recommended.

In Figure 18.3, we show the relationship of the different 
mortality measures estimated in Table 18.3. The data at face 
value suggest that child survival was improving in the period 

Date of 
delivery

(1)

Mother’s 
name 
or ID

(2)

Mother’s 
age or date 

of birth
(3)

Gravidity 
(total 

pregnancies)
(4)

Live births
(5)

Living 
children

(6)

This delivery: 
type (live 
birth, still 

birth, abortion 
or miscarriage)

(7)

Singleton 
or multiple 

birth?

(8)

If live birth 
preceding 
birth alive 

today?
(9)

Sex of last 
delivery: 

male/ 
female
(10)

27 Jan 2012 Mariama 
Sow

31 Oct 
1980 7 5 4 Live birth Single Yes M

28 Jan 2012 Comfort 
Frempong

27 June 
1991 3 3 2 Still born N.A. N.A. N.A.

29 Jan 2012 Huda 
Khalaf

19 Oct 
1992 3 2 2 Live birth Twin 1 – Yes M

29 Jan 2012 Huda 
Khalaf

19 Oct 
1992 3 2 2 Live birth Twin 2 – No F

30 Jan 2012 Mary 
Kenyatta 22 yrs 3 2 1 Miscarriage N.A. N.A. N.A.

Note: In this example, words have been used instead of codes but in most applications, the optional answers would be pre-coded to 
standardize responses and to minimize the work of the health staff. The summary counts of pregnancies, live births and living children 
exclude the most recent pregnancy or birth. Twins or triplets need to be separately recorded – see table.

Table 18.1  Example of data collection register for implementation 
of the preceding birth technique
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before the data were collected in Bamako’s maternity clinics. 
We must remember, however, the selection effects implicit in 
using the data from second-to-last births since only women 
with three or more births provide the information used to 
estimate the measures in the last row of Table 18.3.

Table 18.2  Preceding birth technique estimates of early childhood 
mortality for Bamako, Mali in 1985

Measures Preceding 
births

Second-to-
last births

Total alive amongst preceding 
live births (A) 4778 3737

Total dead amongst preceding 
live births (B) 679 620

Proportions of preceding born 
children dead (B /A) 0.142 0.166

Source: Data from the Bamako maternity clinics study (Hill and 
Aguirre 1990)

Extensions of the method
A common criticism of the PBT method is that the rates 
are necessarily calculated for the population attending the 
health centres and maternity clinics and tell us nothing 
about the child mortality rates amongst mothers not attend-
ing such centres. As noted above, in most countries more 
and more mothers are giving birth in health centres of one 
kind or another so that gradually, the PBT estimates of child 
mortality will become more representative. In the interim, it 
is often worth exploring collection of the essential informa-
tion elsewhere.

The most obvious opportunity to contact a larger propor-
tion of mothers arises at the moment of first antenatal book-
ing. As noted above, the proportion of pregnant women 
who attend such clinics is now quite high even in places 
with very low levels of vital registration (and delivery in 
health facilities). Very few adjustments are needed to adapt 
the collection of the essential information for the PBT in 
antenatal clinics. The main risk is that the information is 

Figure 18.3  The relationship between the proportions of preceding 
born children dead amongst preceding and second-to-last born births, 
Q, and life table measures of child mortality, 1q0 and 5q0
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collected multiple times from the same mother. Care must 
therefore be taken to ensure that the preceding birth tech-
nique information is obtained at first booking and not at all 
subsequent visits.

The main technical issue to be resolved is that compared 
with the time of delivery, the preceding birth interval will 
be curtailed when the information is obtained during an 
antenatal visit. This means that the proportion dead amongst 
preceding births will probably be a slight underestimate of 
the true value of 2q0 in the population. In many instances, 
however, pregnant women do not present for the first ante
natal visit until the pregnancy is well advanced. In these 
cases, the curtailment in the length of the birth interval 
will be a matter of a few months. The slight reduction in 
exposure has only a very small effect on the measure of early 
childhood mortality (Bairagi, Shuaib and Hill 1997; Hill 
and Aguirre 1990).

Another alternative for obtaining the key information to 
apply the Preceding Birth Technique method is to include 
the questions at the time of the first vaccination of the baby 
since coverage rates for vaccination are often quite high both 
for mothers giving birth in clinics and for mothers who 
give birth at home. Again the basic format of the questions 
remains the same. Careful wording and training is needed 
to distinguish the new-born child being vaccinated from 
the preceding birth whose survival has to be established to 
use the preceding birth technique. Since the vaccination 

protocol begins – or should begin – in the first month of 
the new-born baby’s life, the extension of the exposure time 
of the preceding child to the risks of dying compared to the 
time of delivery is very short. The proportions of preceding 
born children dead at the time of vaccination can therefore 
be taken as a good approximation of 2q0. There may be 
problems in preventing multiple reporting from mothers 
who return for several rounds of vaccination but this can be 
managed (Hill and Kelly 1996). More important is the effect 
of mortality of the new-born child since mothers who lose a 
child soon after birth will not appear in vaccination clinics. 
If mortality of successive children is not independent, this 
would lead to an overall under-estimate of the index of early 
child mortality.

Trends over time and comparisons between areas
One important application of the preceding birth technique 
is for the study of early childhood mortality trends in sub-
populations followed over time or for the comparison of 
child mortality trends within different sub-populations. 
There are several countries, ranging from Senegal and Mali 
to the Sultanate of Oman, where ongoing estimates of early 
childhood mortality are derived from information collected 
at maternity clinics. The example below is derived from the 
Matlab Thana surveillance site in Bangladesh where we have 
the added advantage of well-recorded vital registration data 
alongside the information on the survival of the previously 
born child collected at the time of the birth. In the Matlab 
Thana study area it is, in addition, possible to compare the 
childhood mortality in the ‘Treatment’ and ‘Comparison’ 
areas, providing an additional test of the validity of the 
information from the method.

In Figure 18.4 below the middle lines in the Treatment 
and the Comparison areas illustrate the trend in early 
childhood mortality derived from the questions on the 
survival of the preceding birth collected at the time of the 
birth of the index child. The lowest lines show the time 
trend in infant mortality derived from the vital registration 
system while the upper lines are 3q0, also calculated from 
the vital registration data. The measure of early childhood 
mortality matches very closely the trend in 3q0 since in this 
population, where birth intervals are close to 40 months, the 
Preceding Birth Technique measures mortality to about age 
2.7 years or 2.7q0. The goodness of fit between the directly 
measured child mortality measures and the proportions of 
preceding children dead is encouraging.

Table 18.3  Using logits and the UN General Standard model life 
table to estimate values of infant and under-5 mortality from the 
proportions of preceding and second-to-last births dead at the time of 
a subsequent delivery

Measure
Proportion of 

preceding births 
dead

Proportions of 
second-to-last 

births dead
Observed 
proportions dead 0.142 0.166

Proportions alive 0.858 0.834
l(2) in UN General 
model life table: 
e(0)=60

0.914 0.914

logit l(2) –1.179 –1.179
logit l(2) observed –0.899 –0.807
Alpha 0.28 0.372
1q0: estimated 
infant mortality 0.12 0.141

5q0: estimated under 
5 mortality 0.166 0.193
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Comparison of mortality trends in sub-populations
The final illustration comes from the study of early childhood 
mortality in the maternity clinics of Bamako, Mali where 
information on the birth weight of the last born child (the 
infant delivered in the maternity clinic) was also recorded. 
As Table 18.4 illustrates, there is a very strong relationship 
between the birth weight of the index child, the most recent 
birth, and the survival of the preceding born children. This 
analysis clearly illustrates the concentration of excess risks in 
certain mothers and makes the case for targeting such high-
risk women in order to reduce early childhood mortality. 
In the same study, there were enough births occurring in 
each maternity facility over the course of a year to be able 
to calculate the index of early childhood mortality for each 
facility. This formed the basis of a rank ordering of facilities 
according to the proportions of preceding children dead 
at the time of subsequent delivery and thus allowed the 
identification of underperforming facilities, together with 
populations in their catchment areas, which were in need 
of extra resources.

Figure 18.4  Proportions of preceding children dead at the time of 
a subsequent delivery, Q, compared with infant mortality, 1q0 and 
mortality before the third birthday, 3q0, measured directly from the 
Matlab, Bangladesh surveillance data

Table 18.4  Proportions of last and second-to-last births dead by 
the time of a subsequent birth, by the birth weight of the most recent 
born child

Birth weight of the 
index child (grams)

Preceding births

N Proportions 
dead ≈ 2q0

1500–1999 76 0.197
2000–2499 409 0.161
2500–2999 1389 0.153
3000–3499 1827 0.136
3500–3999 607 0.104

4000 or more 98 0.092
Source: Bamako maternity clinics study (Hill and Aguirre 1990)
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Chapter 19  Introduction to adult mortality analysis
Ian M Timæus, Rob Dorrington and Kenneth Hill

Accurate knowledge of adult mortality levels and trends in 
the developing world is hampered by a widespread lack of 
complete vital registration systems. Although knowledge 
of infant and child mortality once faced similar barriers, 
survey-based techniques – indirect methods and birth 
histories – have been more successful at measuring child 
than adult mortality, and we know correspondingly less 
about the latter than the former. 

For the purposes of demographic analysis, adult mortality 
is usually defined as mortality at ages 15 or more. In some 
contexts though, the term ‘adult mortality’ is used to refer 
solely to mortality between exact ages 15 and 60, and is 
contrasted with older-age mortality, which is used to refer to 
mortality at ages 60 or more. The probability that a person 
on their 15th birthday dies before their 60th birthday, (45q15 
in the life table) has become a widely used indicator of adult 
mortality defined in this more restricted way.

In countries that lack complete vital registration systems, 
the sources of data and methods that are used to study 
mortality in adulthood usually differ from those used to 
study mortality in childhood. Some of the methods for 
adults can be extended to study the mortality of children 
aged 5 or more, but none of them are reliable sources of 
information on under-five mortality.

Several general issues make the study of adult mortality 
inherently more challenging than that of children. First, 
in broad terms, adult mortality rates for much of the 
age range are an order of magnitude lower than those of 
children. Adult deaths are relatively rare events. Obtaining 
precise measures of adult mortality requires data either on 
a large sample of people or on events occurring during a 
long reference period. Second, it is difficult to identify an 
appropriate informant who can provide reliable information 
about deceased adults. Data on child mortality can usually 
be collected from mothers. In addition, the characteristics 
of parents are among the more important determinants 

of the risk of dying in childhood. Since there is no single 
universally-suitable informant to provide data about adult 
deaths, problems of underreporting and multiple reporting 
are common. Moreover, it is often unreasonable to use the 
social and economic characteristics of the respondent as a 
proxy for those of the dead person in order to investigate 
mortality differentials.

Age misreporting is another serious problem that affects 
all sources of adult mortality estimates for low- and middle-
income countries. Several factors make it difficult to obtain 
usable information on adult ages and ages at death. Older 
people are less likely to have birth certificates or health cards 
than are the young and, in most developing countries, are 
likely to have received less schooling. Moreover, even if dead 
persons knew their own age, the informant who reports their 
death may not. The reported ages of older adults are often 
exaggerated and ages at death tend to be exaggerated even 
more. Thus, ‘raw’ estimates of adult mortality for low- and 
middle-income countries often require smoothing by fitting 
a model life table before they can be used to estimate life 
expectancy or for demographic forecasting, and those on the 
elderly population may have to be discarded and replaced by 
data extrapolated from a model life table.

Data for the estimation of adult 
mortality
A relatively small number – and smaller share by population – 
of low- and middle-income countries have close to complete 
registration of adult deaths and population censuses of 
high quality. A larger number of countries have national or 
sample vital registration systems that are complete enough 
to be promising candidates for the methods described in this 
manual that assess the completeness of registration relative 
to census counts. In addition, an increasing number of 
countries have included questions in censuses (or very large 
sample household surveys) concerning household deaths by 
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age and sex in some period (most often one year) prior to the 
census. The completeness of reporting of these deaths can be 
assessed by the same methods that are used to assess the data 
on adult deaths collected by registration systems, provided 
most deaths occur in households and the households don’t 
disintegrate on the death.

A number of countries, particularly in sub-Saharan 
Africa, have conducted sample surveys (most often under 
the umbrella of the Demographic and Health Surveys 
programme) that have included sibling histories that ask each 
respondent about the survival or otherwise of each of their 
siblings and when their siblings died. Some countries have 
sought to measure adult mortality by including questions in 
censuses and surveys concerning the survival or otherwise of 
each respondent’s mother or father. These data, along with 
similar summary statistics on siblings, can be tabulated by 
age of the respondent answering the question and analysed 
by indirect methods that make use of demographic models 
to convert them into conventional life table indices of adult 
mortality.

Description of methods
Those methods that make use of data on deaths and 
the population at risk by age (and sex) to estimate adult 
mortality are collectively referred to as Death Distribution 
Methods. These methods fall into two distinct groups, 
depending on how the data are used, the Growth Balance 
methods and Synthetic Extinct Generations methods (Hill, 
You and Choi 2009). Both groups of methods require data 
on deaths from either a registration system or a question 
in the census together with census-based estimates of the 
population at risk by age.

The first Growth Balance method is the Brass Growth 
Balance method developed by Brass (1975), which only 
requires data on the population by age at a single point 
in time, but is only applicable if the adult population can 
be considered to be at least approximately stable (i.e. a 
population with a regular and unchanging age structure 
over time). The second Growth Balance method is a 
generalization of the first method to non-stable populations 
by Hill (1987), referred to as the Generalized Growth 
Balance method, which requires data on the population 
by age at two points in time. The first Synthetic Extinct 
Generations method is a method developed by Preston, 
Coale et al. (1980), which requires data on the population 
by age at one point in time and the assumption that the 

adult population is at least approximately stable. The second 
Synthetic Extinct Generations method is a generalization 
of the first approach to non-stable populations by Bennett 
and Horiuchi (1981; 1984), which requires data on the 
population at risk at two points in time.

Provided that the assumptions of constant completeness 
of coverage of the censuses and reporting of deaths by age 
are reasonably valid, net migration over the period has been 
small in scale, and there are no major distortions of age 
reporting between five-year age groups, Death Distribution 
Methods are the preferred methods for estimating adult 
mortality both because they provide age-period specific 
estimates of mortality rates and because they are capable 
of producing reasonably timely estimates (Hill 2001). 
However, deciding if these conditions have been met in 
practice requires a great deal of experience, which means 
that these methods are amongst the most subjective of the 
indirect techniques.

One can calculate age-specific death rates directly from 
counts of deaths and person-years of exposure by age and 
year derived from sibling histories collected in surveys. As 
the sample size in surveys such as those conducted by the 
Demographic and Health Surveys programme is rather 
small for the estimation of adult mortality, the data should 
be aggregated into periods of several years. Moreover, as it 
is common for increasing numbers of dead siblings to be 
omitted from the histories as the time since their death 
increases, only mortality estimates for the recent past should 
be produced from these data.

Data collection instruments such as sibling histories, in 
which the respondent generally does not live in the same 
household as the deceased, do not provide a suitable starting 
point for the collection of data on causes of death. The 
respondent is unlikely to know the medically-certified cause 
of death with any precision, especially if the dead person 
received little or no medical care; alternative approaches, 
using verbal autopsy methods, which enquire about the 
signs and symptoms preceding death, will also not work well 
because the respondent will generally have little first-hand 
knowledge of such indicators. Some of the same factors 
apply to information about household deaths collected by 
censuses, in that household members may well not know 
the true cause of death, and that the training of interviewers 
and time available for interviewing each household do not 
permit detailed probing. However, the census approach can 
provide a frame for a follow-up verbal autopsy enquiry, on a 
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sample of households that reported deaths, using carefully-
trained interviewers, but such surveys are expensive and 
complex undertakings.

Two other exceptions to this general rule are that it may 
be possible to distinguish injury deaths from deaths from 
natural causes and to identify pregnancy-related deaths, 
defined as deaths occurring while a woman was pregnant, 
during childbirth, or during the six weeks after the end of 
pregnancy. The estimation of pregnancy-related mortality 
from questions asked both in censuses and during the 
collection of sibling histories is described in Chapter 29.

The alternative to trying to collect accurate data on deaths 
and the population at risk by age in order to estimate adult 
mortality is to use indirect methods of estimation. These 
methods do not require detailed information on the ages 
and dates at which people died. Instead, the proportion of 
individuals remaining alive among some specific category 
of relative of the respondents answering the question 
is tabulated according to the age of those respondents. 
Then, conventional life table measures of survivorship are 
predicted from these proportions using a regression model 
fitted to model data in which the relationship between the 
two quantities is known.

The most successful of the techniques that analyse data 
on the survival of relatives, estimates the mortality of adult 
women and men from data on the survival of respondents’ 
mothers and fathers by means of the orphanhood method 
first developed by Brass and Hill (1973). Contemporary 
applications of the method usually use the regression 
coefficients proposed by Timæus (1992) to estimate life table 
survivorship, rather than the weighting factors proposed 
initially, as the revised method generates more precise 
estimates for men. Variants of the method are also discussed 
here that are intended for use in populations with a high 
prevalence of HIV infection or when respondents have been 
asked whether their parents died when the respondent was 
a child or an adult as indexed, for example, by whether the 
respondent had married.

If successive sets of data have been collected on mater-
nal or paternal orphanhood in multiple inquiries conducted 
in the same population, they can be used to estimate adult 
mortality during the intervening period from synthetic 
cohort data on orphanhood (Zlotnik and Hill 1981). Such 

estimates can be made from data on orphans of all ages using 
the regression coefficients developed for the basic method. 
This manual, however, focuses on the analysis of synthetic 
cohort data on orphanhood in adulthood as proposed by 
Timæus (1991), as this variant of the method is less vul-
nerable to underreporting of orphanhood by respondents 
whose natural parent(s) died when the respondent was a 
young child.

Lastly, the manual describes methods developed by 
Timæus, Zaba and Ali (2001), that make it possible to 
estimate adult mortality from data on siblings indirectly if 
respondents are asked how many of their brothers and sisters 
survived to adulthood and how many of them have since 
died.

Other methods for estimating adult mortality indirectly 
from data on the survival of relatives have been proposed 
such as asking about the survival of respondents’ first 
husbands and first wives. Experimentation with these 
questions has shown that respondents often fail to report 
that they have been widowed. Thus, the method commonly 
produces severe underestimates of adult mortality. The 
widowhood method and further methods based on other 
questions about the survival of relatives that have proved to 
be unsuccessful are not described in this manual.

A final approach that has been used to estimate adult 
mortality is the analysis of changes in population size in 
between two censuses. In a population closed to migration 
with accurate data, anybody who was present at the first 
census, but not at the second one, must have died. In prac-
tice, except at older ages, the net number of international 
migrants each year in most countries amounts to a signifi-
cant fraction of the number of adult deaths. Few countries 
measure international migration flows accurately enough 
to adjust for their impact on intercensal population change 
before estimating mortality. In addition, even small changes 
in the completeness of the census enumerations can produce 
severe biases in estimates of adult mortality produced in this 
way. Thus, in general, the approach cannot be recommend-
ed as a method for estimating adult mortality and a detailed 
account of it is not offered in this manual. Any reader who 
wishes nevertheless to learn more about this way of estimat-
ing mortality is advised to look first at the variant of the 
approach proposed by Preston and Bennett (1983).
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Further reading and references
No recent paper exists that provides a comprehensive 
description and assessment of the range of methods 
available for the estimation of adult mortality in countries 
with limited and defective data. However, the estimation 
of adult mortality is discussed alongside child mortality by 
Hill, Choi and Timæus (2005) and Reniers, Masquelier and 
Gerland (2011) provide a brief but up-to-date discussion 
of methods of estimation as well as presenting estimates 
obtained by putting the methods into practice.
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Chapter 20  The Brass Growth Balance method
Rob Dorrington

Description of method
Brass’s Growth Balance method (Brass 1975) is the first 
of what later became known as the Death Distribution 
Methods for estimating the completeness of the reporting of 
deaths relative to an estimate of the population. The method 
makes use of the observation that in a stable population (i.e. 
a population with an unchanging age structure over time – 
at least for the adult ages – growing at a constant rate, r, 
each year) that is closed to migration and has accurately 
reported data, the growth rate, r, is equal to the birth rate, 
b, less the death rate, d. A similar relationship holds for the 
population aged x and older, namely, that r = b(x+) – d(x+), 
where the partial ‘birth’ rate, b(x+), is defined as the rate at 
which people turn age x in the population aged x and older 
and the partial death rate, d(x+), is the rate of mortality of 
people aged x and older. If, in this population, the deaths 
are under-reported to the same extent at each age, then 

 b(x+) r + d r(x+)/c, where dr(x+) is the death rate based on the 
recorded deaths for ages x and older and c is the proportion 
of deaths that are reported. One can estimate c from the 
slope of a line fitted to the b(x+), dr(x+) data points. This 
estimation is usually confined to adult ages as the (extent 
of ) completeness of reporting of child deaths usually differs 
from that of adult deaths. Mortality rates can be estimated 
by dividing the numbers of deaths reported in each age 
group by c and then dividing these numbers by an estimate 
of the population exposed to risk based on the population 
used to estimate the partial birth and death rates.

The method is a particular case of the more general Gen-
eralized Growth Balance method, which requires estimates of 
the population at two points in time but does not require that 
the population be stable. Readers are referred to that chapter 
for further detail on the method. It is included in this manual 
as a method that might be considered when one has an esti-
mate of population numbers only at one point in time.

Data requirements and assumptions
Tabulations of data required
•	 Number of deaths of women (men), by five-year age 

group, and for open age interval A+ (with A as high as 
possible), over a specific period.

•	 Number of women (men), by five-year age group, and for 
open age interval A+, at or close to the period over which 
the deaths were measured.

Important assumptions
•	 The population is stable, although this assumption can be 

relaxed to some extent (see below).
•	 That the completeness of reporting of deaths is the same 

for all ages above a minimum age (usually age 15).
•	 The population is closed to migration, although this 

assumption can be relaxed if net migration is small relative 
to the mortality rates, or if one has reasonably accurate 
estimates of the number of migrants by age to allow for 
in the balance equation (which is very seldom the case).

Preparatory work and preliminary 
investigations
Before applying this method, you should investigate the 
quality of the data at least in the following dimensions:
•	 age structure of the population;
•	 sex structure of the population;
•	 age structure of the deaths; and
•	 sex structure of the deaths.

Caveats and warnings
In applying this method, analysts must take particular care 
with the following:
•	 The interpretation and estimation processes need to 

take into account the source (whether vital registration, 
deaths reported by households in censuses, or deaths 
recorded at health facilities) of death data as explained 
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below. However, the biases associated with the source of 
death data tend to have less impact on the estimate of 
completeness from the Growth Balance method than on 
that from the Synthetic Extinct Generations method.

•	 If applying the method to sub-national geographic areas, 
the issue of migration typically becomes a greater concern.

•	 Deciding the age range which is used to fit the straight line 
to the partial birth and death rates and hence estimate com-
pleteness. Issues here are the best age to choose for the open 
interval if there is evidence of age exaggeration; how to ac-
commodate data points that rise above the line at the older 
ages because of decreasing completeness with age, possibly 
due to retirement-associated migration from urban to rural 
areas where registration is less complete; and whether to 
exclude ages less than either 30 or 35 because of the impact 
of migration which has not been allowed for specifically.

•	 If completeness of reporting of deaths appears to be less 
than 60 per cent then caution is advised in applying this 
method as the uncertainty about the estimate is large.

Application of the method
Step 1: Cumulate population and deaths downwards
To estimate partial birth and death rates one needs to 
cumulate the numbers in the population and the number 
of deaths in a defined period of t years for ages x and older. 
In the case of the population the following equation is used:

5

5( )
A

y A
y x

N x N N
−

∞
=

+ = +∑
where A is the age at the start of the open age interval.

An analogous equation is used to calculate the number of 
deaths aged x and older, D(x+).

Step 2: Calculate the person-years of life lived, PYL(x+)
In order to estimate partial birth and death rates one needs 
to estimate the person-years of exposure. This is estimated 
using the following formula:

( ) ( )PYL x t N x+ = ⋅ +

where t is the length of period over which the deaths have 
been measured.

Step 3: Calculate the number of people who turned x in 
the population, N(x)
The number of people who turned x (i.e. were ‘born’ into 
the open age interval x+) in the population is estimated as 

the geometric mean of the numbers in the two adjacent 
(five-year) age groups divided by 5, multiplied by the length 
of the period over which the deaths are reported, in years, 
using the following formula:

( )
1
2

5 5 5( )
5 x x
tN x N N−= × .

Step 4: Calculate partial ‘birth’ and death rates, b(x+) 
and d(x+)
The partial birth and death rates are estimated using the 
following formulae:

( )( )
( )

N xb x
PYL x

+ =
+

and
( )( )
( )

D xd x
PYL x

+
+ =

+
 respectively.

Step 5: Plot graph, fit line and estimate completeness, c
In order to estimate the completeness of reporting of deaths 
relative to the population, one starts by plotting b(x+) 
against d(x+) and estimating the coefficients of the straight 
line fitted to these points, using orthogonal regression, as 
follows:
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and
y xa bµ µ= − .

where b is the slope of the line and a the intercept, and yi 
represent the b(x+) and the xi represent the d(x+) and µy and 

 µx represent the means of the two series, respectively.
After fitting the straight line to all the points, one inspects 

the plotted points relative to the line and the residuals in 
order to decide on the best range of ages to use to determine 
the completeness of reporting of deaths. How one decides 
this is discussed in more detail below, but any points with 
residuals greater than 1 per cent in absolute value should be 
excluded. A line is then fitted to the remaining points, and 
new values of a and b are determined from the fitted line.

The completeness of reporting of deaths, c, is derived 
from these values of a and b as follows:
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( )( )1 exp c mc a t t
b

= −

where tc is the time of the census and tm is the mid-point of 
the period over which the deaths have been recorded. The 
rationale for this equation is that the reciprocal of the slope 
estimates the completeness of reporting on the assumption 
that the census population was at the mid-point of the 
period over which the deaths have been recorded. In order 
to correct for any difference between the time of the census 
and the mid-point of the period over which the deaths 
have been recorded we need to multiply the estimate of 
completeness by the ratio of the census population to the 
estimate of the population at time tm. This is done on the 
assumption that the population, which is assumed to be 
stable, is growing at an annual growth rate estimated by a. 
That ratio is ( )( )exp c ma t t− .

Step 6: Estimate mortality rates adjusted for 
incompleteness of reporting of deaths
In order to compute mortality rates one needs first to 
estimate the population in five-year age groups at the mid-
point of the period over which the deaths were recorded by 
multiplying the census numbers by ( )( )exp c ma t t− − .

Next one needs to adjust the number of deaths for 
incompleteness by dividing the reported number of deaths 
by the estimate of completeness, c.

The person-years of exposure are estimated by multiplying 
the estimated population as at tm by the length of the period 
over which the deaths were reported, t.

Mortality rates adjusted for the incompleteness of the 
reporting of deaths are thus estimated as follows:

( )( )
5

5
5 exp

x
x

x c m

D c
m

t N a t t
=

× − −
.

Since both the numerator (through the estimate of c) and 
the denominator are adjusted by ( )( )exp c ma t t− − , omitting 
these adjustments would still produce the same estimates 
of mortality rates. The estimate of completeness, however, 
would be equivalent to what it would be if the population 
at tm was that at tc.

Step 7: Smooth using relational logit model life table
Because the age-specific rates can be erratic they need to 
be graduated (smoothed). This can be achieved by fitting 
a Brass relational logit function to a sex-specific standard 

life table which is considered to have the same shape as that 
generated by the mortality rates of the population being 
investigated.

The workbooks (see website) contain a spreadsheet that 
allows one to produce a smooth set of mortality rates by using 
a relational logit model fitted to the life table generated by 
the adjusted mortality rates. The user can choose a standard 
from the General family of United Nations model life tables 
or from any of the four families of Princeton model life 
tables. A custom life table can be entered as standard if there 
is reason to assume that it better resembles the pattern of 
adult mortality in the population being studied.

In order to fit the model, probabilities of people aged 
x dying in the next 5 years, 5qx, are estimated from the 
adjusted rates of mortality as follows:

5
5

5

5
1 2.5

x
x

x

m
q

m
=

+
.

From this the life table with a radix of l5 = 1 is calculated as 
follows:

( )5 51x x xl l q+ = − .

The coefficients,  and  are determined by fitting the 
relational logit model as follows:

s
x xγ α βγ= +

where

10.5ln x
x

x

l
l

γ
 −

=  
 

and superscript ‘s’ designates values based on a standard life 
table.

The fitted life table is then generated from the standard 
life table using the coefficients  and  as follows:

fitted s
x xγ α βγ= +

and

( )
1

exp 1 2
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x

l
γ

=
+

.

The smoothed mortality rates are derived from this life table 
as follows:
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fitted
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i.e.

( )5 5
5
2

fitted fitted
x x x xT T l l+ += + +

and  is the age above which the life table has no more 
survivors.

Worked example
This example uses data on the numbers of women in the 
population from the El Salvadorian Census in 1961 and on 
deaths from vital registration for the calendar year 1961. 
The example appears in the BGB_El Salvador workbook. 
The reference date for the 1961 Census was midnight 
between 5 and 6 May, so the date of the census is entered as 
1961/05/06 on the Introduction sheet.

Step 1: Cumulate population, deaths and migrants 
downwards
One accumulates the numbers in the population and deaths 
from the oldest age downwards (Table 20.1).

Step 2: Calculate the person-years of life lived, PYL(x+)
As the deaths are recorded over a single year, the person-
years of life lived (column 2 of Table 20.2) are simply the 
cumulated numbers in the census (i.e. the same as column 4 
of Table 20.1) as multiplying by one leaves the numbers 
unchanged.

Step 3: Calculate the number of people who turned x in 
the population, N(x)
The numbers of people who turned x are shown in the third 
column of Table 20.2. For example, the number who turned 
70 is estimated as follows:

( )
1
21(70) 14964 11205 2589.8

5
N = × = .

Step 4: Calculate partial birth and death rates, b(x+) 
and d(x+)
The partial birth and death rates are given in the fourth 
and fifth columns of Table 20.2. For example these are, for 
age 20:

23825(20 ) 0.0400
595352

b + = =

and 5653(20 ) 0.0095
595352

d + = = .

Table 20.1  Calculation of the cumulated population and deaths, 
El Salvador, 1961 Census

Age 5Nx 5Dx N(x+) D(x+)
0–4 214,089 6,909 1,274,253 13,652
5–9 190,234 610 1,060,164 6,743

10–14 149,538 214 869,930 6,133
15–19 125,040 266 720,392 5,919
20–24 113,490 291 595,352 5,653
25–29 91,663 271 481,862 5,362
30–34 77,711 315 390,199 5,091
35–39 72,936 349 312,488 4,776
40–44 56,942 338 239,552 4,427
45–49 46,205 357 182,610 4,089
50–54 38,616 385 136,405 3,732
55–59 26,154 387 97,789 3,347
60–64 29,273 647 71,635 2,960
65–69 14,964 449 42,362 2,313
70–74 11,205 504 27,398 1,864
75+ 16,193 1,360 16,193 1,360

Step 5: Plot graph, fit line and estimate completeness, c
In order to plot the graph and fit the line to all of the data 
points, one starts by setting the lower age to 5 and the 
upper age to A–1, where A represents the age at the start 
of the open age interval (75 in this example). The plotted 
values of b(x+) against d(x+) are shown in Figure 20.1 and 
the coefficients of the straight line fitted to these points are 
estimated as follows:

0.020547 1.0756
0.019103

y

x

b
σ
σ

= = =

0.05686 1.0756 0.02407 0.031a = − × = .

Inspection of the diagnostic plots in Figure 20.1 suggests that 
all but the last (most right-hand) two points lie acceptably
close to the fitted line with little evidence of significant 
migration. Although the residuals of the last two points fall 
just within the 1 per cent tolerance limits and one could use 
the estimate of completeness of 93 per cent, it is a useful check 
to consider the estimate if those two points were dropped.
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Age PYL(x+) N(x) b(x+) d(x+) = X b(x+) = Y a+bx
Residuals 
y –(a+bx)

0–4 1,274,253 0.00000 0.03097
5–9 1,060,164 40,362 0.03807 0.00636 0.03807 0.03782 0.00026

10–14 869,930 33,733 0.03878 0.00705 0.03878 0.03856 0.00022
15–19 720,392 27,348 0.03796 0.00822 0.03796 0.03981 –0.00185
20–24 595,352 23,825 0.04002 0.00950 0.04002 0.04119 –0.00117
25–29 481,862 20,399 0.04233 0.01113 0.04233 0.04294 –0.00061
30–34 390,199 16,880 0.04326 0.01305 0.04326 0.04501 –0.00175
35–39 312,488 15,057 0.04818 0.01528 0.04818 0.04741 0.00077
40–44 239,552 12,889 0.05380 0.01848 0.05380 0.05085 0.00295
45–49 182,610 10,259 0.05618 0.02239 0.05618 0.05506 0.00112
50–54 136,405 8,448 0.06193 0.02736 0.06193 0.06040 0.00153
55–59 97,789 6,356 0.06500 0.03423 0.06500 0.06779 –0.00279
60–64 71,635 5,534 0.07725 0.04132 0.07725 0.07542 0.00183
65–69 42,362 4,186 0.09881 0.05460 0.09881 0.08970 0.00911
70–74 27,398 2,590 0.09452 0.06803 0.09452 0.10415 –0.00963
75+ 16,193

Table 20.2  Calculation of the person-years lived, the number 
reaching age x, partial birth and death rates and residuals, El 
Salvador, 1961 Census

Figure 20.1  Diagnostic plots: open interval of 75+, El Salvador, 
1961 Census 
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The completeness of reporting of deaths, c, is derived 
from these values of a and b as follows:

( )( )
0.031 0.16

1 exp 0.031 1961.34 1961.5
1.0756

1 92.51%.
1.0756

c

e ×

= −

= =

Dropping the last two points (by setting the upper age of 
the chosen range to 64) produces the diagnostic plots shown 
in Figure 20.2 and an estimate of completeness of 89 per 
cent, which is sufficiently close to suggest that it is unneces-
sary to drop the last two points. Dropping only the last point 
produces a big change in the estimate (to 82 per cent) and a 
poorer fit for some of the points to the left, which suggests 
that this is probably not the best course of action. As a general 
rule, it is not recommended in a population with significant 
digital preference to truncate at an age ending in zero.

Step 6: Estimate mortality rates adjusted for 
incompleteness of reporting of deaths
The population as at the mid-point of the period over which 
the deaths were recorded is estimated by adjusting the 
census population for the growth between the two dates at 

the estimated growth rate of 3.1 per cent. These estimates 
are shown in the second column of Table 20.3. For example 
for the 15–19 age group the number is estimated as follows:

( )( )5 15

0.031 0.16

( ) 125040 exp 0.031 1961.34 1961.50

125040 125662.3.
mN t

e ×

= × −

= =

Next the deaths are adjusted for incompleteness by dividing 
the number of reported deaths in each age group by the 
estimate of completeness. These numbers are shown in 
column 3 of Table 20.3. For example, for the 15–19 age 
group the number is derived from the number of reported 
deaths (shown in column 3 of Table 20.1), 266, as follows:

266
287.5

0.9251
= .

The adjusted person-years of life lived (column 4 of 
Table 20.3) are the numbers in the population at the mid-
point of the period over which the deaths have been recorded 
(column 2 Table 20.3) multiplied by the length (in years) of 
the period over which the deaths are recorded, which in this 
case is 1 year.

The mortality rates adjusted for incompleteness of 

Figure 20.2  Diagnostic plots: open interval of 65+, El Salvador, 
1961 Census 
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reporting of deaths (column 5 of Table 20.3) are derived by 
dividing the adjusted deaths by the adjusted person-years of 
life lived. For example, for the 15–19 age group the adjusted 
rate is calculated as follows:

287.60 0.0023
125662

= .

Table 20.3  Calculation of adjusted mortality rates, El Salvador, 
1961 Census

Age Adjusted 
5Nx(tm)

Adjusted 

5Dx

Adjusted 
PYL(x,5)

Adjusted 
5mx

0–4
5–9 191,181 659 191,181 0.0034

10–14 150,282 231 150,282 0.0015
15–19 125,662 288 125,662 0.0023
20–24 114,055 315 114,055 0.0028
25–29 92,119 293 92,119 0.0032
30–34 78,098 340 78,098 0.0044
35–39 73,299 377 73,299 0.0051
40–44 57,225 365 57,225 0.0064
45–49 46,435 386 46,435 0.0083
50–54 38,808 416 38,808 0.0107
55–59 26,284 418 26,284 0.0159
60–64 29,419 699 29,419 0.0238
65–69 15,038 485 15,038 0.0323
70–74 11,261 545 11,261 0.0484
75+ 16,274 1,470 16,274 0.0903

Step 7: Smooth using relational logit model life table
Estimates of probabilities of women aged x dying in the next 
5 years, 5qx, estimated from the adjusted rates of mortality, 
are shown in the second column of Table 20.4. For example, 
the probability of a 15-year old woman dying before 
reaching age 20 is calculated as follows:

5 15

5 0.00229
0.0114

1 2.5 0.00229
q

×
= =

+ ×
.

The life table proportions of five-year olds alive at age x + 5 
estimated from the proportion alive at age x using these 
values appear in column 3 of Table 20.4. For example, the 
proportion alive at age 20 is calculated as follows:

l20 = 0.9754(1 – 0.0114) = 0.9643.

The logit transformations of the proportions surviving 
appear in column 4 of Table 20.4. For example, the logit 
transformation of the l20 is calculated as follows:

20
1 0.96430.5ln 1.6477

0.9643
γ − = = − 

 
.

The logit transformation of the conditional life table for 
females based on the West family of Princeton model life 
tables with e0=60 in column 5 of Table 20.4 appears in 
column 6 of Table 20.4. As can be seen from Figure 20.3, 
the West model appears to fit the data well, with the possible 
exception of the youngest ages.

The coefficients  and  are determined as the intercept 
and slope, respectively, of the straight line fitted to the logit 
transformations in columns 4 and 6 of Table 20.4 over the 
range of ages chosen by the user (45 and 75 in this example), 
namely 0.0211 and 0.9672 respectively.

These coefficients are then applied to the logit transfor-
mation of the conditional model life table to produce the 
fitted logits in column 7 of Table 20.4. Thus, for example, 
the fitted logit at age 20 is calculated as follows:

( )20 0.0211 0.9672 1.7060 1.671fittedγ = − + × − = − .

These values are then used to produce the fitted life table in 
column 8 of Table 20.4. For example, the value at age 20 is 
calculated as follows:

( )( )20
1 0.9658

exp 1 2 1.671
fittedl = =

+ × −
.

The conditional years of life lived, Tx, which appear in 
column 9 of Table 20.4 are then calculated from the fitted life 
table and these numbers are used to produce the smoothed 
mortality rates which appear in column 10 of Table 2.4. For 
example, for age 80:

( )80
50.577 0.2695 0.132 1.575
2

T = + + =

5 80
.2695 0.132 0.137
1.575 0.571

fittedm −
= =

−
.

Diagnostics, analysis and 
interpretation
Checks and validation
The example above was taken from Manual X (UN Population 
Division 1983) which produced an estimate of completeness 
of around 83 per cent from application of both this method 
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Age 5qx lx/l5 Obs. Y(x) Princeton 
West l s(x) Y s(x) Fitted Y(x) Fitted l(x) T(x) Smooth 

5mx

0
5 0.0171 1 1.0000 1 61.957 0.0025

10 0.0077 0.9829 –2.0258 0.9890 –2.2506 –2.1978 0.9878 56.987 0.0018
15 0.0114 0.9754 –1.8394 0.9805 –1.9585 –1.9153 0.9788 52.071 0.0027
20 0.0137 0.9643 –1.6477 0.9681 –1.7060 –1.6710 0.9658 47.209 0.0035
25 0.0158 0.9511 –1.4836 0.9519 –1.4928 –1.4649 0.9493 42.421 0.0039
30 0.0216 0.9361 –1.3419 0.9337 –1.3226 –1.3003 0.9309 37.721 0.0045
35 0.0254 0.9159 –1.1938 0.9132 –1.1766 –1.1590 0.9104 33.118 0.0051
40 0.0314 0.8926 –1.0588 0.8899 –1.0447 –1.0314 0.8872 28.624 0.0061
45 0.0407 0.8646 –0.9269 0.8628 –0.9194 –0.9103 0.8606 24.254 0.0076
50 0.0522 0.8294 –0.7906 0.8299 –0.7925 –0.7875 0.8285 20.031 0.0105
55 0.0765 0.7861 –0.6507 0.7863 –0.6514 –0.6511 0.7862 15.994 0.0146
60 0.1122 0.7259 –0.4870 0.7289 –0.4946 –0.4995 0.7308 12.202 0.0222
65 0.1493 0.6445 –0.2974 0.6490 –0.3074 –0.3184 0.6540 8.740 0.0339
70 0.2158 0.5482 –0.0968 0.5427 –0.0856 –0.1039 0.5517 5.725 0.0545
75 #N/A 0.4299 0.1411 0.4062 0.1898 0.1625 0.4194 3.297 0.0871
80 #N/A #N/A #N/A 0.2545 0.5373 0.4986 0.2695 1.575 0.1370
85 #N/A #N/A #N/A 0.1201 0.9956 0.9419 0.1320 0.571 0.2084

Figure 20.3  Observed logits and adjusted mortality rates against 
expected derived from the female West model life table, El Salvador, 
1961 Census

Table 20.4  Calculation of smoothed mortality rates using a 
relational logit model life table, El Salvador, 1961 Census
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and the Preston and Coale method. The difference between 
these estimates and the one produced in this application 
(93 per cent) appears to be due largely to the method used to 
fit the line combined with the points used to fit the line. The 
Method sheet in the BGB_El Salvador workbook (see website) 
uses orthogonal regression while Manual X applied ‘grouped 
means’ to points up to age 60, and ‘trimmed means’ – thus 
effectively removing the impact of the final data point. This 
difference suggests that a case could be made for dropping 
the last two points in the example on the grounds that the 
regression is unduly influenced by points at the extremes of 
the axes. However, as indicated above, the effect of doing 
this when using orthogonal regression to fit the line is not 
particularly significant.

Interpretation
A problem that often arises with deciding on the ‘upper age’ for 
fitting the straight line is that estimates of completeness may 
vary quite considerably due to the exclusion of a single point. 
For example if one were to choose 70+ as the open interval 
the diagnostic plots would look as shown in Figure 20.4 
and the estimate of completeness would be 82 per cent. The 
diagnostic plots, on their own, do not suggest that this fit 
is particularly worse than that using a 65+ open interval. 

In such cases one should calculate the estimate for several 
open intervals and use one which represents the estimate of 
completeness closest to the majority, or the median. Thus in 
this case the estimate of completeness for the open interval 
60+ is 91 per cent, suggesting that the deaths are around 
90 per cent complete. However, as pointed out above, as a 
general rule, it is not recommended in a population with 
significant digital preference to truncate at an age ending 
in zero.

Method-specific issues with 
interpretation
Source of reported deaths
Generally there are two sorts of problems with the deaths 
data: those that lead to under/over coverage that is constant 
by age, which is precisely what the method is intended to 
address, and those which lead to differential coverage by 
age, which can distort the estimates. Although the general 
approach remains essentially the same irrespective of the 
source of the death data, different sources of data are prone 
to different biases which might impact on the interpretation 
of the results. These differences are illustrated by way of 
particular examples, but, in general terms, you need to look 
out for the following biases in the death data.

Figure 20.4  Diagnostic plots: open interval of 70+, El Salvador, 
1961 Census
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1) Vital registration
If the proportionate split of the population between urban 
and rural (or appropriate proxies) areas differs significantly 
by age and the completeness of reporting of deaths in urban 
areas is significantly higher than it is in rural areas, then the 
assumption that completeness is independent of age is likely 
to be violated by a falling off of completeness with age at ages 
over 50, if a proportion of people move from urban to rural 
areas on retirement. If ignored, this violation is likely to lead 
to an underestimate of the average level of completeness.

2) Deaths reported by households in censuses/surveys
The data are subject to three potential problems:
•	 If a significant proportion of households dissolve on the 

death of a key person (e.g. the sole breadwinner), then 
the deaths of such people go unreported, leading to a 
violation of the assumption that completeness is invariant 
with age. If a significant proportion of deaths in some 
age groups are of individuals who do not live in private 
households (for example, they live in homes for the 
elderly), the breach of the assumption could be even more 
severe. However, this is not an issue in most developing 
countries.

•	 In situations where young adults leave the home they grew 
up in to work in urban areas, it is possible that they are re-
garded as being members of more than one household (or 
of neither household) and their deaths could be reported 
more than once (or not at all), again leading to a violation 
of the assumption of constant reporting of deaths by age. 
In this case, one can limit the impact by ignoring the data 
below a specific age in determining completeness.

•	 Reference period error: Since there is often confusion 
about the exact period for which deaths are to be 
reported, in addition to uncertainty about exact dates of 
death, it is possible for there to be overall under- or over-
reporting of deaths. Provided one can assume that this is 
independent of the age of the deceased, this distortion 
will be accounted for in the estimate of completeness and 
is not a problem for estimating mortality rates.

3) Deaths recorded in health facilities
Little is known about how well this source of data works. 
However, it can be expected that completeness would 
depend on the distribution of health services from which the 
data have been gathered, and in many developing countries 
such services are likely to be concentrated in urban areas. So 

again, if the proportion of the population living in urban 
rather than rural areas varies with age, then completeness 
cannot be assumed to be independent of age. It is also 
possible that certain causes will predominate in facilities 
and, if these causes are significant and age-related, this could 
lead to a further violation of the assumption of constant 
completeness by age.

In all such cases, the plotted points will lie progressively above 
the fitted line at the older ages leading to an underestimate 
of completeness. The estimate will be improved, although 
still biased downward slightly, by excluding the points at the 
highest ages from determining the fitted line.

Detailed description of method
Mathematical exposition
Although the Brass Growth Balance method is simply a 
special case of the Generalized Growth Balance method, with 
the growth rate of the population aged x+, r(x+) constant 
for all ages, it might be of assistance to understanding these 
methods to describe the specific case as well.

Brass’s Growth Balance method (Brass 1975) has its 
origins in work by Carrier (1958) who first proposed a way of 
estimating mortality from the age distribution of deaths. The 
method derives from the relationship found in the balancing 
equation for a population closed to migration. In such a 
population the number of people in the population at time 
t2 is the number at time t1, plus the births that have occurred 
between time t1 and t2, less the deaths that have occurred 
between times t1 and t2, i.e. 0 2 0 1( ) ( )N t N t B D∞ ∞= + − , 
where B and D are the births and deaths, respectively, that 
occurred between times t1 and t2. This equation can be 
generalized to hold for any population aged x and older, 
provided we have an estimate of the number of people who 
turned x (i.e. joined the age interval through aging) between 
the times t1 and t2, Nx, and the number of deaths aged x and 
older that occurred between times t1 and t2, Dx. Thus

	 2 1( ) ( )x x x xN t N t N D∞ ∞ ∞= + − .	 (1)

If we rewrite Equation 1 as

2 1( ) ( )x x x xN t N t N D∞ ∞ ∞− = −

and divide through by the person-years of exposure between 
times t1 and t2 we can express the balance equation in terms 
of rates, i.e.
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	 r(x+) = b(x+) – d(x+),	 (2)

where
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b(x+) and d(x+) are often referred to as partial or segmental 
birth and death rates, respectively.

These relationships only hold if there is complete and 
accurate recording of birthdays and deaths by age between 
times t1 and t2, and counting of the population by age at 
times t1 and t2.

Now suppose that all data are accurate except that the 
deaths are incompletely reported. Suppose further that one 
can assume (at least above a certain age – typically con-
fined to adult ages) that a fixed proportion, c, of deaths 
are reported independent of the age of the deceased. Then 

r
x xD D c∞ ∞= , where r

xD∞  represents the number of re-
ported deaths aged x and older, and Equation 2 becomes 
( ) ( ) ( )rr x b x d x c+ = + − + , where

2
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( ) .
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r
r x
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xt

Dd x
N t dt
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∫

If we further assume that the population is stable, growing 
at a constant rate of r a year, then this equation can be 
rearranged as follows: b(x+) = r + kdr(x+). Thus, if one fits 
a straight line to the points (b(x+), dr(x+)), the intercept 
provides an estimate of the growth rate, r, and the reciprocal 
of the slope, k, provides an estimate of the completeness of 
reporting of the deaths, c.

Mortality rates by age group, 5mx, are then estimated as

2

1

5
5

( )

r
x

x t

xt

D c
m

N t dt∞

=
∫

.

Implementation of the method
Assume that in practice one has data on the following: the 
number of reported deaths over a number of years, from 
times t1 to t2, in five-year age groups, 5

r
xD , up to an open 

interval at age A, r
AD∞ ; and the number of people in the 

population in the middle of this period, in the same age 
groups, 5Nx up to NA. These data can then be used to apply 
the method by computing r

xD∞  and Nx, and approximating 

( )5 5 5 10x x xN N N−= +  or ( )
1
2

5 5 5 5x x xN N N−= ⋅  and 

( )2

1
2 1( )

t

x xt
N t dt N t t∞ ∞= −∫ .

If, instead of the population in the middle of the period, 
one had the population at some other time, say t, then one 
can apply the method using that population instead. The 
only difference is that the estimate of completeness will be 
relative to the population at time t as if it was the population 
as at the midpoint of the period. In other words, assuming 
the population to be stable, ( )2 1( ) 2( ) r t t t

x xN t N e − −
∞ ∞=  and 

the completeness relative to this population is ( )2 1( ) 2r t t tce − − , 
the mortality rates derived by dividing the reported number 
of deaths corrected for this level of completeness by ( )xN t∞  
will give the same rates as one would obtain if one had had 
estimates of the population by age group in the middle of 
the period.

Fitting of the straight line
There are two aspects to determining the straight line that 
best represents the relationship between the partial birth and 
death rates, namely, the choice of method and the choice of 
points used to determine the slope and intercept.

Fitting the straight line using unweighted least squares 
regression is not recommended since this method gives too 
much weight to the values at the older ages, which tend to 
be less reliable. Thus, it is recommended that one fit the line 
using a more robust method such as the ‘mean’ line (i.e. 
the line defined as that joining the two points represented 
by the mean of the vertical axis values and the mean of the 
horizontal axis values of the first half and the second half of 
the age range) or the ‘trimmed mean’ line (i.e. the same as the 
mean line except that the average of the points is a weighted 
average – weighting the less reliable points, usually at the 
extremes, less than the other points). These methods are 
explained in detail in the Manual X (UN Population Division 
1983: 144–145). An alternative is described in more detail in 
the UN Manual on Adult Mortality (UN Population Division 
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2002: 105–110). The alternative is similar to the ‘mean’ line, 
except that one splits the range of points into three equally 
sized groups,1 and determines the line that joins the medians 
of the independent and dependent variables in the lowest 
third and the highest third of points.

Bhat (2002) points out that each method has its draw-
backs and suggests, since it does not matter whether the 
partial birth or partial death rates are treated as dependent 
variable, that orthogonal regression is the best method for 
dealing with age misstatement. This reflects both vertical 
and horizontal distance from the line (by minimizing the 

orthogonal residual sum of squares (ORSS) 
2 2

2 2
i i

i i i

x y
x y+∑ ).

Using this method c, the completeness of the death 
reporting, is estimated as the ratio of the standard deviation 
of the partial death rates to the standard deviation of the 
partial birth rates. The intercept is the mean of the partial 
birth rates, minus the mean of the partial death rates divided 
by c. This is the approach used in the applications of the Brass 
Growth Balance method in the workbooks (see website).

Limitations
The major limitations of the method as described above and 
provided for in the spreadsheet are that it requires that the 
population be stable and closed to migration and it should 
not be applied when these conditions do not apply to any 
significant extent. By way of example of inappropriate usage, 
application of this method (data available in the GGB_
South Africa_males workbook) to estimate completeness 
of reporting of deaths in South Africa between the 2001 
Census and a census replacement survey in 2007, estimating 
the population in the middle of the period as the average 
of the two survey populations, provides an estimate of 
completeness, using the same age range, of 85 per cent. 
Increasing the minimum age of range of the data used to 
fit the straight line to 35 increases the estimate to 88 per 
cent, still somewhat lower than the estimate of 92 per cent 
produced using the Generalized Growth Balance method.

This method is less vulnerable to age misreporting than the 
Preston and Coale method. In particular, for example, the 
common tendency to exaggerate the age reported at death 

1	 Where it is not possible to divide the total number of points, 
n, into three equally sized groups then the highest and lowest 
group are taken as the top and bottom, respectively, int(n/3)+1 
points.

(relative to that recorded at census) will manifest itself by the 
plotted points falling off to the right (i.e. below the fitted line) 
over the range of exaggerated ages and this can be allowed 
for when deciding which points to use to fit the line. The 
method is, however, more vulnerable to the effects of desta-
bilization resulting from a rapid decline in mortality (Martin 
1980), in which case it tends to underestimate the extent of 
completeness since the lighter mortality is “interpreted” by 
the model as increased under-reporting (i.e. steeper slope). 
However, simulation has shown (Rashad 1978) that the bias 
resulting from a slow steady improvement in mortality (as 
has been experienced by some developing countries in the 
absence of epidemics, famine and wars) is quite small.

As far as changes in fertility rates are concerned, provided 
these have occurred not more than 15 years ago these 
changes will have little impact on the performance of the 
method since they affect mainly the youngest age groups.

Migration is likely to affect the young adult population 
(mainly between 20 and 35) but to have much less effect 
on deaths, which largely occur in old age. Unaccounted-
for immigration will tend to lower the slope and hence 
lead to an over-estimate of the extent of death registration 
and an underestimate of mortality rates. Unaccounted-for 
emigration will have the opposite effect. Some demographers 
advocate fitting the straight line to data down to age 5 to limit 
the effect of unaccounted-for migration, on the assumption 
that any differences in completeness of reporting of deaths 
at these younger ages from that of the older ages is unlikely 
to lead to any major distortions since mortality is very light 
between ages 5 and 14. However, it is doubtful that this 
adaptation removes much of the bias.

Alternatively one could confine the fit to points above age 
35 to remove the bulk of the effect of migration. However, 
often the data at the older ages is more suspect making the 
estimate of completeness less reliable. Although using these 
adaptations probably produces better estimates than simply 
ignoring migration, there is, unfortunately, little research 
into the accuracy of the estimated completeness produced 
by these adaptations.

Technically, if one had reliable estimates of net migration 
by age, one could adapt the method by replacing the partial 
birth rate b(x+) by b(x+) – i(x+), where i(x+) is the net 
in-migration rate, in deriving the fitted line. However, in 
practice, in situations where one has to apply this method 
one rarely has sufficiently reliable estimates of net migration 
by age to warrant adapting the method.
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Fluctuations in the completeness of death registration 
with age are likely to introduce curvature in the pattern of 
points. Consequently, one of the strengths of this method 
is that if the points for successive age boundaries fall on a 
reasonably straight line, then it is probably reasonable to 
assume that completeness is constant with respect to age. 
However, where some but not all the points lie on a straight 
line one way of deciding which points to discard is to 
calculate the segmental growth rate for each successive open 
interval and then use those points for which the values of ra+ 
are reasonably consistent.

Perhaps the most important limitation of the method 
is that the plot of partial birth rates against partial death 
rates is, with the exceptions mentioned above, diagnostically 
quite limited. In particular, simulations of a demographically 
stable population which then suffers an increase in mortality 
due to HIV/AIDS with a population prevalence of 11 per 

cent, produce a plot of points which to all intents and 
purposes fit a straight line but underestimate the level of 
completeness, even if one confines the fit to ages over 45. 
The lesson is that, if the points do not fall on a straight line, 
there are problems with the data; however, if the points do 
fall on straight line, you cannot be certain that the estimates 
of completeness and coverage are correct.

Extensions
If one had accurate data and a reliable, independent, estimate 
of r (and the population is stable) then one could reformulate 
Equation 2 to estimate c(x+), the completeness of each open-
ended age group, as follows: ( )( ) r

x x xc x D N r N∞ ∞+ = − . 
However, in practice it is rare to find a sufficiently stable 
population with sufficiently accurate age reporting to make 
such an exercise worthwhile.

Further reading and references
Since this method is a particular case of the more general 
Generalized Growth Balance method, readers are referred to 
Chapter 24 for further reading.
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Chapter 21  The Preston and Coale method
Rob Dorrington

Description of method
The Preston and Coale method (Preston, Coale, Trussell et al. 
1980) is the second of what later became known as the Death 
Distribution Methods for estimating the completeness of the 
reporting of deaths relative to an estimate of the population 
at one point in time. It makes use of the observation that the 
number of people of a given age alive at a point in time must 
be equal to the number of people from that cohort who die 
from that point in time onward. If the population is stable 
(i.e. a population with an unchanging age distribution – at 
least for adult ages – growing at a constant rate, r, each year) 
and closed to migration, and the reported data are accurate, 
the number of deaths aged x, t years in the future, will equal 
the number of deaths aged x currently, multiplied by e rt. It is 
thus possible to estimate the current population aged y using 
only current deaths by age above age y and the stable growth 
rate r. If the number of current deaths is under-reported, 
but can be assumed to be under-reported to the same extent, 
c, at every age, then the estimate of the future number of 
cohort deaths will be underestimated to the same extent. 
Thus, it is possible to estimate the completeness of reporting 
of deaths by dividing the sum of the estimates of future 
cohort deaths derived from the number of deaths at any date 
by the population at the same date. Mortality rates can then 
be estimated by dividing the numbers of deaths reported in 
each adult age group by c and then dividing these numbers 
by an estimate of the population exposed to risk.

The method is a particular case of the more general 
Synthetic Extinct Generations method, which requires 
estimates of the population at two points in time but does 
not require that the population is stable. Readers are referred 
to that chapter for further detail on the method. It is included 
in this manual as a method that might be considered when 
one has an estimate of population numbers at only one 
point in time.

Data requirements and assumptions
Tabulations of data required
•	 Number of deaths of women (men), by five-year age 

group, and for open age interval A+ (with A as high as 
possible), over a specific period.

•	 Number of women (men), by five-year age group, and for 
open age interval A+, at or close to the period over which 
the deaths were measured.

Important assumptions
•	 The population is stable, although this assumption can be 

relaxed to some extent (see below).
•	 The completeness of reporting of deaths is the same for all 

ages above a minimum age (usually age 15).
•	 The population is closed to migration, although this 

assumption can be relaxed if net migration is small relative 
the mortality rates, or if one has reasonably accurate 
estimates of the number of migrants by age to allow for 
in the balance equation (which is very seldom the case).

Preparatory work and preliminary 
investigations
Before applying this method, you should investigate the 
quality of the data at least in the following dimensions:
•	 age structure of the population;
•	 sex structure of the population;
•	 age structure of the deaths; and
•	 sex structure of the deaths.

Caveats and warnings
In applying this method, analysts must take particular care 
with the following.
•	 The interpretation and estimation processes need to take 

into account the source of death data (vital registration, 
reported by households in censuses, or deaths in hospitals) 
as explained below.
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•	 If applying the method to sub-national geographic areas, 
the issue of migration typically becomes a greater concern.

•	 Deciding the age range which is to be used to determine 
the growth rate (i.e. such that the age-specific estimates of 
completeness minimize the absolute difference from the 
mean estimate of completeness). Issues here are whether 
the best estimate of the growth rate to use is the intercept 
determined as a result of applying the Brass Growth 
Balance method to the same data (which would be the 
case if completeness was thought to decrease among the 
elderly, perhaps associated with retirement), and whether 
to exclude ages below 30 or 35 because of the impact of 
migration which has not been allowed for specifically.

•	 Deciding on the age range to use for determining the 
estimate of completeness. Typically, this range might 
exclude young adults if there is significant unaccounted-
for migration, and old people if the results suggest that 
fewer of their deaths are reported than deaths of younger 
adults.

•	 Ensuring that the Solver routine in Excel has run satisfac-
torily (i.e. has produced a sensible result). Occasionally 
Solver offers a solution which is manifestly too low. In 
such situations it is best to adjust delta manually in the 
right direction and apply Solver to this new starting value.

•	 Ensuring that the estimate of life expectancy at the age of 
the open interval is reasonable. Often the data on older 
people are scanty and particularly prone to errors. Thus, 
estimates of life expectancy based on these data can be 
implausible (usually too high).

•	 If completeness of reporting of deaths appears to be less 
than 60 per cent, then caution is advised in applying this 
method as the uncertainty about the estimate is large.

Application of method
The method is applied in the following steps.

Step 1: Set the initial growth rate
The growth rate can be estimated initially either from 
estimates of the total population above a certain age (chosen 
to best match the assumption that population is stable) at 
two time points or as estimated from the application of the 
Brass Growth Balance method. In the first instance, if one 
has estimates of the total population at time points t1 and t2, 
one would estimate the growth rate as follows:

( )2 1

2 1

ln ( ) ( )x xN t N t
r

t t
∞ ∞=

−

where Nx(t ) is the population aged x and older at time t.

Step 2: Estimate the life expectancy at age A and five-
year age intervals down to 65
This can be done in one of several ways.
1)	�Use estimates from an independent source if reliable 

estimates are available. Possible sources would be estimates 
produced by previous research or from population 
projections such as the World Population Prospects (UN 
Population Division 2011).

2)	�Use the estimates derived from the data after applying 
the Brass Growth Balance method. The workbook imple-
menting that method produces such estimates as part of 
the output.

3)	�Use the ratio of the reported deaths in the age group 10 
to 39 last birthday to those in the age group 40 to 59 last 
birthday (30D10/20D40) to determine (by comparison) a 
level of the West model life table, from which estimates of 
life expectancy can be read. These estimates are included 
as part of the workbook implementing this method. 
Unfortunately, since the West model life table does not 
reflect mortality resulting from HIV/AIDS, this approach 
is unsuitable for countries that have significant numbers 
of AIDS deaths.

4)	�Solve for the life expectancy iteratively by starting with 
a reasonable guess such as one estimated from the West 
table (although in some cases this may not work in 
countries with significant numbers of AIDS deaths) or 
from an independent source. Then estimate completeness 
(as described below), copy the life expectancies from 
the Life expectancies spreadsheet of the associated 
workbook, paste the values into the Method spreadsheet 
of the associated workbook and re-estimate completeness. 
Repeat if necessary until the change to life expectancies is 
no longer significant. Unfortunately, if there are reasons 
for suspecting that, even after correcting the rates for 
incompleteness, mortality is underestimated at the older 
ages (for example, if there is significant age exaggeration, 
or relatively higher incompleteness at the older ages) 
this approach will overestimate the life expectancies and 
hence overestimate the overall level of completeness of 
reporting.
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Step 3: Estimate the number of people who turned x, 
and the number aged x to x + 4 last birthday, from the 
reported deaths
The number of people who turned x during the period 
over which the deaths were reported is estimated from the 
reported deaths as follows:

( ) ( )5 5
ˆ ˆ exp 5 exp 2.5x x xN N r D r+= +

and
( ) ( )( )2ˆ exp 6A A A AN D r e r e∞= × − ×

where A is the age at the start of the open interval, r is the 
annual population growth rate, and eA is the life expectancy 
at age A.

The number of people who were aged between x and x + 4 
last birthday during the period over which the deaths were 
reported is estimated from the numbers who turned x in 
five-year intervals as follows:

( )5 5
ˆ ˆ ˆ2.5 .x x xN N N += +

Step 4: Estimate the number of people who were aged x 
to x + 4 last birthday during the period over which the 
deaths are reported, from the census population
The number of people who were aged x to x + 4 last birthday 
during the period over which the deaths are reported is 
estimated from the census population by simply multiplying 
the numbers in the population in that age group by the 
length of the period over which the deaths are reported 
(measured in years).

Step 5: Calculate the ratios of the estimates of the 
population aged x to x + 4 last birthday and the ratios of 
the population aged x to A–1 last birthday derived from 
deaths to those derived from the census population
Two sets of ratios of the estimates derived from the deaths 
to those derived from the census population are calculated. 
The first is the ratios in quinquennial age groups, which are 
calculated directly. The second is the ratios of the numbers 
from age x to the age of the open interval, A, with the 
numbers of people who turned x to A–1 during the period 
being calculated as the aggregate of the numbers in five-year 
age groups between ages x and A–5. In other words,
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ˆ ˆ
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A x x x
a x

N N
−

−
=
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Step 6: Estimate the completeness of reporting of deaths
In order to determine the level of completeness of reporting 
one first needs to decide if the initial choice of growth rate 
is correct. The interpretation of the plots of the ratios is 
discussed in more detail below. However, essentially the 
correct growth rate is identified as that which produces the 
most level set of ratios by age. The Method spreadsheet is set 
up so that Solver (Data, Solver, Solve) will find the growth 
rate that minimizes the absolute deviation from the mean of 
the ratios over the age range specified by the user.

If the initial estimate of the growth rate produces a 
level series of ratios across adult ages but with significant 
curvature downward at the older ages this could indicate 
a fall off in completeness at the older ages (as might be the 
case if, for example, people retired from urban areas to rural 
areas, where completeness of registration was lower). In 
such a situation it is important not to set the growth rate 
to produce a level set of ratios, but rather to use the initially 
chosen growth rate.

If one is also solving for the both growth rate and life 
expectancies iteratively, these values will need to be pasted 
from the Life expectancies spreadsheet into the Method 
spreadsheet and a new growth rate set. This process may 
need to be repeated two or three times, until there is no 
change in the life expectancies.

Finally, one decides on the age range of ratios to be used 
to determine the completeness. If there is a significant 
curvature upward at the older ages this probably indicates 
age exaggeration, particularly for deaths, and one needs to 
try and identify an age for the open interval below which the 
age exaggeration is not significant. If completeness drops off 
at ages below 35, this could indicate unaccounted for out-
migration. If this is suspected then one should exclude these 
ages from determining the growth rate or completeness.

Completeness is estimated from the age group-specific 
ratios. In order to produce a robust estimate, it is calculated 
as the sum of 50 per cent of the median plus 25 per cent of 
each of the 75th and 25th percentile of these ratios.

However, since this is an estimate of the completeness 
on the assumption that the census population was at the 
mid-point of the period over which the deaths have been 
recorded, it is desirable to correct for any difference between 
the time of the census and the mid-point of the period 
over which the deaths were recorded. In order to do this 
we multiply this estimate of completeness by the ratio of 
the census population to the estimate of the population at 
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time tm, on the assumption that the population, which is 
assumed to be stable, is growing at an annual growth rate 
estimated by a, i.e. ( )( )exp c ma t t−  where tc is the time of 
the census and tm is the mid-point of the period over which 
the deaths were recorded.

Step 7: Estimate mortality rates adjusted for 
incompleteness of reporting of deaths
In order to compute mortality rates one needs first to 
estimate the population in five-year age groups at the mid-
point of the period over which the deaths were recorded by 
multiplying the census numbers by ( )( )exp c ma t t− − .

Next, one needs to adjust the number of deaths for 
incompleteness by dividing the reported number of deaths 
by the estimate of completeness, c.

The person-years of exposure are estimated by multiplying 
the estimated population as at tm by the length of the period 
over which the deaths were reported, t.

Mortality rates adjusted for the incompleteness of the 
reporting of deaths are thus estimated as follows:

( )( )
5

5
5

.
exp

x
x

x c m

D c
m

t N a t t
=

× − −

Since both the numerator (through the estimate of c), 
and the denominator are adjusted by ( )( )exp c ma t t− − , 
skipping these adjustments (in Steps 6 and 7) would still 
produce the same estimates of mortality rates. The estimate 
of completeness, however, would be equivalent to what it 
would be if the population at tm was assumed to be that at tc.

Step 8: Smooth using relational logit model life table
Because the age-specific rates can be quite erratic they need 
to be graduated (smoothed). This can be achieved by fitting 
a Brass relational logit function to a sex-specific standard life 
table which is considered to have the same shape as that gen-
erated by the mortality in the population being investigated.

The workbooks (see website) contain a spreadsheet that 
allows one to produce a smooth set of mortality rates by 
using a relational logit model fitted to the life table generated 
by the adjusted mortality rates. The user can choose between 
the standard from the General family of United Nations 
model life tables or one from any of the four families of 
Princeton model life tables. A custom life table can be 
entered as standard if there is reason to assume that it better 
resembles the pattern of adult mortality in the population 
being studied.

In order to fit the model, probabilities of people aged 
x dying in the next 5 years, 5qx, are estimated from the 
adjusted rates of mortality as follows:

5
5

5

5
.

1 2.5
x

x
x

m
q

m
=

+

From this the life table with a radix of l5 = 1 is calculated as 
follows:

( )5 51 .x x xl l q+ = −

The coefficients,  and  are determined by fitting the 
relational logit model as follows:

s
x xγ α βγ= +

where

10.5ln x
x

x

l
l

γ
 −

=  
 

and the superscript s designates values based on a standard 
life table.

The fitted life table is then generated from the standard 
life table using the coefficients  and  as follows:

fitted s
x xγ α βγ= +

and

( )
1

exp 1 2
fitted

x fitted
x

l
γ

=
+

.

The smoothed mortality rates are derived from this life table 
as follows:

5
5

5

fitted fitted
fitted x x
x

x x

l l
m

T T
+

+

−
=

−

and fitted
fitted x
x

x

lm
T∞ =

where
( )5

,5

5
2

fitted fitted
x x x

x x

T l l
ω

+
=

= +∑
i.e.

( )5 5
5
2

fitted fitted
x x x xT T l l+ += + +

and  is the age above which the life table has no more 
survivors.

The life expectancies are derived as follows:

.x
x

x

Te
l

=
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In the case where one wants to estimate the life expectancies 
at the older ages iteratively, these values are then used to re-
estimate the completeness.

Worked example
This example uses data on the numbers of women in the 
population from the El Salvadorian census in 1961 and on 
deaths from vital registration for the calendar year 1961. 
The example appears in the PnC_El Salvador workbook 
(see website). The reference date for the 1961 Census was 
midnight between 5 and 6 May, so the date of the census is 
entered as 06/05/1961 on the Introduction sheet.

Step 1: Set the initial growth rate
The growth rate estimated using the population aged 10 and 
older from the 1950, 1961 and 1971 Censuses in Manual X 
is 2.8 per cent while that from the application of the Brass 
Growth Balance method to these data was 3.1 per cent, which 
is very close to the estimate derived from, as an example, the 
mid-year population estimates for 1955 and 1965 from the 
International Data Base of the US Census Bureau, as follows:

( )ln 3017852 2221139
0.0307

1965 1955
r = =

−
.

Step 2: Estimate the life expectancy at age A and five-
year age intervals down to 65
The estimates derived from the data after applying the 
Brass Growth Balance method are as shown in column 2 of 
Table 21.1.

The ratio of the reported deaths in the age group 10 to 
39 last birthday (1706) to those in the age group 40 to 59 

last birthday (1467) is 1706 1.16
1467

= . The life expectancies 

of the female West model life table which corresponds to 
this are determined (from the table in the Life expectancies 
spreadsheet of the workbook) by interpolation and are 
shown in column 3 of Table 21.1. For example for age 65:

( )65
1.171 1.169.50 9.86 9.50 9.552
1.171 1.115

e −
= + − =

−
.

Solving for the life expectancy iteratively by starting with 
the estimates from the West table produces an estimate of 
the growth rate (as explained in more detail below) of 3.065 
per cent and the final estimates of life expectancy which 
appear in column 4 of Table 21.1.

Table 21.1  Life expectancies from different sources, females, El 
Salvador, 1961 Census

x Brass Growth 
Balance

Princeton 
West

Iterative 
estimates

65 13.4 9.55 13.1
70 10.4 7.38 10.2
75 7.9 5.57 7.8
80 5.9 4.06 5.8
85 4.4 2.88 4.3

Since HIV/AIDS was not an issue in El Salvador back in 1961, 
one could use the estimates derived from the West life tables 
given in the Life expectancies spreadsheet of the workbook 
(see website) to estimate the completeness of reporting of 
deaths. However, for illustrative purposes the workbook has 
used the iterative estimates, even though comparison of the 
estimates in Table 21.1 (and of the observed mortality rate 
for the open age interval 75+ with that of the graduated 
rates) suggests that there is either age exaggeration or a fall-
off in completeness in the data above age 75 which is likely 
to lead to a slight overestimate in completeness.

Step 3: Estimate the number of people who turned x, 
and those aged x to x + 4 last birthday, from the reported 
deaths
The number of people who turned x during the period over 
which the deaths were reported as estimated from the num-
bers of deaths in each age group using an open interval of 
75+, the growth rate of 3.065 per cent and the estimate of 
life expectancy given in the fourth column of Table 21.1, are 
as shown in column 4 of Table 21.2. For example, the esti-
mate of the number of people who turned 70 in the period 
over which the deaths were reported is calculated as follows:

( )
( )75 2

exp .03065 7.76ˆ 1360 1712.11
0.03065 7.76 6

N
× 

= =  − × 

( )
( )

70
ˆ 1712exp 5 0.03065

504exp 2.5 0.03065 2539.76
N = ×

+ × = .

The number of people aged x to x + 4 last birthday during 
the period over which the deaths were reported, estimated 
from the reported deaths is given in column 5 of Table 21.2. 
For example, the number who turned 20 to 24 last birthday 
is calculated as follows:

( )5 20
ˆ 2.5 21542 18212 99382.90N = + = .
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Step 4: Estimate the number of people who were aged x 
to x + 4 last birthday during the period over which the 
deaths are reported, from the census population
As the deaths are recorded over a single year the number of 
people who aged x to x + 4 last birthday during the period 
over which the deaths were reported is the number in the 
census for that age group (i.e. the numbers in column 6 are 
the same as those in column 2 of Table 21.2) as multiplication 
by one leaves the numbers unchanged.

Step 5: Calculate the ratios of the estimates derived from 
deaths to those derived from the census population
The ratios of the numbers of people aged x to x + 4 last birth-
day during the period over which the deaths were reported 
estimated from the reported deaths to those estimated from 
the census are given in columns 7 and 8 of Table 21.2. 
Examples of these calculations for age 65 are as follows:

5 65

5 65

ˆ 14962 0.9999
14964

N
N

= =

10 65

10 65

ˆ 14962 10630 0.9779
14964 11205

N
N

+
= =

+
.

Step 6: Estimate the completeness of reporting of deaths
Although the estimate of the growth rate produced by the 
application of the Brass Growth Balance method produces 
a satisfactorily level series of ratios, for this example it was 
decided, for illustrative purposes, to solve for the growth 
rate and determine the life expectancies iteratively. This 
produced the plot of ratios shown in Figure 21.1.

Since there is no consistent trend (either upwards or 
downwards) apparent in Figure 21.1 the growth rate was 
determined using data for ages 5 to 74 by minimizing 
the deviations from the mean using Solver. Completeness 
was estimated from the ratios in the age range 15 to 64 to 
avoid the fluctuations in the estimates for completeness at 
the oldest ages (although this aspect of determining the 
estimate is fairly robust to fluctuations at individual ages). 
This produced an estimate of completeness of 89 per cent 
as follows:

( )( )
( )( )

0.5 0.8764 0.25 0.8575 0.9144

exp 0.0306 1961.34 1961.50
0.8812 1.005 88.6%.

c = × + +

−

= × =

Age 5Nx(tc) 5Dx Est Nx Est 5Nx Obs 5Nx c : 5Nx c : A – xNx

0–4 214,089 6,909 214,089
5–9 190,234 610 35,431 163,158 190,234 0.8577 0.8879

10–14 149,538 214 29,832 138,071 149,538 0.9233 0.8946
15–19 125,040 266 25,396 117,344 125,040 0.9384 0.8885
20–24 113,490 291 21,542 99,383 113,490 0.8757 0.8778
25–29 91,663 271 18,212 83,962 91,663 0.9160 0.8783
30–34 77,711 315 15,373 70,677 77,711 0.9095 0.8690
35–39 72,936 349 12,897 59,098 72,936 0.8103 0.8584
40–44 56,942 338 10,742 49,112 56,942 0.8625 0.8741
45–49 46,205 357 8,903 40,525 46,205 0.8771 0.8781
50–54 38,616 385 7,307 33,049 38,616 0.8558 0.8785
55–59 26,154 387 5,913 26,567 26,154 1.0158 0.8892
60–64 29,273 647 4,714 20,398 29,273 0.6968 0.8295
65–69 14,964 449 3,445 14,962 14,964 0.9999 0.9779
70–74 11,205 504 2,540 10,630 11,205 0.9487 0.9487
75+ 16,193 1,360

TabLe 21.2  Calculation of the numbers of people aged x to x+4 
from the reported deaths and from the census and the ratios of the 
estimates, El Salvador, 1961 Census
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Step 7: Estimate mortality rates adjusted for 
incompleteness of reporting of deaths
The population as at the mid-point of the period over which 
the deaths were recorded is estimated by adjusting the 
census population for the growth between the two dates at 
the estimated growth rate of 3.1 per cent. These estimates 
are shown in the second column of Table 21.3. For example, 
for the 15–19 age group the number is estimated as follows:

( )( )5 15

0.0306 0.16

( ) 125040 exp 0.0306 1961.34 1961.50

125040 125655.7.
mN t

e ×

= × − −

= =

Next the deaths are adjusted for incompleteness by dividing 
the number of reported deaths in each age group by the 
estimate of completeness. These numbers are shown in 
column 3 of Table 21.3. For example, for the 15–19 age 
group the number is derived from the number of reported 
deaths (shown in column 3 of Table 21.1), 266, as follows:

266
300.4

0.8855
= .

The adjusted person-years of life lived (column 4 of 
Table 21.3) are the numbers in the population at the mid-
point of the period over which the deaths have been recorded 

(column 2 Table 21.3) multiplied by the length (in years) of 
the period over which the deaths are recorded, which in this 
case is 1 year.

The mortality rates adjusted for incompleteness of 
reporting of deaths (column 5 of Table 21.3) are derived by 
dividing the adjusted deaths by the adjusted person-years of 
life lived. For example, for the 15–19 age group the adjusted 
rate is calculated as follows:

300.40 0.00239
125656

= .

Step 8: Smooth using relational logit model life table
Estimates of probabilities of women aged x dying in the next 
5 years, 5qx, estimated from the adjusted rates of mortality are 
shown in the second column of Table 21.4. For example, the 
probability of a 15-year old woman dying before reaching 
age 20 is calculated as follows:

5 15
5 0.00239 0.0119.

1 2.5 0.00239
q ×

= =
+ ×

The life table proportions of five-year olds alive at age x + 5 
estimated from the proportion alive at age x using these 
values appear in column 3 of Table 21.4. For example the 
proportion alive at age 20 is calculated as follows:

Figure 21.1  Completeness by age of registered deaths, El Salvador, 
1961 Census
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Table 21.3  Calculation of adjusted mortality rates, El Salvador, 
1961 Census

Age Adjusted 
5Nx(tm)

Adjusted 

5Dx

Adjusted 
PYL(x,5)

Adjusted 
5mx

0–4
5–9 191,171 689 191,171 0.0036

10–14 150,274 242 150,274 0.0016
15–19 125,656 300 125,656 0.0024
20–24 114,049 329 114,049 0.0029
25–29 92,114 306 92,114 0.0033
30–34 78,094 356 78,094 0.0046
35–39 73,295 394 73,295 0.0054
40–44 57,222 382 57,222 0.0067
45–49 46,433 403 46,433 0.0087
50–54 38,806 435 38,806 0.0112
55–59 26,283 437 26,283 0.0166
60–64 29,417 731 29,417 0.0248
65–69 15,038 507 15,038 0.0337
70–74 11,260 569 11,260 0.0505
75+ 16,273 1,536 16,273 0.0944

( )20 0.9743 1 0.01188 0.9627l = − = .

The logit transformations of the proportions surviving 
appear in column 4 of Table 21.4. For example, the logit 
transformation of the l20 is calculated as follows:

20
1 0.96270.5ln 1.6254

0.9627
γ − = = − 

 
.

The logit transformation of the conditional life table for 
females based on the West family of Princeton model life 
tables with e0 = 60 in column 5 of Table 21.4 appears in 
column 6 of Table 21.4. As can be seen from Figure 21.2 the 
West model appears to fit the data well, with the possible 
exception of the youngest ages.

The coefficients,  and  are determined as the intercept 
and slope of the straight line fitted to the logit transformations 
in columns 4 and 6 of Table 21.4 over the range of ages 
chosen by the user (between 45 and 75 in this example), 
namely 0.0094 and 0.9754 respectively. The range 45 to 75 
is chosen because the fit to the older ages is of importance 

Age 5qx lx/l5 Obs. Y(x)
Princeton 

West 
Cdn. l s(x)

Cdn. 
Y s(x)

Fitted 
Y(x) Fitted l(x) T(x) e(x) Smooth 

5mx

0
5 0.0179 1 1.0000 1 61.383 61.4 0.0025

10 0.0080 0.9821 –2.0037 0.9890 –2.2506 –2.1860 0.9875 56.414 57.1 0.0019
15 0.0119 0.9743 –1.8172 0.9805 –1.9585 –1.9011 0.9782 51.500 52.6 0.0028
20 0.0143 0.9627 –1.6254 0.9681 –1.7060 –1.6547 0.9648 46.643 48.3 0.0036
25 0.0165 0.9489 –1.4611 0.9519 –1.4928 –1.4468 0.9475 41.862 44.2 0.0041
30 0.0225 0.9333 –1.3192 0.9337 –1.3226 –1.2808 0.9284 37.173 40.0 0.0047
35 0.0265 0.9123 –1.1709 0.9132 –1.1766 –1.1384 0.9069 32.584 35.9 0.0054
40 0.0328 0.8881 –1.0356 0.8899 –1.0447 –1.0097 0.8828 28.110 31.8 0.0064
45 0.0425 0.8589 –0.9033 0.8628 –0.9194 –0.8875 0.8551 23.765 27.8 0.0080
50 0.0545 0.8224 –0.7665 0.8299 –0.7925 –0.7637 0.8216 19.573 23.8 0.0110
55 0.0798 0.7776 –0.6259 0.7863 –0.6514 –0.6261 0.7777 15.575 20.0 0.0153
60 0.1169 0.7156 –0.4613 0.7289 –0.4946 –0.4731 0.7204 11.830 16.4 0.0232
65 0.1555 0.6319 –0.2702 0.6490 –0.3074 –0.2905 0.6413 8.426 13.1 0.0354
70 0.2244 0.5336 –0.0674 0.5427 –0.0856 –0.0742 0.5370 5.480 10.2 0.0566
75 #N/A 0.4139 0.1739 0.4062 0.1898 0.1945 0.4039 3.128 7.7 0.0897
80 #N/A #N/A #N/A 0.2545 0.5373 0.5335 0.2560 1.478 5.8 0.1399
85 #N/A #N/A #N/A 0.1201 0.9956 0.9805 0.1234 0.530 4.3 0.2109

Table 21.4  Calculation of smoothed mortality rates using a 
relational logit model life table, El Salvador, 1961 Census
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for estimating the life expectancy at the age of the start of 
the open interval.

These coefficients are then applied to the logit transfor-
mation of the conditional model life table to produce the 
fitted logits in column 7 of Table 21.4. Thus, for example 
the fitted logit at age 20 is calculated as follows:

( )20 0.0094 0.9754 1.7060 1.6547fittedγ = + × − = − .

These values are then used to produce the fitted life table in 
column 8 of Table 21.4. For example the value at age 20 is 
calculated as follows:

( )( )20
1 0.9648

exp 1 2 1.6547
fittedl = =

+ × −
.

The conditional years of life lived, Tx , which appear in 
column 9 of Table 21.4 are then calculated from the fitted 
life table. These numbers are used to produce the smoothed 
mortality rates which appear in column 11 of Table 21.4. 
For example, for age 80

( )80
50.53 0.256 0.1234 1.478
2

T = + + =

5 80
.256 0.1234 0.1399
1.478 0.53

fittedm −
= =

−
.

The life expectancies which appear in column 10 of Table 
21.4 are the numbers in column 9 divided by the numbers 
in column 8. For example, the life expectancy at age 65 is

8.426 13.139
0.6413

= .

Diagnostics, analysis and interpretation
Checks and validation
The example above was taken from Manual X (UN Popu-
lation Division 1983) which produced an estimate of com-
pleteness of around 83 per cent from applications of both 
this method and the Brass Growth Balance method. The 
difference between the two estimates in Manual X and the 
one produced in this application (89 per cent) appears to be 
largely due to differences in the method of estimating the 
population at the age of the open interval (A). The full effect 
is counteracted to some extent by a reduction (relative to 
the estimate in Manual X ) due to the fact that the current 
approach solved for a growth rate that was higher (3.02 per 

FIgure 21.2  Observed logits and adjusted mortality rates against 
expected derived from the female West model life table, El Salvador, 
1961 Census
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cent) than that used in Manual X (2.87 per cent). Thus apply-
ing the method using the estimates of life expectancy calcu-
lated from the West model life table (column 3, Table 21.1) 
produced an estimate of completeness of 85 per cent.

Interpretation
As there is no consistent trend (upward or downward) in the 
plotted series in Figure 21.1, there is no reason to reduce the 
age of the open interval. However, had this been necessary, it 
would have created a problem in deciding which estimate of 
completeness to accept, since the estimate of completeness 
for an open-ended age interval of 70+ is 85 per cent, while 
that for an interval of 65+ is 76 per cent. The spreadsheet 
does not allow the open interval to be less than 65+, but, had 
one used an interval of 60+, the estimate of completeness 
would have been higher than 76 per cent. As a general rule, 
it is not recommended in a population with significant 
digital preference to truncate at an age ending in zero.

Taken together, these estimates suggest that the com-
pleteness of death reporting is about 85 per cent, somewhat 
lower than the 92 per cent estimated by applying the Brass 
Growth Balance method to these data. Interestingly, had 
one used the estimates of life expectancy derived from the 
West life table on the basis of the ratio of 30D10 to 20D40 
(and an open interval of 75+) the estimate of completeness 
drops to 85 per cent but the life expectancy derived from 
the smoothed rates is closer to that derived iteratively than 
to those used to produce the estimate of completeness. This 
suggests that the method is not very sensitive to the esti-
mate of life expectancy used, particularly if the open interval 
starts at a high age.

Method-specific issues with 
interpretation
Source of reported deaths
Generally there are two sorts of problems with death data: 
those that lead to under/over coverage that is constant by 
age, which is precisely what the method is intended to 
address, and those which lead to differential coverage by 
age, which can distort the estimates. Although the general 
approach remains essentially the same irrespective of the 
source of the death data, different sources of data are prone 
to different biases which might impact on the interpretation 
of the results. These are illustrated by way of particular 
examples, but, in general terms, you need to look out for 
the following biases in the death data.

1)  Vital registration
If the proportionate split of the population between urban 
and rural (or appropriate proxies) areas differs significantly 
by age and the completeness of reporting of deaths in urban 
areas is significantly higher than it is in rural areas, then the 
assumption that completeness is independent of age is likely 
to be violated by a falling off of completeness with age at 
ages over 50 if a proportion of people move from urban to 
rural areas on retirement. If ignored and the growth rate is 
estimated using Solver, this violation is likely to lead to an 
underestimate of the average level of completeness.

2)  Deaths reported by households in censuses/surveys
The data are subject to three potential problems:
•	 If a significant proportion of households dissolve on the 

death of a key person (e.g. the sole breadwinner), then the 
deaths of such people go unreported, leading to a violation 
of the assumption that completeness is invariant with age. 
If a significant proportion of deaths in some age groups are 
of individuals who do not live in private households (for 
example, they live in homes for the elderly), the breach of 
the assumption could be even more severe. However, this 
is not an issue in most developing countries.

•	 In situations where young adults leave the home they grew 
up in to work in urban areas, it is possible that they are re-
garded as being members of more than one household (or 
of neither household) and their deaths could be reported 
more than once (or not at all), again leading to a violation 
of the assumption of constant reporting of deaths by age. 
In this case, one can limit the impact by ignoring the data 
below a specific age in determining completeness.

•	 Reference period error: Since there is often confusion 
about the exact period for which deaths are to be 
reported, in addition to uncertainty about exact dates of 
death, it is possible for there to be overall under- or over-
reporting of deaths. Provided one can assume that this is 
independent of the age of the deceased, this distortion 
will be accounted for in the estimate of completeness and 
is not a problem for estimating mortality rates.

3)  Deaths recorded in health facilities
Little is known about how well this source of data works. 
However, it can be expected that completeness would 
depend on the distribution of health services from which the 
data have been gathered, and in many developing countries 
such services are likely to be concentrated in urban areas. So 
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again, if the proportion of the population living in urban 
rather than rural areas varies with age, then completeness 
cannot be assumed to be independent of age. It is also 
possible that certain causes will predominate in facilities, 
and if these causes are significant and age-related, this could 
lead to a further violation of the assumption of constant 
completeness by age.

In all such cases, one should avoid the temptation of ad-
justing the growth rate to produce a level sequence of the 
ratios. Instead one should ensure that the estimate of c is 
determined over a range of ages that excludes those in which 
death reporting is either exceptionally complete or excep-
tionally incomplete.

General diagnostic interpretation
In practice the sequences of both 5 5

ˆ
x xN N  and ˆ

A x A xN N  
are affected by violations of the assumptions. However, 
part of the power of this technique is that most of the 
typical violations of assumptions produce fairly distinctive 
characteristic deviations from the expected horizontal line 
and in certain circumstances these patterns are interpretable. 
The following are examples:
•	 Incorrect growth rate: If r is too high the sequences of 

points fall nearly linearly with increasing age towards the 
underlying value of completeness and vice versa, as can 
be concluded from inspection of Equation (1) below. The 
effect is greater for 5 5

ˆ
x xN N  than for ˆ

A x A xN N .
•	 Exaggeration of reported age: Typically, relatives reporting 

deaths exaggerate the person’s age at death more than 
living individuals reporting their own ages. This produces 
rising sequences of points which are imperceptible up 
to the age at which exaggeration begins, followed by a 
sharp upward curve thereafter. Again it can be seen from 
inspection of Equation (1) below in that age exaggeration 
not only leads to an increase in the number of deaths in 
the older age categories, but, in addition, transfers within 
a category lead to those deaths being multiplied by a larger 
exponential term, although this effect is smaller. Such a 
pattern would also be produced by rising completeness in 
death registration with age above a certain age. However, 
there appears to be no evidence of this in practice (Preston, 
Coale, Trussell et al. 1980).

•	 Age misstatement in the population estimates and age-specific 
miscounting: This is exhibited by an erratic sequence of the 
ratios over the age span. Since 5 ˆ

xN  is cumulative in form, it 
tends to follow the age distribution of the population quite 

closely. Thus if there are zigzags it is likely that the peaks 
may be associated with age aversion or under-enumeration 
in the population and troughs with age heaping or over-
enumeration in the population. If these fluctuations are 
independent of the age, they should not distort the esti-
mate of completeness particularly. Blacker (1988) suggest-
ed using age groups 18–22, 23–27, etc. to remove zigzags 
and showed that for the Brass Growth Balance method this 
removed bias in the estimate of the slope. However, if these 
distortions are systematic, e.g. unaccounted for migration 
below a certain age, it may be better to exclude these points 
from estimating the completeness.
Generally the effect of overstated ages can be largely 

removed by beginning the open interval at a sufficiently 
young age to confine most of the overstatement to the open 
interval.

In order to distinguish a declining sequence of ratios due 
to improving mortality from that due to the choice of too 
high a growth rate, one needs to look to evidence from other 
sources to determine which the more likely explanation is. 
If the population has experienced a decline in mortality, the 
median of the ratios of cumulated populations from 10 to, 
say, 45 ought still to provide a reasonable estimate of the 
completeness of death registration. Although this method 
has a lot to recommend it, and is more robust to departure 
from stability than the Brass Growth Balance method, 
it is more sensitive than the latter to certain types of age 
misreporting. Thus, it will not always be possible to obtain 
a single robust estimate of the completeness of the death 
data unless one can confirm the assumptions (particularly 
the growth assumption) by other means.

Detailed description of method
Mathematical exposition
The Preston and Coale method is a special case of the 
Synthetic Extinct Generations method, with the growth rate 
of the population aged x+, r(x+) constant for all ages.

The method arises out of work by Preston and Hill (1980) 
further developed by Preston, Coale, Trussell et al. (1980) 
and has its origins in the method of extinct generations 
originally proposed by Vincent (1951). It is based on the 
idea that the number of persons at a particular age at a point 
in time must equal the total number of deaths arising from 
this cohort from that time until the last survivor has died.

In a stable and closed population the relationship is:
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	 ( )r a x
x a

a x

N D e
ϖ

−

=

=∑ 	 (1)

where Da are the deaths at the same point in time as Nx since 
in a stable closed population Da,t, the deaths aged a which 
are expected to occur t years from the year for which we have 
recorded deaths, is equal to Daert.

If instead of Da we know r
aD , the recorded number of 

deaths aged x last birthday, and if we estimate the popula-

tion aged x, ˆ
xN , by ( )ˆ r r a x

x a
a x

N D e
ϖ

−

=

=∑  then ˆ
x xN N , where 

Nx  is the true population at the mid-point of the period 
over which the deaths have been recorded, gives an indica-
tion of the percentage registration for ages x and over, cx+. If 
the Nx  are available at some other point in time, then they 
can be adjusted for the growth over the period between the 
two times using the growth rate r. However, if the level of 
completeness is being estimated in order to calculate mor-
tality rates, the same correction would, in effect, be made to 
both the numerator and the denominator and thus could 
be ignored.

There is, however, a problem in computing ˆ
xN  in prac-

tice in that the r
aD  are unlikely to be available beyond a 

certain age (and even if they are, are unlikely to be very 
accurate) with all reported deaths above that age being 
grouped together in an open interval, r

AD +  where A is the 
lower bound of the age interval. However, various methods 
have been suggested to deal with this problem. For example, 
Manual X (UN Population Division 1983: 134) suggests 
that by assuming that the pattern of mortality fits one of the 
Princeton model life tables (Coale, Demeny and Vaughan 
1983), ˆ

AN  can be estimated as follows:

( )ˆ rz A
A AN D e+=

where
45 10( ) ( ) ( ) ( ) D Dz A a A b A c A e + +  = + + .

The coefficients have been tabulated (Table 123, UN (1983: 
134, 134)) and 45 10D D+ +  is estimated by 45 10 .r rD D+ +

Alternatively, Bennett and Horiuchi (1984) suggested 
that the population aged A can be estimated using the 
following formula:

( ) ( )( )2ˆ exp 6A A A AN D r e r e∞= × − ×

where the life expectancy is interpolated from the West 
family of Princeton model life tables on the basis of the ratio 
of the reported deaths between ages of 10 and 40 to those 
between ages 40 and 60.

Since ˆ
xN  can be approximated by

5 2.5
5 5

r r r
x xN e D e+ +

once ˆ
AN  has been estimated the ˆ

xN  can be estimated from 
the 5 .r

xD

Limitations
The major limitations of the method as described above and 
provided for in the spreadsheet are that it requires that the 
population be stable and closed to migration and it should 
not be applied when these conditions do not apply to any 
significant extent. By way of example of inappropriate usage, 
application of this method (data available in the should be 
SEG_South Africa_males workbook) to estimate complete-
ness of reporting of deaths in South Africa between the 2001 
Census and a census replacement survey in 2007, estimating 
the population in the middle of the period as that average 
of the two survey populations, provides an estimate of com-
pleteness, using the same age range, of 84 per cent. Increas-
ing the minimum age of the range of the data used to fit the 
straight line to 35 increases the estimate to 86 per cent, still 
somewhat lower than the estimate of 94 per cent produced 
using the Synthetic Extinct Generations method.

This method is more vulnerable to age misreporting 
than the Brass Growth Balance method. In particular, as 
mentioned above, the common tendency to exaggerate the 
age reported at death (relative to that recorded at census) will 
manifest itself by the plotted points rising noticeably from 
the age above which the ages have been exaggerated. In such 
a situation it is better to use the growth rate estimated by the 
Brass Growth Balance method. In addition the method is 
also, as demonstrated above, sensitive to the choice of open 
interval if there is extreme digit preference in the data. This 
is most likely with census data.

The method is less vulnerable to the effects of destabili-
zation resulting from a rapid change in mortality (Martin 
1980). However, as simulation has shown for the Brass 
Growth Balance method (Rashad 1978), the bias resulting 
from a slow steady improvement in mortality (as has been 
experienced by some developing countries in the absence of 
epidemics, famine and wars) is quite small.
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As far as changes in fertility rates are concerned these 
tend to have little impact on the performance of the method 
since they affect mainly the youngest age groups, which 
have a limited influence on the estimate of completeness. 
If necessary, these age groups can be excluded from 
determining the growth rate and estimate of completeness.

Migration is likely to affect the young adult population 
(mainly between 20 and 35) but to have much less effect 
on deaths, which occur largely in old age. Unaccounted-
for immigration will tend to lower the slope and hence 
lead to an over-estimate of the extent of death registration 
and an underestimate of mortality rates. Unaccounted-for 
emigration will have the opposite effect. Some demographers 
advocate fitting the straight line to data down to age 5 to limit 
the effect of unaccounted-for migration, on the assumption 
that any differences in completeness of reporting of deaths 
at these younger ages from that of the older ages is unlikely 
to lead to any major distortions since the mortality is very 
light between ages 5 and 14. However, it doubtful that this 
adaptation removes much of the bias.

Alternatively one could confine the fit to points above age 
35 to remove the bulk of the effect of migration. However, 

often the data at the older ages are more suspect making the 
estimate of completeness less reliable. Although using these 
adaptations probably produces better estimates than simply 
ignoring migration, there is, unfortunately, little research 
into the accuracy of the estimated completeness produced 
by these adaptations.

Technically, if one had reliable estimates of net migration 
by age, one could adapt the method by replacing the growth 
rate r by r – 5ix, where 5ix is the net in-migration rate for the 
age group x to x + 4 last birthday, in deriving ˆ

xN . However, 
in practice, in situations where one has to apply this method 
one rarely has sufficiently reliable estimates of net migration 
by age to warrant adapting the method.

Fluctuations in the completeness of death registration 
with age are likely to introduce curvature in the pattern 
of points. Consequently, it is one of the strengths of this 
method that if the points for successive age boundaries fall 
on a reasonably level line then it is probably reasonable to 
assume that completeness is constant with respect to age. 
However, where some but not all the points lie on a straight 
line one may decide to limit the age range used to determine 
the estimate of completeness.

Further reading and references
Since this method is a particular case of the more general 
Synthetic Extinct Generations method, readers are referred 
to Chapter 25 for further reading.
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Chapter 22  Indirect estimation of adult mortality 
from orphanhood

Ian M Timæus

Description of the method
Orphanhood methods estimate the mortality of adult 
women and men indirectly from data on the survival status 
of respondents’ mothers and fathers respectively. In order to 
apply the method, at least one census or single-round survey 
of the population must have included the questions ‘Is your 
mother alive?’ and ‘Is your father alive?’. Mortality can 
be estimated from the answers to these questions without 
requiring respondents to recall the dates when deaths 
occurred or the ages at death of deceased individuals.

Since respondents’ mothers must have been alive when 
the respondents were born, the duration over which they 
have been exposed to the risk of dying equals the age of 
the respondents. By allowing for the mean age at which 
the mothers gave birth in the population concerned, it is 
possible to predict life table survivorship from age 25 to age 
25 plus a rounded number of years (n) based on the age 
group of the respondents (l25 + n/l25) from the proportion 
of respondents in each age group whose mother is alive. 
Similarly, by adjusting for the mean age at which the fathers 
have children, one can predict life table survivorship of 
adult men from the proportions of respondents with living 
fathers. As men tend to be older than their wives and other 
partners, their survivorship is measured between a base age 
of 35 and age 35 + n where n is again linked to the age group 
of the respondents.

If mortality has changed over time, the estimated survivor-
ship ratios reflect the mortality rates that have prevailed at a 
range of ages and dates. A ‘time location’ method has been de-
veloped that estimates how many years prior to inquiry each 
cohort survivorship ratio equalled the period survivorship 
ratio. These intervals increase with the age of respondents, 
ranging between about 4 and 14 years before the collection 
of the data. Thus, if the survivorship ratios estimated from 

the reports of different age groups of respondent are translat-
ed into a common index of mortality in adulthood (such as 
45q15) using a 1-parameter system of model life tables, these 
statistics will refer to different dates and can be used to infer 
the broad trend in mortality over time.

One advantage that orphanhood methods have over 
questions about household deaths is that only censuses 
or unusually large surveys can capture information on 
enough deaths in households in the year before the inquiry 
to yield mortality estimates that are sufficiently precise to 
be useful. The orphanhood method can be used in much 
smaller inquiries, although all methods for the estimation 
of adult mortality require data on thousands of households. 
Moreover, the method does not assume that the population 
is closed to migration. However, the results from the method 
will not be representative for small states or sub-national 
areas in which a substantial proportion of the population 
are in-migrants or have emigrated.

Data requirements and assumptions
Tabulations of data required
To estimate the mortality of adult women:
•	 The proportion of respondents whose mother is alive by 

five-year age group of respondent. (Those who did not 
know or did not declare their mother’s survival status 
should be excluded from the calculations.)

•	 The number of births in the year before a demographic 
inquiry tabulated by five-year age group of the women 
giving birth.

To estimate the mortality of adult men:
•	 The proportion of respondents whose father is alive by 

five-year age group of respondent. (Those who did not 
know or did not declare their father’s survival status 
should be excluded from the calculations.)
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•	 The number of births in the year before a demographic 
inquiry tabulated by five-year age group of the women 
giving birth.

•	 An estimate of the difference between the ages of men and 
women having children, such as the difference between 
the median ages of currently married men and women.
These tables should generally be produced separately for 

male and female respondents and estimates made from both 
sets of proportions and for the two sexes combined.

For the purposes of estimating mortality, ideally everyone 
aged less than 50 should be asked the questions about the 
survival of their mothers and fathers (it may be simpler just 
to ask everyone these questions). Nevertheless, if an inquiry 
only asked about the orphanhood of children, the data can 
be used to produce point estimates of women’s and men’s 
mortality a few years earlier.

If sample or design weights have been provided with the 
data, remember to apply them in the manner appropriate to 
your statistical software when deriving the tabulations used 
as inputs.

Important assumptions
An inherent limitation of the orphanhood method is that 
data on parents’ survival can only be collected from those 
of their offspring who are alive themselves. The survival of 
adults who have no living children is unrepresented in the 
reported proportions of parents alive. Moreover, parents 
with more than one surviving child are over-represented 
in comparison to those with exactly one surviving child in 
proportion to the number of their surviving children. Thus, 
the method only produces unbiased results if the mortality 
of the parents is unrelated to how many of their children are 
alive at the time that the data are collected. In general, the 
selection bias that arises from breaches in this assumption is 
small (Palloni, Massagli and Marcotte 1984). In populations 
affected by generalized HIV epidemics, however, it is likely 
to be more severe. Methods that at least partially address the 
specific biases that exist in such populations are discussed 
in a separate section of this chapter on orphanhood in 
populations affected by AIDS.

The method estimates the trend in mortality from data 
supplied by different age groups of respondent: the older the 
respondent, the longer ago their parents died on average. 
In order to convert the series of measures of survivorship 
obtained from different age groups into a single indicator 
that can be compared over time, it must be assumed that the 

age pattern of mortality in adulthood is represented by the 
chosen standard life table. To estimate the time location of 
these measures, it is further assumed that mortality declined 
linearly in terms of that standard over the period being 
considered. Both assumptions are likely to be problematic 
in populations experiencing generalized HIV epidemics.

Preparatory work and preliminary 
investigations
Before starting the analysis, one should check how many 
respondents stated that they did not know whether their 
mother or, more commonly, father was alive or failed 
to answer the questions at all. The response rate on 
these questions is usually very high and one can simply 
exclude from the analysis those respondents who either 
answered ‘don’t know’ or did not answer the question. In 
effect, this amounts to assuming that the proportion of 
these respondents’ parents that have died is the same as 
for respondents that answered the question. However, a 
few surveys have collected sufficiently incomplete data 
to suggest that non-response bias could be a substantial 
problem. For example, it is possible that most people who 
fail to answer the question have dead parents. If this is the 
case, such unreported orphans could represent a substantial 
proportion of all orphans, particularly in the younger age 
groups, producing a substantial downward bias in the final 
estimates of mortality.

One useful check on the quality of the orphanhood data 
is to compare the responses of male and female respondents 
of the same age. One would not expect the proportion of 
parents that have died to differ significantly between men and 
women of the same age. If the proportions diverge among 
older respondents, this could reflect gender differences 
in patterns of age misreporting or could indicate that the 
gender that reports fewer dead parents (usually the men) is 
more likely to lose touch with their families and is assuming 
wrongly that some parents remain alive who have died.

Caveats and warnings
•	 The estimates derived from the orphanhood method 

are conditional survivorship probabilities, that is to say 
probabilities of surviving across an interval in adulthood 
conditional on being alive at the start of the interval. To 
obtain a complete life table, estimates of survivorship 
from birth to adulthood must be calculated using another 
source of data on child mortality.
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•	 Deaths of parents do not occur at one point in time but 
may have occurred at any time between the respondents’ 
birth and when they were interviewed. Thus, the 
orphanhood method can only indicate the smoothed 
trend in adult mortality and will fail to capture short-
term mortality crises or abrupt reversals in the trend in 
mortality such as those resulting from AIDS after the 
onset of a generalized HIV epidemic.

•	 The most up-to-date mortality estimates that can be 
produced using orphanhood data are made from those 
on children aged 5 to 14. Typically only a few per cent of 
children are maternal orphans and the resulting estimates 
can have wide confidence intervals even in large sample 
surveys.

•	 In a number of applications in East Africa and elsewhere, 
the orphanhood method has yielded results that indicate 
implausibly rapid declines in mortality and gross incon-
sistencies between the estimates from successive enquir-
ies. This appears to be due to ‘the adoption effect’, that 
is under-reporting of orphanhood among those whose 
parents die when they are very young (Blacker 1984; 
Blacker and Gapere 1988; Hill 1984; Timæus 1986). 
Children who are orphaned at a young age tend to be 
reared by other relatives and are often enumerated as their 
own children. This means they are enumerated as having 
a living parent and can give rise to very low mortality 
estimates. Misreporting appears to be particularly com-
mon when the mother dies. As the respondents get older, 
the chance that their foster, adoptive or step-parent has 
died, as well as their biological parent, increases. This 
implies that the bias is most pronounced for young chil-
dren, whose substitute parent is very likely to be alive. 
Thus, if it is not recognized, the adoption effect leads 
to the underestimation of recent adult mortality and an 
overestimate of the extent of mortality decline.

•	 Although estimates can be made using data on 
respondents aged in their forties, the parents of many 
of these respondents are elderly and have very high 
mortality. This means that the precision with which one 
can estimate both mortality from parental survival data 
and the reference dates of the estimates is inherently 
much lower than it is for younger respondents.

•	 The orphanhood method does not involve the assumption 
that the population is closed to migration. Nevertheless, it 
can be difficult to interpret orphanhood-based estimates 
of adult mortality for sub-national geographic units, such 

as urban and rural areas or districts, or for respondents 
with particular socio-economic characteristics. Some or 
many of the respondents’ parents will live in different 
places from the respondents themselves and their socio-
economic characteristics may differ from those of their 
children. However, parents and children usually do share 
the same ethnic identity.

Application of method
Maternal orphanhood
Step 1a: Calculate the mean age of childbearing of 
women, fM
To apply the orphanhood method, one requires an estimate 
of the average age at which the parents had their children in 
order to control for variation in the age range over which 
they have been exposed to the risk of dying. Women’s 
mean age of childbearing is usually calculated from census 
or survey data on recent births by five-year age group at 
interview of the women giving birth. The measure is simply 
the average age of women giving birth calculated without 
adjusting for the age structure of the population using the 
following formula:
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In this equation, 5Bx represents births to women in the 
age group x to x + 4 completed years and (x + 2) represents 
the mid-point of the age group of women with a half-year 
downward shift to allow for the fact that women giving birth 
in the year before interview did so 6 months ago, on average, 
and were 6 months younger at that time. This calculation 
can be done in the accompanying Excel workbook (see 
website). If the data used to calculate fM  are tabulated by 
women’s age at giving birth, the mid-point of each age group 
would become x + 2.5.

There is no need to adjust the births data for reference-
period errors before calculating fM . Moreover, the mortality 
estimates are not very sensitive to bias in this indicator. 
However, if evidence exists that the age pattern of births has 
been distorted severely by women exaggerating their ages, 
the number of births by age could be recomputed from an 
adjusted age distribution and adjusted fertility distribution 
before calculating fM .

In principle, the mean age of motherhood should refer 
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to the time at which the respondents were born, which may 
be any time between 5 and 45 years before the collection 
of the orphanhood data. An estimate based on fertility data 
collected in the same enquiry that asked about orphanhood 
should be adequate in populations which have yet to 
experience substantial fertility decline. If fertility is believed 
to have fallen and earlier census or survey data exist, fM

 could also be calculated from the earlier data to determine 
if it has changed. If it has, then the best way of deciding 
on final values of fM  for the estimation of adult mortality 
will depend on what data are available and the pattern of 
change in fertility. One option might be to calculate  fM  
from data collected at about the time that fertility began to 
fall and use that value for age groups of respondents born 
then or earlier and to interpolate linearly between that value 
and the current one to estimate fM  for younger age groups 
of respondents.

Step 2a: Calculate the conditional life table survivorship 
ratios for women
The workbook (see website) contains separate sheets 
for the calculation of the survivorship ratios for adult 
women (maternal orphanhood) and adult men (paternal 
orphanhood). The sheets are set up both to analyse data 
on male and female respondents separately and to combine 
them to produce estimates based on the data supplied by 
both sexes. Either the number of respondents of each sex 
by five-year age group with living mothers and number 
answering the question or the proportions with living 
mothers calculated from them should be entered into the 
maternal orphanhood sheet. Data on respondents aged 5 to 
49 years can be used.

Women’s survivorship is estimated between a lower age 
of 25 and age 25 + n, where n is the upper limit of each 
successive age group of respondents. The following regression 
equation and the coefficients shown in Table 22.1 are used:

25 5 5( ) ( ) ( )f
n np a n b n M c n S −= + + .

where 5Sn – 5 is the proportion of respondents in the 
age group from exact age n – 5 to exact age n with living 
mothers. For example, when n is 10, life table survivorship 
is estimated over the 10-year age interval from exact age 25 
to exact age 35 using data on survival of mothers supplied 
by respondents aged 5–9 years.

Table 22.1  Coefficients for the estimation of women’s survivorship 
from the proportions of respondents with living mothers

n a(n) b(n) c(n)
10 –0.2894 0.00125 1.2559
15 –0.1718 0.00222 1.1123
20 –0.1513 0.00372 1.0525
25 –0.1808 0.00586 1.0267
30 –0.2511 0.00885 1.0219
35 –0.3644 0.01287 1.0380
40 –0.5181 0.01795 1.0753
45 –0.6880 0.02343 1.1276
50 –0.8054 0.02721 1.1678

Source: Timæus (1992)

Paternal orphanhood
Step 1b: Calculate mM  the mean age of childbearing of 
men
In principle, the best way to calculate the mean age at which 
men have children is to calculate the mean age of the partners 
of women who gave birth in a defined year. However, this 
method requires data on women to be linked to those on 
their partners, which is impossible in many data sets.

Thus, the mean age at which men have children is usually 
estimated by adding an index of the difference between the 
ages of men and women who are having children to the 
mean age of childbearing of women:

m fM M d= + .

One estimate of this difference that can be readily calculated 
from census data is the difference between the median ages 
of currently married men and currently married women. It is 
more appropriate than the difference between the singulate 
mean ages at marriage of men and women in populations 
in which marital dissolution or polygynous marriage is 
common. The median is used rather than the mean so that 
differential age exaggeration by older respondents, who 
are probably no longer bearing children anyway, does not 
distort the estimate.

This approach to the estimation of the mean age of men 
at the birth of their children assumes that the ages of the 
fathers of children born to unmarried women are the same, 
on average, as the ages of the fathers of children born to 
married women. They may not be and this could introduce 
a significant bias into the estimate of mM  in populations in 
which childbearing outside marriage is common. While it is 
difficult to think of a solution to this problem, fortunately 



226  |  ADULT MORTALITY ONE CENSUS METHODS

the mortality estimates are not very sensitive to errors in the 
estimate of mM .

Step 2b: Calculate the conditional life table survivorship 
ratios for men
The Excel workbook (see website) contains separate sheets 
for the calculation of the survivorship ratios for adult women 
and adult men. Either the number of respondents by five-
year age group with living fathers and number answering the 
question or the proportions with living fathers calculated 
from them should be entered into the paternal orphanhood 
sheet. Data are used only on respondents aged 5 to 44 years.

Each estimate of men’s survivorship is produced using data 
on two adjacent five-year age groups. For every pair of age 
groups except the youngest pair analysed, men’s survivorship 
is measured from age 35 to 35 + n, where n is the midpoint 
of the pair of age groups, using the following regression 
equation and the coefficients shown in Table 22.2:

35 5 5 5( ) ( ) ( ) ( )m
n n np a n b n M c n S d n S−= + + + .

Table 22.2  Coefficients for the estimation of men’s survivorship 
from the proportions of respondents with living fathers

n a(n) b(n) c(n) d(n)
10 –0.5578 0.00040 1.4708 0.0698
15 –0.4013 0.00576 1.5602 –0.3522
20 –0.3329 0.01031 0.6656 0.3419
25 –0.4726 0.01559 0.2161 0.7896
30 –0.7056 0.02076 0.1997 0.9066
35 –0.9153 0.02493 0.3484 0.8631
40 –0.9950 0.02635 0.4269 0.8263

Source: Timæus (1992)

For example, when n is 10, life table survivorship is estimated 
over the 10-year age interval from exact age 35 to exact age 45 
using the data on survival of fathers supplied by respondents 
in the two age groups 5–9 years and 10–14 years.

For the youngest pair of age groups, however, this 
survivorship ratio is much higher than the proportions of 
fathers alive, which makes the estimates very sensitive to 
the exact age pattern of mortality in the population. More 
robust estimates are obtained using the equation:

15 35 5 5 5 10(10) (10) (10) ( )mp a b M c S d n S= + + + .

In other words, the same survivorship ratio, 15q35, is estimated 
from data on respondents aged both 5–14 and 10–19.

Maternal and paternal orphanhood
Step 3: Convert the survivorship ratios into estimates of 
the level of mortality
To infer mortality trends from a series of survival ratios, 
n pb, obtained from different age groups of respondents and 
referring to different dates, it is necessary to convert them 
all into a common index of mortality that can be compared 
over time. This is done by fitting a 1-parameter model life 
table to each measure and obtaining the common mortality 
index from the model.

A wide range of indices have been used for this purpose, 
including the level parameters of various systems of model 
life tables, survivorship ratios such as 35p30, which correspond 
fairly closely to the age range of the estimates yielded by the 
orphanhood method, life expectancy at various ages between 
5 and 30, and temporary life expectancy between ages 25 
and 70, 45e25. Using the parameters of the models has the 
advantage of emphasizing that the full life table is being 
estimated by fitting a model, rather than measured directly. 
The measures of life expectancy summarize survivorship 
across adulthood as a whole, while using survivorship ratios 
or temporary life expectancies avoids extrapolation into 
old age from measures for younger adults. Increasingly, in 
recent years, the estimates have been presented in terms of 
the probability of dying between exact ages 15 and 60, 45q15, 
as this measure has found favour with several international 
agencies as a summary indicator of the mortality of young 
and middle-aged adults.

In the applications of the orphanhood method presented 
here the survivorship ratios are converted into the  param-
eter of a 1-parameter system of relational logit model life 
tables, and then into either estimates of the probability of 
dying between exact ages 15 and 60, 45q15, or the probabil-
ity of dying between exact ages 30 and 60, 30q30. The latter 
measure is useful for comparing series of orphanhood esti-
mates with each other without extrapolating from mortality 
across one age range to mortality across another by more 
than is necessary. The parameters of the 1-parameter models 
are calculated from the estimates of n pb as

1
1 ln 1
2 1

n b
s s

b n b

n b

p
l l

p
α +

 − 
 = − +

− 
 
 

where the estimates of n pb come from Step 2 with b = 25 
for the estimates of women’s survivorship and b = 35 for 
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those of men’s survivorship and the s
xl  values come from a 

standard life table. Thus, one obtains a series of values of a 
corresponding to the measures of conditional survivorship 
made from data on the different age groups of respondents. 
Higher values of a correspond to higher mortality. Then, 
for each a,
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The workbook (see website) can calculate a, 45q15, and 
30q30 using either a standard from the General family of 
United Nations model life tables or one from any of the 
four families of Princeton model life tables. The standard life 
table should be chosen to have an age pattern of mortality 
within adulthood that resembles that of the population 
being studied. Another life table can be used as a standard if 
there is reason to believe that it resembles more closely the 
pattern of adult mortality in the population being studied. 
The most suitable life table may not be from the family of 
models that best captures the relationship between child and 
adult mortality. If nothing is known about the age pattern of 
mortality in adulthood, use of the United Nations General 
or Princeton West models is recommended.

Step 4: Calculate the time location of the estimates
Each survivorship ratio produced by the orphanhood 
method represents an average of the mortality prevailing 
during the N years that parents have been exposed to the 
risk of dying. The point of time at which the ratio equalled 
period survivorship depends on the level of mortality and 
can be estimated from the proportion of the mothers or 
fathers that are alive, the age of the respondents, and the 
mean age at childbearing of the parents.

The only additional information required to calculate the 
dates to which each of the adult morality estimates refer is 
the date on which the inquiry that asked about the survival 
of mothers and fathers was conducted. This can be calculated 
as the average of the dates on which the interviews took 
place or taken as the mid-point of the period of fieldwork if 
exact dates of interview are not available.

The estimates are calculated as the date of fieldwork 
minus T, where T is calculated for women as

( )5 5
11 ln

2 3

1 80ln
3 80

n

f

f

NT S

M N
M

−
= −


 − −
+  − 

.

Because the mortality of the mothers is estimated from 
data on a single five-year age group of respondents, their 
average length of exposure to the risk of dying, N, is the 
mid-point of that age group (i.e. 7.5 years, 12.5 years, and 
so on). However, because pairs of age groups are used to 
estimate men’s mortality, N becomes the age dividing the 
two age groups (i.e. 10 years, 15 years, and so on). Moreover, 
because fathers might have died during the 9 months before 
the respondents were born, T becomes

( ) ( )

( )

5 5 5
0.75 11 ln

2 3

1 80ln .
3 80 0.75

n n

m

m

N
T S S

M N
M

−

+ = − ⋅


 − −  +
 − − 

For both men’s and women’s mortality, the time location 
of the estimates obtained from orphanhood data on 
respondents in the different age groups after age 30 is 
usually similar. Although the date at which the parents 
could first have died gets earlier as the respondents’ ages 
rise, this is cancelled out by an increase in the proportion of 
deaths that occurred shortly before the survey as the parents 
move into old age. Sometimes the estimated time location 
of mortality indicators obtained from data on the oldest age 
groups is more recent than the time location of the mortality 
indicators obtained from data on respondents who are five 
years younger. Given the approximate nature of the mapping 
of cohort measures of mortality into period estimates, it is 
often advisable to ignore the estimates from the oldest age 
groups or to average the final two or three estimates and the 
dates to which they refer to produce a single measure.

Worked example
This example uses data on the survival of mothers and 
fathers collected in the 1997 Census of Iraq, available from 
IPUMS. Only the results for respondents of both sexes 
together are shown in the tables.
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Step 1a: Calculate the mean age of childbearing of 
women, fM
The mean age of childbearing is a straightforward average of 
the ages of women giving birth and can either be calculated as 
such from individual-level data or estimated approximately 
from a tabulation of births by five-year age group of mother 
(Table 22.3).

17338360 28.28
613080

fM = = .

Step 2a: Calculate the conditional life table survivorship 
ratios of women
These survivorship ratios are shown in the sixth column of 
Table 22.4 and are calculated from the proportions in the 

fourth column using the regression coefficients shown in 
Table 22.1 and the estimate of fM  of 28.28 from Step 1a. 
For example, for respondents aged 5–9,

10 25 0.2894 0.00125 28.28
1.2559 0.9916 0.9913

p = − + ×
+ × = .

Note that each life table measure is similar in value to the 
proportion from which it was calculated.

Step 1b: Calculate the mean age of childbearing of men,
mM

The mean age of childbearing of men is calculated by adding 
the difference between the median ages of currently married 
men and women to the mean age of childbearing of women. 
It can be seen from Table 22.5 that the median age of 
currently married men falls between the mid-point of the 
age group 30–34 and the mid-point of the age group 35–39. 
By linear interpolation,

Median for men
0.5 0.410532.5 5 36.56

0.5208 0.4105
−

= + × =
−

and

Median for women
0.5 0.378027.5 5 31.33

0.5372 0.3780
−

= + × =
−

.

Age 
group Total women Mother alive Proportion 

alive
Age

n
l (25 + n)

l (25)
Level
()

Probability
of dying 
(30q30)

Date

5–9 2,834,210 2,810,420 0.9916 10 0.9913 –0.756 0.072 1994.2 
10–14 2,391,580 2,347,190 0.9814 15 0.9826 –0.670 0.084 1992.1
15–19 2,181,840 2,108,280 0.9663 20 0.9709 –0.625 0.090 1990.1
20–24 1,827,030 1,719,880 0.9414 25 0.9514 –0.561 0.101 1988.5
25–29 1,615,160 1,455,150 0.9009 30 0.9198 –0.497 0.112 1987.0
30–34 1,235,120 1,035,480 0.8384 35 0.8698 –0.438 0.124 1985.9
35–39 788,170 601,590 0.7633 40 0.8103 –0.447 0.122 1985.4
40–44 817,460 519,580 0.6356 45 0.6910 –0.375 0.137 1985.5
45–49 603,840 298,760 0.4948 50 0.5419 –0.346 0.144 1988.3

Table 22.4  Estimation of women’s survivorship, the dates at which 
these estimates are located in time, and corresponding estimates of  
and 30q30 from maternal orphanhood, Iraq, 1997 Census, both sexes

Age group Births in the 
last year B(i )

Mid-point 
age N B(i )*N

15–19 50,720 17 862,240
20–24 147,040 22 3,234,880
25–29 174,350 27 4,707,450
30–34 129,860 32 4,155,520
35–39 66,440 37 2,458,280
40–44 35,900 42 1,507,800
45–49 8,770 47 412,190

TOTALS 613,080 17,338,360

Table 22.3  Calculation of the mean age at childbearing, Iraq 
Census, 1997
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Step 2b: Calculate the conditional life table survivorship 
ratios of men
These survivorship ratios are shown in the sixth column of 
Table 22.6 and are calculated from the proportions in the 
fourth column using the regression coefficients shown in 
Table 22.2 and the estimate of mM  of 33.51 from Step 1b. 
For example, for the final estimate in Table 22.6,

40 35 0.9950 0.02635 33.51 0.4269
0.4818 0.8263 0.3432 0.3772

p = − + × +
× + × = .

Both the estimate of 0.9336 (made from the proportions 
0.9622 and 0.8999) and the estimate of 0.9000 (made from 
the proportions 0.8999 and 0.8394) are measures of 15p35, 
whereas the following estimate, 0.8398, measures 20p35, and 
so on.

Step 3: Convert the survivorship ratios into estimates of 
the level of mortality
The seventh columns of Tables 22.4 and 22.6 contain , 
the level parameter of the system of relational logit model 
life tables with a General United Nations model life table 
for both sexes with e0 = 60 as its standard. For example,  is 
calculated from the estimate of 10p25 for women as

0.9913 1
1 0.8335 0.86313ln 1 0.756
2 1 0.9913

α

 − 
= − + = − − 

 

.

The eighth columns of Tables 22.4 and 22.6 contain 
30q30, the probability of dying between exact ages 30 and 
60. Having calculated  from 10p25 to be –0.756, the 
corresponding measure of 30q30 is

( )

( )

2 0.756 0.8655

30 30 2 0.756 0.3064

11 0.072
1

eq
e

− −

− −

+
= − =

+
.

Age 
group Total women Father alive Proportion 

alive
Age

n
l (35 + n)

l (35)
Level
()

Probability 
of dying 
(30q30)

Date

5–9 2,834,210 2,727,110 0.9622 15 0.9336 –0.216 0.175 1992.7 
10–14 2,391,580 2,152,090 0.8999 15 0.9000 0.045 0.251 1990.6 
15–19 2,181,840 1,831,390 0.8394 20 0.8398 0.057 0.254 1988.7 
20–24 1,827,030 1,435,320 0.7856 25 0.7707 0.026 0.245 1987.0 
25–29 1,615,160 1,127,370 0.6980 30 0.6629 0.043 0.250 1985.5 
30–34 1,235,120 726,870 0.5885 35 0.5409 0.025 0.244 1984.6 
35–39 788,170 379,770 0.4818 40 0.3772 0.065 0.257 1984.8
40–44 817,460 280,540 0.3432    

Table 22.6  Estimation of men’s survivorship, the dates at which 
these estimates are located in time, and corresponding estimates of  
and 30q30 from paternal orphanhood, Iraq, 1997 Census, both sexes

Table 22.5  Ages of currently married men and women, Iraq, 
1997 Census

Age 
group

Married 
men

Married 
women

Cumulative 
proportion 

of men

Cumulative 
proportion 
of women

10–14 1,380 7,300 0.0005 0.0024
15–19 34,140 171,320 0.0122 0.0583 
20–24 192,160 429,420 0.0782 0.1984 
25–29 471,780 550,700 0.2401 0.3780 
30–34 496,440 488,090 0.4105 0.5372 
35–39 321,400 345,680 0.5208 0.6500 
40–44 375,650 336,270 0.6497 0.7597 
45–49 279,350 245,010 0.7456 0.8396 
50–54 224,610 164,470 0.8227 0.8933 
55–59 166,800 115,380 0.8800 0.9309 
60–64 105,760 75,470 0.9163 0.9555 
65–69 99,360 63,890 0.9504 0.9764 
70–74 59,000 37,220 0.9706 0.9885 
75–79 41,110 19,700 0.9847 0.9949 

80+ 44,430 15,570 1.0000 1.0000 
TOTAL 2,913,370 3,065,490
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Step 4: Calculate the time location of the estimates
The dates in the ninth column of Tables 22.4 and 22.6  are 
calculated by subtracting the time location of the estimates 
from the date of the 1997 Census of Iraq, which was taken 
on 16 October. As a decimal, this becomes 1997.79.

The time location of each estimate is calculated from 
the respondents’ ages, the appropriate estimate of M , and 
the proportions surviving. For mothers, exposure starts at 
the mean age of childbearing and extends from that age to 
the average age of the respondents supplying the data from 
which the survivorship ratio, N, was calculated. The initial 
age at exposure of fathers is 0.75mM −  but their duration 
of exposure is N + 0.75 years. For example, for the first 
estimate of men’s survivorship, the calculation is

( ) ( )

( )

( )

10 0.75 11 ln 0.9622 0.8999
2 3

1 80 33.51 10ln
3 80 33.51 0.75

10.75 1 0.0621 5.04
2

T
+ = − ⋅


 − −

+  − − 

= − =                              .

Thus, the date to which this first estimate refers is 
1997.79 – 5.04 = 1992.75.

The time location of the estimate of women’s mortality 
calculated from data on respondents aged 45–49 is nearly 
three years later than the time location of the estimate 
calculated from data on respondents aged 40–44. As in 
many applications of the orphanhood method, the data on 
this final age group should be discarded.

Diagnostics, analysis and 
interpretation
Checks and validation
The number of respondents who stated that they did not 
know whether their mother or father is alive or who did not 
answer the questions at all should be checked before they 
are dropped from the analysis. If many of the respondents 
failed to respond to these questions, the data supplied 
by those respondents who did answer them may not be 
representative of the population as a whole. Moreover, 
a high level of non-response may indicate that either the 
field staff or the respondents experienced difficulty with the 
questions. Thus, even when answers were supplied they may 
be rather unreliable. If a high level of item non-response 
exists, it can be illuminating to determine whether it is 

concentrated among a minority of field staff or a certain 
type of respondent.

If information about the survival of mothers and fathers 
has been collected from both male and female respondents 
in a census or a large-scale survey with small sampling 
errors, it is possible to tabulate the proportions of mothers 
and fathers alive separately for respondents of each sex in 
order to compare the consistency of their reports. While 
consistency of reporting does not guarantee accuracy, 
statistically significant differences between the proportions 
obtained from male or female respondents imply that at least 
one of the sexes, and possibly both of them, is answering the 
questions inaccurately.

It is fairly common to find that women report lower 
proportions of living parents than men. Some analysts 
believe that this is because women stay in closer contact 
with their parents than men and that some men are stating 
that their parents are alive because they do not know that 
they have in fact died. If correct, this would imply that the 
data supplied by women are more accurate. However, no 
strong evidence exists to support this interpretation and 
other errors, notably differential age misreporting by male 
and female respondents, may also produce inconsistencies 
between the proportions reported by men and women. 
In surveys of a few thousand households, moreover, the 
sampling errors of the estimates for the first few age groups 
may be quite large relative to the proportion of mothers 
or fathers that have died. Thus, if no clear reason exists to 
focus on the data supplied by female respondents, it can be 
advisable to base the final estimates of adult mortality on the 
combined responses of both sexes.

Interpretation
The results of the analysis of the orphanhood data from the 
1997 Census of Iraq are portrayed graphically in Figure 22.1. 
The craft of interpreting such plots is not just to read off the 
putative trend, but to decide which features reflect changes 
in mortality and which reflect problems with the data or the 
method.

The estimates made from the data supplied by male and 
female respondents in this application of the method are 
similar, which provides some reassurance as to the quality of 
both age reporting and reporting on the survival of parents 
in Iraq. Nevertheless, adult women are slightly more likely 
to report that their father is alive than adult men of the 
same age and the size of this inconsistency in the reports 
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widens as the respondents’ ages increase. This discrepancy 
is the opposite of the pattern observed in most populations. 
It could be explained by a stronger tendency for women 
than men to overstate their age or a stronger tendency for 
men than women to understate theirs, but both patterns of 
age misreporting seem unlikely. Alternatively, either some 
adult men could have reported their living fathers as dead or 
some adult women could have reported their dead fathers as 
alive. While this last possibility is perhaps the most plausible 
of the four explanations, there is no strong evidence for it. 
Perhaps the best course of action is to assume that both men’s 
and women’s reports on their fathers are slightly biased in 
opposite directions and use the estimates calculated from 
data on respondents of both sexes combined.

Whichever set of results one adopts, the orphanhood 
estimates suggest that the mortality of adult women in 
Iraq underwent a steady decline between the mid-1980s 
and mid-1990s and was only slightly higher than in most 
Western countries by the latter date. The smoothness of 
the trend is reassuring but the low level of mortality is 
surprising. Without other evidence to corroborate these 

results, one should be cautious about accepting them at face 
value as they could be biased downward by failure to report 
the deaths of some dead mothers, particularly those who 
died when the respondents were young children. This tends 
to produce an exaggerated impression of the extent to which 
mortality has declined.

In contrast, the mortality of adult Iraqi men in this 
period is estimated to be much higher than that of women. 
Moreover, the results suggest that men’s mortality stagnated 
through much of the 1980s before falling quite sharply 
in the early 1990s. It is likely that this pattern reflects the 
impact on orphanhood of the casualties in the 1980–1988 
Iran–Iraq war, in which a quarter to half a million Iraqi 
soldiers are believed to have died. Whereas vital statistics data 
usually distinguish between civilian and military deaths, in 
census and survey data both appear together. Thus, the most 
recent estimate of men’s mortality may be biased down by 
underreporting of dead fathers, but could be much lower 
than the others because nearly half the respondents on 
which it is based were born after the end of the war. Their 
fathers, therefore, must have survived it. In contrast, all the 

Figure 22.1  Trends in the probability of dying between exact ages 
30 and 60 estimated from orphanhood, Iraq, 1997 Census
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other estimates are based on the reports of respondents born 
before 1988. The fathers of the respondents aged 30–39, 
who supplied the information used to produce the earliest 
estimate, were about 50 years old on average at the outbreak 
of the war. Most of them would have been too old to have 
served at the front.

It should be recalled, however, that the orphanhood 
method tends to smooth out fluctuations in mortality 
because each estimate is based on deaths occurring over the 
entire period between the birth of the respondents and the 
time that the data were collected. In addition, the estimated 
trend can be distorted somewhat if the model life table 
adopted for the calculation of 30q30 is inappropriate. Thus, 
these results cannot be interpreted as portraying the precise 
trend in men’s mortality in Iraq between the early 1980s and 
early 1990s. For example, men’s mortality may have risen 
somewhat before it fell or may have fluctuated appreciably 
from year to year during the war, depending on the number 
of casualties.

Detailed description of method
Introduction
The potential of information on orphanhood for the 
measurement of adult mortality was first explored by 
Henry (1960). If survivorship could be treated as a linear 
function of age, the proportion orphaned at any age x, 
O(x), would to a close approximation depend on the 
probability of surviving from the mean age (M ) of parents 
at the birth of their children to age M x+ . However, this 
relationship underestimates the survivorship ratio (x Mp ) 
because the rapid increase in death rates with age means that 
survivorship curve in adulthood is convex. The lower risk 
of dying of those who bear children at young ages fails to 
compensate fully for the higher risk of dying of parents who 
bear children relatively late in life. To allow for this, Henry 
proposed an adjustment based on the variance in ages at 
childbearing.

The subsequent derivation of simple, robust methods for 
estimating mortality from orphanhood is largely associated 
with Brass. Hill and Blacker also played an important role 
in deriving ways of estimating men’s mortality from paternal 
orphanhood. Development of the procedure occurred in a 
number of stages; several variants were circulated informally 
and eventually published in Brass (1975). The final version 
of Brass’s implementation of the method, however, is that 
published in Brass and Hill (1973). It calculates measures of 

life table survivorship as a weighted average of the propor-
tions of respondents with living parents in two adjoining age 
groups with the weights being determined by, and adjusting 
for, the mean age of childbearing (M ) in the population.

Subsequently several researchers proposed regression 
methods for predicting women’s mortality from the pro-
portions of respondents with surviving mothers (Hill and 
Trussell 1977; Palloni and Heligman 1985). Timæus (1992) 
demonstrated that the weighting factors tend to under-
estimate mortality when it is higher than in the standard 
used to derive them and to overestimate mortality when it 
is lower than in the standard. A regression-based approach 
should usually produce more accurate estimates, particu-
larly of men’s mortality, because the intercept term provides 
additional flexibility with which to model more accurately 
the relationship between parental survival and life table sur-
vivorship at differing levels of mortality. Therefore, Timæus 
(1992) proposed regression coefficients for men’s mortality, 
together with coefficients derived using consistent assump-
tions for the estimation of women’s mortality. It is this vari-
ant of the orphanhood method that is presented here.

Mathematical exposition – orphanhood method
Let the number of children born a years before a demographic 
enquiry to women aged y when they gave birth be aVy . The 
probability of the children being alive at the time of the 
enquiry is l(a) and the probability that their mothers are still 
alive is l( y + a) / l( y). Assuming that the mortality of orphans 
and children with living parents is the same, the proportion of 
respondents aged a with living mothers, S(a), is

	
( ) ( ) / ( )

( )
( )

a y
s

a y
s

l a V l y a l y dy
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where integration is over all ages at child bearing s to .
The number of children born to women aged y is a 

function of the number of women aged y and the fertility 
rate at age y. If we assume a stable age structure, then

( )(0) ( ) ( )r y a
a yV B e l y f y− += , where r is the rate of natural 
increase and f ( y) the mothers’ fertility rate at age y. Therefore, 
the proportion of respondents in a five-year age group x to 
x + 5 with living mothers is
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Fathers’ exposure extends from the conception of the 
respondents to their current age. Making allowance for the 
possibility that a father may die between the conception and 
birth of his child gives a slightly more complicated equation 
for the proportion of respondents in a five-year age group x 
to x + 5 with living fathers:

5

5 5

( ) ( ) ( ) ( ) ( 0.75)

( ) ( ) ( )

x
ra ry

x s
x x

ra ry

x s

e l a e f y l y l y a l y dyda
S

e l a e f y l y dyda

ω

ω

+
− −

+
− −

+ −
=
∫ ∫

∫ ∫
.

In this equation, f ( y) represents the age-specific fertility 
schedule, and l(a) the life table survivorship, of men rather 
than of women and the ages between which childbearing 
occurs s and  are also those of men. There is no straight
forward way of integrating either the numerator or de-
nominator of these expressions for 5Sx and they have to be 
evaluated numerically.

Implementation of the method
In principle, there is no reason why Equation 1 should not 
be solved directly for life table survivorship using the Excel 
Solver routine or a similar tool and an age structure for those 
giving birth, aVy that is appropriate for the population under 
study. To arrive at a unique solution, an assumption still 
has to be made about the age pattern of mortality within 
adulthood such as which standard to adopt in a 1-parameter 
system of relational model life tables. In practice, estimates 
are usually produced using a regression model that controls 
for M  which has been fitted to simulated data on parental 
survival generated for populations with a wide range of age 
structures and fertility and mortality schedules (Timæus 
1992).

The proportions of mothers alive in age groups x to 
x + 5 are more closely correlated with women’s survivorship 
over the age range 25 to x + 5 than any other survivorship 
ratio and so the latter measure can be estimated from the 
proportions more accurately than any other:

25 5 5( ) ( ) ( )f
n np a n b n M c n S −= + + .

Particularly in populations with fairly low fertility and high 
mean ages of childbearing, the precision of the estimates for 
men is increased significantly by estimating survivorship 
from the proportions of fathers alive in two adjacent age 
groups. The additional age group captures the effects of 
variations in the rate at which mortality rises with age. At 
most ages the proportions of fathers alive in age groups x to 
x + 10 are more closely correlated with men’s survivorship 
over the age range 35 to x + 5 than any other survivorship 
ratio. Thus, the regression equation is

35 5 5 5( ) ( ) ( ) ( )m
n n np a n b n M c n S d n S−= + + + .

The first pair of age groups, those aged 5–9 and 10–14, 
predict survivorship from 35 to 50 more precisely than 
survivorship from 35 to 45. Thus the equation becomes

15 35 5 5 5 10(10) (10) (10) ( )mp a b M c S d n S= + + + .

Mathematical exposition – time location of the estimates
Equation 1 can be rewritten as a weighted average of the 
cohort survivorship ratios:

( ) c
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Thus, avy represents the contribution made to S(a), which 
is the proportion of adult relatives surviving for a years, by 
relatives who become exposed to the risk of dying at age y. 
Time location methods aim to estimate the time T at which 
the cohort measures of survival that produced the proportion 
of relatives surviving, c

a yp , equalled the equivalent period 
measures, apy(T ), so that

( ) ( )a y a y
s

S a v p T dy
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If we denote the mean time since death of those dying 
between y and y + a by agy, by definition
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where (z)l(z) is the life table deaths at age z. Brass and 
Bamgboye (1981) show that, if

  
mortality schedules conform 

to a system of 1-parameter relational logit model life tables 
(Brass 1971) and if the trend in adult mortality is assumed 
to be linear in , the parameter of that system of models, 
then the time at which the cohort survivorship of adults 
equals period survivorship is a weighted average of the times 
since death of the respondents’ relatives.
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This location in time depends on the level of mortality and 
the ages of the relatives, but is independent of the rate of 
change in . Although Brass and Bamgboye’s derivation 
of Equation 3 takes advantage of a relationship between 
changes in mortality with age and with time that is specific 
to a relational logit system of life tables, it possible to arrive 
at similar formulae for T on the basis of other reasonable 
assumptions about the trend in mortality with time by age 
(Palloni, Massagli and Marcotte 1984).

Equation 3 can be evaluated numerically, using values for 
avy and for the life table measures chosen on the basis of 
observed data. To develop a straightforward procedure for 
estimating T from observed characteristics of a population, 
a much simpler relationship than that described by 
Equation 3 must be assumed. Brass and Bamgboye (1981) 
argue that the change in T with a over limited age ranges 
are sufficiently close to linear that all respondents in a 
five-year age group can be treated as of the central age N. 
Second, they argue, at the ages and levels of mortality at 
which indirect methods are used to estimate adult mortality, 
the force of mortality increases approximately exponentially 
with age. As a consequence, for such applications, variation 
in agy with y is slight. Therefore, the weighting factors for agy 
in Equation 2 have little effect and all adult relatives can be 
treated as entering exposure at their mean age of entry, M. 
To a satisfactory approximation,

N MT g= .

If survivorship in adulthood fell linearly with age, so that 
the same number of deaths occurred at every age, then NgM 
would be N/2 whatever the value of M. In less extreme life 

tables, mortality rises with age more rapidly than this and 
the deaths of the relatives are concentrated at older ages and, 
therefore, in the recent portion of the N-year period. This 
means that the time location of the estimates is closer to 
the survey date than N/2. By substituting ekz( y)l( y) for 
(z)l(z) in Equation 2, and expanding the right-hand side in 
powers of N, Brass and Bamgboye (1981) demonstrate that 
the appropriate adjustment to NgM is a function of the level 
of mortality as measured by k and the age of the respondents 
as measured by N:

	 1
2 6N M
N kNg  ≈ − 
 

.	 (4)

Brass and Bamgboye (1981) also demonstrate that the 
assumption that mortality increases exponentially with age 
implies that, in a relational logit life table system
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Solving for kN and substituting this expression into 
Equation 4 yields an estimate of NgM, and therefore of T, of
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Thus, in this formulation, the time references of measures 
of conditional survivorship obtained from data on adult 
relatives are estimated as half the duration of exposure, N, 
reduced by a factor that depends on the level of conditional 
survivorship relative to a standard life table.

Having arrived at this expression for T on theoretical 
grounds, Brass (1985) approximates NpM by 5Sx and adopts 
as his standard life table one in which ls(x) is linear over the 
adult ages and is taken as (1 – x/80)/2. As ls(x) is linear, T = 
½N and ks becomes 0. Thus, T is estimated from observed 
data using

	
( )5ln 1 801 ln

2 3 3 80
xSN M NT

M
 − − = − +  −  

.	 (6)

The agreement between the estimates of T produced by 
this simplified procedure with those obtained by evaluating 
Equation 2 is quite close until the age of the relatives, M + N, 
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reaches 75 years. However, as M + N increases, the age 
pattern of mortality begins to have an important effect on 
the mean time since the deaths of the adult relatives, NgM. 
For example, if the force of mortality increases relatively 
slowly with age compared with the standard, a higher 
proportion of deceased relatives will have died a relatively 
long time ago. If there is evidence of such an age pattern of 
mortality or its opposite, this can be allowed for by defining 
a more appropriate standard by changing , the second 
parameter in a relational logit system of life tables (Brass 
1971). If this is done, l s(x) is no longer linear with age in the 
high-mortality life table used as the standard and the term in 
ks in Equation 5 needs to be subtracted from the estimates of 
T obtained from Equation 6. Making the same assumptions 
about the form of l (x) as before, the adjustment is

( ) ( )( )
( )( )
80 80

1 ln
12 80 80

M M NNT
M M N

δ β
 − + +

= − −  + − − 
.

When using Equation 6 to estimate the time location of 
estimates of women’s mortality from data on the survival of 
mother, 5Sx becomes 5Sn –   5, the proportion of respondents 
with living mothers; N is the midpoint of this age group, 
n – 2.5; and M M=  is the women’s mean age at childbear-
ing. When calculating the time location of estimates of men’s 
mortality from data on the survival of fathers, 5Sx is the pro-
portion of respondents with living fathers; M becomes the 
fathers’ mean age at the conception of their children; and 
N = n + 0.75 where n is the age dividing the two age groups, 
5Sn – 5 and 5Sn, that contribute to the estimate of men’s sur-
vivorship. In order to centre 5Sx on age n, it is calculated as

5 5 5 5x n nS S S−= ⋅ .

Extensions of the method
Orphanhood in populations affected by AIDS
Adult mortality estimates made by means of the orphanhood 
method in populations experiencing a generalized HIV 
epidemic are vulnerable to severe bias. First, HIV-positive 
women have lower fertility than uninfected women for both 
behavioural and biological reasons. Second, HIV-positive 
women can transmit the virus to their children during 
pregnancy, at delivery, or when breastfeeding. These two 
effects mean that HIV-infected women, who are at high 
risk of dying, tend to have fewer living children than the 

population in general. Thus, the reported proportion of 
mothers remaining alive is exaggerated. Because women are 
likely to have been infected by or to infect their husbands, 
orphanhood-based estimates of adult men’s mortality in 
populations affected by HIV will also be biased downward, 
though to a lesser extent than those for women. A third 
major HIV-related bias in orphanhood estimates is that the 
coefficients used to convert data on parental survival into 
conventional life table indices of mortality assume a very 
different age pattern of mortality in adulthood from that 
found in populations experiencing an AIDS epidemic.

Adjustment for HIV-related selection bias
If estimates are available of the pertinent characteristics 
of the HIV epidemic in a population at the time that the 
respondents were born, it is possible to allow for the first 
two biases by adjusting the reported proportions of mothers 
that are alive downward (Timæus and Nunn 1997). The 
adjustment procedure involves the assumption that most 
individuals who are already infected with HIV when their 
children are born will die within a few years. This was a 
reasonable assumption to make before the recent spread of 
large-scale treatment initiatives in the developing world but 
quickly ceases to be tenable after their launch. Indeed, if 
such programmes were able to reduce the mortality of all 
HIV-positive adults to a level close to that of the general 
population, no adjustment would be necessary.

To adjust data collected in the 2010 round of censuses or 
previously, one requires estimates of the prevalence of HIV 
infection among women attending antenatal clinics (P), the 
vertical transmission rate of HIV (h), which is to say the 
proportion of infants who acquire HIV from their mothers, 
and the relative level of fertility among HIV-positive women 
compared with HIV-negative women (F ). Using these 
measures, Timæus and Nunn (1997) derive a correction 
factor for adjusting the reported proportions of respondents 
with living mothers ( *

5 xS ) to obtain the proportions that 
would be reported if HIV-positive women had as many 
living children as other women (5Sx):

*
5 5

1
11

x x
hPS SF P
F

−
= −

+
.

The correction factor is based on the idea that the bias in 
the reported proportion of respondents with living mothers 
increases with HIV prevalence at a rate determined by F and 
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h. As one would expect, the higher vertical transmission, 
and the lower the fertility of infected women, the greater 
the bias in reports on the survival of mothers. Although F, 
P and perhaps h vary with the mother’s age, comparison of 
the results of this crude adjustment with those obtained by 
age-specific calculations suggests that it performs adequately 
(Timæus and Nunn 1997).

If few or no HIV infected people receive treatment with 
antiretroviral drugs, as was the case in 20th century African 
populations, the vertical transmission rate is typically 25 
to 40 per cent, averaging about a third (De Cock, Fowler, 
Mercier et al. 2000). However, programmes for the 
prevention of mother-to-child transmission (PMTCT) have 
already reduced this rate by on average about a quarter in 
high prevalence countries and could feasibly bring it down 
to less than 8 per cent even in low-income countries (Mahy, 
Stover, Kiragu et al. 2010). The reduction in the fertility of 
infected women is typically about 25 per cent in populations 
in which few adults receive treatment with antiretroviral 
drugs but it is unclear how this may change in future (Chen 
and Walker 2010). Thus, for the reports of respondents born 
before PMTCT interventions became widespread, a suitable 
adjustment might be:1

*
5 5

1
3

1
3

x x

P

S SP

−
=

+
.

If the prevalence of HIV infection among women attending 
antenatal clinics at the time was 7 per cent, this becomes

* *
5 5 5

1 0.0233 0.954
1 0.0233x x xS S S−

= =
+

.

Correcting the reported proportions of respondents with 
living fathers is more difficult. The appropriate downward 
adjustment depends on the proportion of infected men 
with infected partners. Unfortunately, this statistic is 
often unknown and the evidence suggests that it varies 
substantially between populations, so using an average 
value may give rather imprecise results (de Walque 2007; 
Freeman and Glynn 2004; Kaiser, Bunnell, Hightower et al. 

1	 This correction factor is somewhat larger than that suggested 
as a default by Timæus and Nunn (1997) as, on the basis of 
data available at that time, they adopted as typical values of the 
parameters F = 0.8 and h = 0.25.

2011). Moreover, it has not been demonstrated that a crude 
correction factor that ignores age-related differences in the 
various parameters performs adequately for data on fathers. 
Nevertheless, the adjusted proportions will usually be less 
biased than unadjusted ones in populations with severe 
epidemics. If w denotes the proportion of men with infected 
partners, the appropriate adjustment factor is

* *
5 5(1 (1 (1 ) )(1 ) )x xS h F w P S= − − − −

where P* denotes a population-based estimate of HIV 
prevalence among men, in contrast to the antenatal clinic-
based estimate for women. For example, for h =1/3, F = 0.75, 
w = 0.5 and P* = 0.05, one obtains

*
5 5

*
5

(1 (1 (1 0.3333)0.75)(1 0.5)0.05)

0.9875 .
x x

x

S S

S

= − − − −

=

For respondents aged less than 15 years, the assumption 
that all parents who were infected when the respondents 
were born have already died is unrealistic even in data sets 
collected before the implementation of mass treatment 
programmes. About half of this group of parents are alive 
for the 5–9 year old respondents and perhaps a quarter 
for 10–14 year old respondents. Using these figures, the 
correction (i.e. one minus the correction factor) made to the 
data on 5–9 year old respondents should be halved and that 
for those aged 10–14 reduced by a quarter.2

Revised coefficients for estimating women’s mortality
Timæus and Nunn (1997) also develop a new set of 
regression coefficients for estimating life table survivorship 
from proportions of respondents with living mothers 

2	 Developing Timæus and Nunn’s (1997) argument further leads 
to the result that one should reduce the size of the adjustment 
made to data on the first two age groups by multiplying the 
initial correction factors by:

(1 + P(d – F )/F )/(1 – (1 – (1 – h)d )P)

	 where d denotes the estimated ratio of the proportions of 
the infected to the uninfected parents that are still alive 
defining their HIV status at the time of the respondents’ 
birth. The impact of this procedure differs little from that 
of simply reducing the complement of the correction factor 
by the proportion of parents of respondents in the age group 
estimated to remain alive.
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in populations experiencing severe HIV epidemics (see 
Table 22.7). They are intended for use in populations in 
which the prevalence of HIV infection among adults is 5 per 
cent or greater. The regression model is the same as for the 
standard method and the coefficients only differ from the 
standard ones for respondents aged less than 30:

25 5 5( ) ( ) ( )f
n np a n b n M c n S −= + + .

Equivalent coefficients for the estimation of men’s mortality 
have not been developed because little is known about 
how age patterns of HIV incidence and fertility interrelate 
among men.

Table 22.7  Coefficients for the estimation of women’s survivorship 
from the proportions of respondents with living mothers in 
populations experiencing a generalized HIV epidemic

n a(n) b(n) c(n)
10 –0.3611 0.00125 1.2974
15 –0.4030 0.00222 1.3732
20 –0.2120 0.00372 1.1342
25 –0.2389 0.00586 1.1131
30 –0.2513 0.00885 1.0223

Source: Timæus and Nunn (1997)

More information is available now than in the 1990s on age 
patterns of HIV incidence, survival post-infection, and the 
age pattern of fertility reduction among the HIV-infected. 
Thus, the coefficients in Table 22.7 could undoubtedly be 
refined. Nevertheless, they are unlikely to be severely biased. 
However, they may be inappropriate for use in populations 
in which treatment of HIV-infected adults with antiretroviral 
drugs has become widespread.

Estimation of the level and trend in mortality
The biggest challenge involved in estimating adult mortality 
from orphanhood data in populations with generalized 
AIDS epidemics is that no adequate systems of model life 
tables exist with age patterns of mortality typical of a series 
of populations with AIDS epidemics of differing degrees 
of severity. Because AIDS deaths are concentrated among 
adults aged between about 25 and 55, changes in the level 
of mortality resulting from the spread in HIV also radically 
change the age pattern of mortality. This greatly reduces the 
confidence with which one can extrapolate from measures 
of survivorship for different age ranges to a common index 

of mortality. Moreover, as the incidence of HIV infection 
in most affected populations first grew very rapidly and 
is now decreasing, it may be appropriate to use different 
models for different cohorts of respondent. The workbook 
(see website) incorporates mortality standards devised for 
countries experiencing moderately severe HIV epidemics. 
However, these will not be appropriate either for countries 
where the prevalence of HIV infection in adults is just a few 
percentage points or countries with severe HIV epidemics. 
They may not even be appropriate for all countries with 
moderately severe HIV epidemics.

Illustrative application
The problem that the analyst faces is illustrated by the 
estimates of adult survivorship made for Kenya from 
the 1999 Census data on orphanhood that are shown in 
Figure 22.2. The standard estimates, made without recourse 
to any of the adjustments described in this section and 
extrapolated to a common index of mortality using the 
United Nations General models, are shown using unbroken 
lines. They suggest that the probability of dying between 
ages 30 and 60 (30q30) in Kenya rose steadily from about 
1987 to 1996 for both men and women, increasing by 
about 10 percentage points during this decade in each case.

The ‘AIDS standard’ estimates were produced in exactly 
the same way except that they were converted into estimates 
of 30q30 using standards that incorporate mortality from 
AIDS. These results look very different: they suggest that the 
mortality of men continued to decline slowly in Kenya until 
the early 1990s but that otherwise adult mortality stagnated.

The ‘AIDS’ estimates show the additional effect of adjust-
ing the proportions for AIDS-related selection bias and, for 
the most recent estimate for women, using the coefficients 
intended for populations in which the prevalence of HIV 
infection among adults exceeds 5 per cent. For 5–9 year old 
respondents, both adjusting for selection bias and using the 
new coefficients push up the estimate of women’s mortality 
substantially. The HIV epidemic in Kenya in the 1990s was 
not severe enough, however, for the adjustments to make 
much difference to any of the other estimates.

To use the UN General model to estimate 30q30 in Kenya 
for the 1990s amounts, in effect, to assuming that the rises in 
mortality from AIDS occurring among younger adults were 
matched by comparable rises in mortality among middle-
aged individuals. This seems unlikely. The estimates of 30q30 
made using the AIDS standards, in contrast, imply that any 
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rise in the mortality of young adults was more than offset 
by continuing declines in the death rates of middle-aged 
adults in the late 1980s and more-or-less exactly offset by 
such declines till about 1993. However, few of the parents 
of respondents who were themselves in their thirties in 1999 
are likely to have become infected with HIV and so using 
the AIDS standard to make the early estimates of 30q30 also 
seems inappropriate. Perhaps the most likely scenario is that 
the probability of dying between ages 30 and 60 stagnated 
between the late-1980s and mid-1990s and then began 
to rise, though probably somewhat less abruptly than is 
indicated by the ‘AIDS’ series for women.

The crucial point to emphasize is that it is impossible to 
determine from these data exactly what happened to adult 
mortality in Kenya in the 1990s. The only estimates that 
are fairly reliable are those for the late 1980s. These results 
are based on age groups for which only limited adjustment 
of the proportions of parents that are alive is needed to 
estimate 30q30. Thus, the series based on different standards 
intersect at this time.

Orphanhood before and since marriage
Methods exist for estimating adult mortality from orphan
hood that can be used when supplementary questions are 
asked in a single survey about the timing of the deaths of 
parents relative to first marriage (Timæus 1991). Two aims 
underlie these methods. The first is to produce methods with 
a more specific and up-to-date time reference than those 
yielded by the original method. The second is to develop 
methods that are less subject to bias due to under-reporting 
of orphanhood at young ages.

Marriage is an event that distinguishes, for each age group 
of respondents, more recent parental deaths from those 
that occurred longer ago. While the information on the 
timing of deaths is less precise than that yielded by direct 
questions about the date of death of parents, it may be more 
accurately reported. Even if respondents cannot remember 
exactly when their parents died, it seems likely that nearly 
all of them will be able to report the timing of parental 
deaths relative to their first marriage, another event of major 
significance in their lives.

Figure 22.2  Trends in the probability of dying between exact ages 
30 and 60 estimated from orphanhood, Kenya, 1999 Census
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Some 15 inquiries conducted as part of Phase 1 of the 
Demographic and Health Surveys programme collected 
data on the relative timing of the deaths of parents and 
first marriage. Unfortunately, few or no surveys have done 
so more recently. Data on the timing of first births relative 
to the birth of respondents’ first child could be analysed in 
exactly the same way and might be more representative of 
the mortality of all parents in populations in which many 
people never marry or in which getting married is thought 
of as a process rather than an event that occurs on a well-
defined date.

Because men and women marry (and have their first births) 
at different ages, the reports of male and female respondent 
should be analysed separately. The estimation coefficients 
discussed here were developed primarily for the analysis of 
data supplied by female respondents (Timæus 1991) but 
could also be used for the analysis of data supplied by men 
if their mean age at marriage is less than 25. For respondents 
whose age exceeds the mean age at marriage, the estimates 
are robust to any characteristics of the distribution of ages of 
marriage other than its mean.

Orphanhood since first marriage
The proportion of mothers that have remained alive since 
respondents married is closely related to the probability of 
surviving from the sum of the period mean age at childbear-
ing and the cohort mean age at marriage until the sum of the 
mean age at childbearing and the current age of the respond-
ents. Estimates made from data on orphanhood since mar-
riage will measure more recent mortality than those based on 
respondents’ lifetime experience of orphanhood. In addition, 
because parental deaths since marriage must have occurred 
when respondents were sufficiently old to remember them 
clearly, such data could be less subject to reporting errors 
than those concerning the overall level of orphanhood.

The earliest central age of respondents (n) for which one 
can estimate a survivorship ratio, npb, from data on orphan
hood since marriage is 30 years. For women, to preserve a 
close relationship between maternal survival and life table 
survivorship, the latter is measured from a base age, b, of 
45 years. Thus, the model used to estimate life table meas-
ures from the survival of mothers since the respondents 
married is
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where m  is the cohort mean age at marriage and 5
m
nS  is the 

proportion of respondents in age group n to n + 5 who at the 
time of their first marriage had living mothers.

The only difference in the equation for the estimation of 
men’s mortality from paternal orphanhood since marriage 
arises from the fact that men tend to be older than women 
at the birth of their children. Therefore, survivorship is esti-
mated from a base age that is 10 years greater. The estimates 
are made using
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where the age at marriage referred to is still that of the re-
spondents, who will usually be female, not the parents, who 
are now male.

Until most respondents have married, the relationship 
between life table survivorship and the proportions of 
parents alive is sensitive to the shape of the age distribution 
of first marriages. Thus, coefficients exist for estimating 
survivorship over the age ranges 10p45 to 30p45 for adult 
women and 10p55 to 20p55 for adult men (see Table 22.8).

Table 22.8  Coefficients for estimating adult women’s and men’s 
mortality from orphanhood since first marriage

n a(n) b(n) c(n) d(n) e(n)
Adult women

30 0.5617 0.00836 –0.00261 –1.1231 1.4199
35 0.0476 0.01396 –0.00536 –0.3916 1.1354
40 –0.3715 0.01966 –0.00744 0.5394 0.5286
45 –0.6562 0.02587 –0.00716 1.0208 0.1789
50 –0.8341 0.03045 –0.00561 1.1898 0.0541

Adult men
30 0.0676 0.01588 –0.00633 –1.2070 1.8284
35 –0.5459 0.02273 –0.01083 –0.2509 1.3867
40 –0.8674 0.02622 –0.01135 0.6057 0.7198

Source: Timæus (1991)

Orphanhood before first marriage
The proportion of women with living mothers at marriage 
approximately equals the life table probability of surviving 
from the mean age at childbearing of the mothers to that age 
plus the mean age at first marriage of their daughters. If the 
data are not biased by the adoption effect, this variant on the 
orphanhood method has two valuable characteristics. First, 
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it measures mortality over a limited and fairly clearly defined 
interval of time and range of ages. Secondly, the estimates are 
capable of extending the time series of mortality estimates 
provided by the orphanhood method backward to at least 
30 or 35 years before the data were collected.

For orphanhood before marriage an interaction term 
between the mean age at marriage and proportion orphaned 
improves the fit of the model. Thus, the probability of surviv-
ing from age 25 to age 45 for women can be estimated from 
orphanhood before marriage using the regression equation:
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The coefficients of this equation for the different age groups 
defined by n are presented in Table 22.9.

The same considerations apply to the estimation of adult 
male mortality from paternal orphanhood before marriage. 
Estimates of the probability of surviving from age 35 to age 
55 are made from
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These coefficients are also presented in Table 22.9.

Table 22.9  Coefficients for estimating adult women’s and men’s 
mortality from orphanhood before first marriage

n a(n) b(n) c(n) d(n) e(n)
Adult women

30 –0.9607 0.00418 0.04466 –0.04291 1.8178
35 –0.9921 0.00429 0.04700 –0.04501 1.8428
40 –1.0129 0.00433 0.04822 –0.04611 1.8607
45 –1.0206 0.00434 0.04861 –0.04648 1.8680

Adult men
30 –1.2719 0.01060 0.04480 –0.04007 1.8383
35 –1.2977 0.01068 0.04652 –0.04124 1.8530
40 –1.3203 0.01070 0.04769 –0.04225 1.8726
45 –1.3232 0.01070 0.04783 –0.04238 1.8753

Source: Timæus (1991)

For orphanhood before marriage, the final sets of coefficients 
presented for maternal and paternal orphanhood before 
marriage in Table 22.9 refer to an age group in which first 
marriage is almost complete. These coefficients can be used 
to estimate mortality from the reports of any age group 

of respondents aged 40 and above. Only the accuracy of 
reporting about parental deaths and respondents’ own ages 
impose an upper age limit on the data on orphanhood before 
marriage that can be used to estimate mortality.

Time location of the estimates
Like those from lifetime orphanhood, estimates made from 
the data supplied by different age cohorts of respondents, 
about orphanhood before and after marriage, reflect 
mortality over varying and ill-defined periods of time. 
For orphanhood before marriage, the time reference of 
the mortality measures is the product of the distribution 
of intervals between parental deaths and marriage and the 
distribution of intervals between marriage and interview. 
To the degree of precision required, the time reference of 
maternal orphanhood estimates is the average interval from 
orphanhood to first marriage plus the average interval from 
first marriage to interview. For cohorts of women who 
have nearly all married, the ages at which the parents are 
exposed to the risk of dying are concentrated between their 
mean age at childbearing and the sum of that age and their 
daughters’ mean age at first marriage. The time reference of 
the mortality measures can be calculated as

( ) m MT N m g= − + .

The second term on the right-hand side of Equation 5 can 
be estimated using the procedure explained with reference to 
the basic method (see Step 4). As for lifetime orphanhood, 
the time reference of estimates of male mortality should 
allow for deaths between conception and birth and are 
calculated using 0.75 0.75m Mg+ − .

For orphanhood since marriage, the age at which parents 
enter exposure to the risk of death is the product of their 
distribution of ages at childbearing and their daughters’ 
ages at marriage. For age groups that have largely completed 
marriage, one can estimate the mean age at which exposure 
starts as the sum of the means of these two distributions. 
The parents’ exposure continues till the time of interview, 
N m−  years later. Thus, the time references of the mortality 
measures are

N m M mT g− += .

Because the age range over which fathers are exposed to 
the risk of death commences well after the birth of their 
daughters, this equation is appropriate for estimates of both 
men’s and women’s mortality.
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Illustrative application
Figure 22.3 portrays the results of the application of the 
orphanhood before and since first marriage method for 
estimating adult mortality to data collected from women 
aged 15 to 49 in the 1988 Demographic and Health Survey 
(DHS) of Egypt. The first striking feature of these results is 
that the information on whether the older respondents were 
orphans when they first married collected in 1988 gener-
ates a series of estimates of adult mortality that extends back 
to the early 1950s. Second, the additional sets of estimates 
produced by partitioning the orphaned women into those 
who were orphaned before they first married and those who 
have been orphaned since, tie in consistently with those 
produced from data on lifetime orphanhood. These results 
offer no evidence that the underreporting of orphanhood 
due to the adoption effect is biasing down the most recent 
estimates based on lifetime orphanhood or those based on 
orphanhood before first marriage.

According to these results, a steady, gradually decelerating 
drop in adult mortality occurred in Egypt between the early-
1950s and mid-1980s. The probability of dying between 

exact ages 30 and 60 fell by about 200 per thousand over 
this period for both men and women from a very high level 
in the early 1950s to about 200 per thousand for women 
and 300 per thousand for men in the early 1980s. Even 
these most recent estimates represent rather high mortality. 
The 100 per thousand difference between the probabilities 
of dying of men and women changed hardly at all over the 
period. The orphanhood estimates of adult mortality for 
men, in particular, are substantially higher than those based 
on other sources (UN Population Division 2011).

Questions about the timing of parental deaths
A further extension to the orphanhood method is to ask 
respondents whose parents have died about when the 
death occurred (Chackiel and Orellana 1985). If the 
dates on which parents died are reported with reasonable 
accuracy, this enables the analyst to distinguish recent from 
more distant parental deaths and obtain more up-to-date 
estimates of mortality. The best way to analyse such data is 
to use the information on dates of death to reconstruct the 
proportion of respondents who had living parents five and 

Figure 22.3  Trends in the probability of dying between exact ages 
30 and 60 estimated from orphanhood, Egypt, 1988 DHS
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ten years earlier. From these successive cross-sections, one 
can construct synthetic cohort measures of parental survival 
that are formally identical to those generated from data 

collected in a series of separate inquiries. Therefore, methods 
for the analysis of these data are discussed jointly with the 
analysis of orphanhood data from multiple inquiries.

Further reading and references
The orphanhood method is discussed in all the classic 
manuals on indirect estimation (Sloggett, Brass, Eldridge 
et al. 1994; UN Population Division 1983) but, with the 
exception of the United Nations’ manual on estimating 
adult mortality (UN Population Division 2002), these 
manuals give emphasis to the older variant of the method 
that uses weighting factors to produce life table indices, 
rather than the regression-based method normally used 
today. Although regression-based methods for women had 
been proposed previously (Hill and Trussell 1977; Palloni 
and Heligman 1985), regression methods for estimating 
men’s mortality were first developed by Timæus (1992). His 
article also surveys earlier contributions to the literature and 
discusses the theoretical basis of the method.

Methods for estimating adult mortality from orphanhood 
before and after marriage are described in Timæus (1991). 
Procedures for estimating women’s mortality in populations 
experiencing generalized HIV epidemics were developed by 
Timæus and Nunn (1997).

Luy (2012) has proposed a modified orphanhood method 
intended for the study of socio-economic differentials in adult 
mortality in countries that already have accurate aggregate 
information on adult mortality. His method determines the 
relationship between the proportion of survey respondents 
reporting living parents and life table survivorship from 
empirical statistics on the population concerned instead of 
using demographic models. Thus, Luy’s method tailors the 
estimation process to the context. Few low- and middle-
income countries have sufficiently accurate national data for 
this to be feasible, though aspects of the approach may be of 
relevance in some circumstances.

Methods that exploit the additional analytic opportunities 
that arise when questions about orphanhood have been asked 
in two or more successive inquiries in the same population 
are discussed in Chapter 26.
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Chapter 23  Indirect estimation of adult mortality 
from data on siblings

Ian M Timæus

Description of method
This method estimates adult mortality indirectly from data 
supplied by adults on the survival of their adult siblings (that 
is brothers and sisters). These data are tabulated by the age 
group of the respondents. Mortality can be estimated from 
them without requiring respondents to recall the dates when 
deaths occurred or the ages at death of deceased individuals. 
Information on the survival of brothers is used to estimate 
the mortality of men and information on the survival of 
sisters to estimate the mortality of women.

Respondents often fail to report – and may not know 
about – siblings who died before or during the few years 
after their own birth. The impact of this bias can be reduced 
greatly, however, by only including siblings who survived 
to age 15 in the analysis. In order to apply the method, a 
census or survey must have asked adult respondents (for 
example, those aged 15 to 49) how many of their sisters and/
or brothers survived to the age of 15 and how many of them 
are still alive. Many surveys only collect information on 
siblings from women but data supplied by male respondents 
can be analysed using exactly the same methods.

Respondents’ siblings are approximately the same age, 
on average, as the respondents. Thus, the proportion of 
the siblings who survived to age 15 who are still alive is a 
good estimator of the conditional probability life table of 
surviving from age 15 to the current age of the respondents.

If mortality has changed over time, the estimated 
survivorship ratios reflect the mortality rates that have 
affected each cohort at a range of ages and dates. A ‘time 
location’ method has been developed that estimates how 
many years prior to the inquiry each cohort ratio equalled 
period survivorship. These intervals increase with the age 
of respondents, ranging from about 3 to 13 years before 
the collection of the data. Thus, if the survivorship ratios 

estimated from the reports of different age groups of 
respondent are translated into a common index of mortality 
in adulthood using a 1-parameter system of model life 
tables, these statistics will refer to different dates and can be 
used to infer the broad trend in mortality over time.

One advantage that sibling methods have over questions 
about household deaths is that only censuses or unusually 
large surveys can capture information on enough deaths in 
households in the year before the inquiry to yield mortality 
estimates that are sufficiently precise to be useful. Because 
respondents report on several siblings, on average, and the 
estimates are based on all exposure to risk at age 15 or more, 
estimates can be made from data on siblings in smaller 
inquiries. Nevertheless, all methods for the estimation of 
adult mortality require data on several thousand households. 
Moreover, the estimation procedure does not assume a 
population closed to migration. However, the results from 
the method will not be representative for small states or 
sub-national areas in which a substantial proportion of the 
population are in-migrants or have emigrated.

Data requirements and assumptions
Tabulations of data required
To estimate the mortality of adult women, respondents aged 
15 to 49 should be asked how many of their sisters lived to 
age 15 and how many of these sisters are still alive. From 
tabulations of the answers to these two questions by the age 
group of the respondent, one can calculate:
•	 The proportion still alive of sisters who were alive on 

their 15th birthday by five-year age group of respondent. 
(Those who did not answer either question should be 
excluded from the calculations.)
To estimate the mortality of adult men, respondents aged 

15 to 49 should be asked how many of their brothers lived 
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to age 15 and how many of these brothers are still alive. 
From tabulations of the answers to these two questions by 
the age group of the respondent, one can calculate:
•	 The proportion still alive of brothers who were alive on 

their 15th birthday by five-year age group of respondent. 
(Those who did not answer either question should be 
excluded from the calculations.)
The tabulations of numbers of siblings reaching age 15 

and still alive should exclude the respondent himself or 
herself. (Of course, this is always the case when respondents 
report on siblings of the opposite sex.) This requirement is 
explained in the discussion of the important assumptions 
made by the method.

Tables on respondents’ own-sex siblings (i.e. women’s 
sisters and men’s brothers) should be weighted only by any 
sample or design weights provided with the data. Tables on 
respondents’ opposite sex siblings (i.e. women’s brothers and 
men’s sisters) should be further weighted by the inverse of 
the number of surviving own-sex siblings of the individual 
respondent making the reports. This requirement is also 
explained in the discussion of the important assumptions 
made by the method.

To eliminate ambiguities related to polygynous marriage 
and to remarriage, interviewers in most inquiries are 
instructed that ‘siblings’ means children born to the same 
mother. Whether or not this has been done, the reports 
can usually be accepted as they are. So long as respondents 
have the same group of relatives in mind when answering 
the question about siblings that are still alive as they did 
when answering the preceding question about siblings who 
survived to age 15, for the purpose of estimating mortality it 
is immaterial exactly who their parents are.

If both men and women have been asked the relevant 
questions, their responses should usually be tabulated 
separately so that the two sets of data can be checked against 
each other.

Many Demographic and Health Surveys collect full sibling 
histories from all women aged 15 to 49. These histories ask 
each respondent for the name, sex, age, survival status and, 
if dead, age at and year of death for each of their siblings 
born to the same mother. All-cause death rates for men and 
women should usually be calculated from such histories by 
the direct sibling method. The reporting of recent deaths 
of siblings is believed to be more complete than that of 
more distant deaths and the direct method allows one to 
restrict the analysis to data on the years immediately prior 

to the conduct of the survey. It is straightforward, however, 
to determine the summary counts required by the indirect 
method from the full sibling histories. If reporting of siblings 
is fairly complete, but the reporting of the ages and dates of 
death of siblings is very poor, the indirect approach might 
yield more reliable results than the direct one.

Important assumptions
An inherent limitation of sibling-based methods for meas-
uring adult mortality is that they underestimate mortal-
ity insofar as mortality clusters within sibships (i.e. sets of 
brothers and/or sisters born to the same mother). Clustering 
occurs whenever deaths are more concentrated in a small 
proportion of sibships than would be expected by chance 
and results from inter-sibship heterogeneity in individuals’ 
risk of dying (Zaba and David 1996). It causes downward 
bias in the mortality estimates simply because fewer mem-
bers of a high mortality sibship than a low mortality sibship 
of the same size remain alive to answer questions about their 
siblings. It is impossible to correct fully for this because, at 
the extreme, sets of siblings whose members have all died 
are not reported on at all. There is no way of knowing how 
many of these sibships existed or what their sizes were.

Estimates of mortality trends will be biased as a result if 
the extent to which clustering of mortality within sibships 
varies with age. For example, if characteristics shared by sibs 
(e.g. genetic factors, early-life experiences, socio-economic 
status, life styles, and location) strongly influence the mor-
tality of middle-aged adults, whereas mortality before age 40 
has a large random component, estimates made for older re-
spondents will underestimate mortality by more than those 
made from data supplied by younger respondents, produc-
ing a spurious impression of mortality increase over time.

The issue of bias related to multiple reporting of siblings 
has received substantial attention in the literature. The 
problem exists in survey as well as census data because the 
more times an individual would be reported in a census, the 
more likely they are to have a sibling who reports on them 
included in a probability sample.1 Moreover, even in surveys, 

1	 Note that the issue of calculating the sampling error of the 
mortality estimates correctly in surveys in which some 
individuals are reported on more than once and mortality is 
clustered at the level of the sibship, is distinct from the issue 
being discussed here, which is that of bias in the central 
estimate of mortality.
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potential exists for multiple responses about the same indi-
vidual. For example, if two daughters of the same mother are 
interviewed in the same household, there will be multiple 
reports about other members of the sibship. The standard 
approach to analysis used, for example, in DHS reports is 
based on the events and exposure time of reported siblings, 
leaving out the exposure time of the (surviving) respondent 
herself. Events and exposure time are weighted only by the 
respondent’s sample weight, not taking into account num-
bers of surviving potential respondents in the sibship.

Trussell and Rodriguez (1990) demonstrate mathemati-
cally that for groups of same-sex sibships with an identi-
cal underlying risk of dying, the standard calculation that 
excludes the respondent from both the denominator of the 
measures yields unbiased estimates of mortality. In effect, 
the reduction in the number of reports on dead people in the 
numerator that occurs because dead people cannot report 
on one another and the exclusion of the living respondents 
from the denominator offset each other precisely to give the 
correct risk for the sibships as a group.

The issue of the biases that could result from differential 
mortality by sibship size is bound up with the issue of 
multiple-reporting bias. It has attracted a lot of research 
interest because, unlike other factors that affect risk within 
sibships classified by sex and age of the respondent, each 
respondent’s sibship size is known. If mortality does not 
vary with sibship size, the standard estimates are the same 
for both every size of sibship, including one-person sibships 
that are excluded from the analysis because the respondent 
has nobody to report on, and the population as a whole. 
Even if mortality varies by sibship size the standard estimates 
remain unbiased for each sibship size, as pointed out by 
Masquelier (2013). To obtain mortality estimates for the 
population though, one must reweight the estimates for 
sibships of different sizes by the prevalence of sibships of 
that size in the population. When respondents are reporting 
on their own sex, one can achieve this by dividing the 
proportion of respondents from surviving sibships of each 
size by the estimated proportion of siblings surviving from 
age 15 to that age group in all sibships of the same size. To 
do this for single-person sibships, their mortality has to be 
estimated by extrapolation from mortality in larger sibships.

Gakidou and King (2006) argue that, instead of the 
standard approach, the proportions dying should be estimated 
for sibships that include the surviving respondent but should 
always be weighted in addition by the likelihood that they will 

be reported – that is, by the inverse of the number of potential 
respondents surviving in the sibship. As in Masquelier’s 
approach, an additional adjustment also must be made for 
sibships that go unreported because no member remains 
alive. In a multi-survey analysis of DHS full sibling histories, 
Obermeyer, Rajaratnam, Park et al. (2010) estimate that the 
effect of not adjusting for the likelihood of reporting may bias 
overall mortality estimates downward by as much as 20 per 
cent. Masquelier (2013), however, argues that Obermeyer and 
her co-authors reweighted the data inappropriately and, as a 
result, exaggerated the size of any bias. He emphasizes that, 
if one is going to reweight, it is important only to adjust for 
multiple reporting by siblings who survived to the initial age 
from which mortality is being measured. In addition though, 
he questions whether the observed variation in mortality by 
sibship size is always real. Instead, it may well be an artefact 
of greater omission of dead siblings in the histories reported 
for large sibships. Masquelier therefore recommends using the 
standard approach, without attempting to reweight the data 
to allow for differential mortality by sibship size. This is the 
approach that is adopted here.

When analysing reports made on the opposite sex (for 
example, responses made by women about their brothers), 
the issues are rather different. In this case, the respondent 
is not a member of the group that is exposed to the risk 
of dying. However, the standard calculation will still give 
biased results for the population as a whole if the mortality of 
siblings of one sex is associated with the number of siblings 
of the opposite sex that report on them. Thus, for reports on 
the opposite sex a clear case exists for weighting each report 
by the inverse of the respondent’s number of surviving 
siblings of their own sex as suggested by Gakidou and King 
(2006). Of course, questions about siblings of the opposite 
sex cannot generate any information on those sibships 
whose members have no living siblings of the respondent’s 
sex. Thus, adopting this approach is equivalent to assuming 
that the mortality of individuals in such sibships is the same 
as the mortality of the rest of the population. However, in 
surveys that collect data from both sexes, each sex supplies 
this information for the other and one can further weight 
the deaths and exposure reported by respondents by the 
inverse of the probability that siblings in each age group get 
reported on at all.

The adult sibling method estimates the trend in mortality 
from data supplied by different age groups of respondent: the 
older the respondent, the longer ago their brothers and sisters 
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died on average. In order to convert the series of measures 
of survivorship obtained indirectly from data on different 
age groups into a single indicator that can be compared over 
time, it must be assumed that the age pattern of mortality in 
adulthood is represented by the chosen standard life table. 
To estimate the time location of these measures, it is further 
assumed that mortality declined linearly in terms of that 
standard over the period being considered.

Preparatory work and preliminary 
investigations
Before starting the analysis, one should check how many 
respondents stated that they did not know how many of 
their siblings reached age 15 or how many of them are still 
alive, or who failed to answer the questions at all. Although 
the response rate on these questions is usually high, a few 
surveys have collected sufficiently incomplete data to suggest 
that non-response bias could be a substantial problem.

If both women and men have been asked the relevant 
questions, one useful check on the quality of the data 
on siblings is to assess how many siblings of each sex are 
reported, on average, by respondents of the other sex and 
whether the reported sex ratio at birth changes markedly as 
the respondents’ age increases.

One should also compare the proportions dead reported 
by male and female respondents of the same age. The 
mortality of individuals of a particular sex as reported by their 
brothers should equal the mortality of the same individuals 
as reported by their sisters. If it does not, this may indicate 
significant bias in the proportions dead for one or both sexes 
as a result of the multiple reporting of some sibships and the 
fact that none of the sibs have survived to report on others. 
Alternatively, if the proportions reported by male and 
female respondents diverge as their age increases, this could 
reflect gender differences in patterns of age misreporting or 
the fact that the sex that reports fewer dead siblings (usually 
the men) is more likely to lose touch with their families of 
origin and tends to assume wrongly that some of their dead 
siblings remain alive.

Caveats and warnings
•	 The original indirect sibling method was developed to 

estimate the survivorship of siblings from birth (Hill and 
Trussell 1977). Unfortunately, such reports are often very 
incomplete, particularly for siblings who died before or 
soon after the birth of the respondent. The indirect adult 

sibling method is recommended instead, but can only 
produce probabilities of surviving from age 15 to ages 
later in adulthood conditional on being alive at exact age 
15. To produce a complete life table, one has to estimate 
survivorship from birth to age 15 using estimates based 
on another source of data.

•	 Deaths of siblings do not occur at one point in time but 
may have occurred at any time between the respondents’ 
15th birthday and when they were interviewed. 
Therefore, applications of the indirect sibling method can 
only indicate the smoothed trend in adult mortality and 
will fail to capture short-term mortality crises or abrupt 
reversals in the trend in mortality such as those resulting 
from AIDS after the onset of a generalized HIV epidemic.

•	 The most up-to-date mortality estimates that can be 
produced using data on adult siblings are made from 
information supplied by respondents aged 20–24. 
Typically, however, only a few per cent of their brothers 
and sisters have died and the resulting estimates can have 
wide confidence intervals even in large sample surveys.

•	 The indirect procedure for estimating adult mortality 
from information on adult sibling does not involve the 
assumption that the population is closed to migration. 
Nevertheless, it can be difficult to interpret sibling-based 
estimates of adult mortality for sub-national geographic 
units, such as urban and rural areas or districts, or for re-
spondents with particular socio-economic characteristics. 
This is because, although siblings usually share the same 
ethnic identity, many of the respondents’ siblings will 
live in different places from the respondents themselves 
and their socio-economic characteristics may differ from 
those of the respondents. Estimates for sub-national pop-
ulations are also likely to have very large sampling errors.

Application of method
Step 1: Calculate the conditional life table survivorship 
ratios
The procedure for estimating life table indices from the 
proportions of siblings that are alive is identical no matter 
whether one is analysing data on brothers, sisters or siblings 
of both sexes and irrespective of whether the respondents 
are men, women or of both sexes. The accompanying Excel 
workbook (see website) contains panels for estimating 
both men’s and women’s survivorship from data on male 
respondents, female respondents and respondents of both 
sexes. Either the number of brothers or sisters alive at age 
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15 and the number of brothers or sisters still alive by five-
year age group of respondent or the proportions of those 
brothers/sisters who were alive at 15 that are still alive by 
five-year age group of respondent should be entered into the 
appropriate panels. Estimates are produced from the data on 
respondents aged 20 to 49 years.

Survivorship is estimated between exact age 15 years and 
15 + n years, where n is the upper limit of each successive 
age group of respondents. The following regression equation 
and the coefficients shown in Table 23.1 are used:

15 15 5 5( ) ( )n np a n b n S− −= +

where 5Sn – 5 represents the proportion still alive of the siblings 
who were alive on their 15th birthday of respondents aged 
n – 5 to n. For example, when n is 25, life table survivorship 
is estimated over the 10-year age interval from exact age 15 
to exact age 25 using data on survival of siblings supplied by 
respondents in the age group 20–24 years.

Table 23.1  Coefficients for the estimation of adult survivorship 
from the proportions of respondents with living sisters or brothers

n a(n) b(n)
25 –0.0003 1.0011
30 –0.1546 1.1560
35 –0.1645 1.1660
40 –0.1388 1.1406
45 –0.1140 1.1168
50 –0.1018 1.1066

Source: Timæus, Zaba and Ali (2001)

Step 2: Convert the survivorship ratios into estimates of 
the level of mortality
To infer mortality trends from a series of survival ratios, 
n – 15p15, obtained from different age groups of respondents 
and referring to different dates, it is necessary to convert them 
all into a common index of mortality that can be compared 
over time. This is done by fitting a 1-parameter relational 
logit model life table to each measure and obtaining the 
common mortality index from the model.

A wide range of indices have been used for this purpose, 
including the level parameters of various systems of model life 
tables, survivorship ratios such as 35p15, which corresponds 
to the widest age range for which the adult siblings method 
yields measures, and life expectancy at age 15. Using the 
parameters of the models has the advantage of emphasizing 
that the full life table is being estimated by fitting a model, 

rather than measured directly. The measure of life expectancy 
summarizes survivorship across adulthood as a whole, while 
using survivorship avoids extrapolation into old age from 
measures for younger adults. Increasingly, in recent years, 
the estimates have been presented in terms of the probability 
of a 15-year old person dying before age 60, 45q15, as this 
measure has found favour with several international agencies 
as a summary indicator of the mortality of young and 
middle-aged adults.

In the applications of the adult sibling method presented 
here the survivorship ratios are converted into values of , 
the level parameter of a system of relational logit model 
life tables, and then into estimates in these fitted models of 
the conditional probability of a 15-year old person dying 
by exact age 60 (45q15), exact age 50 (35q15) or exact age 
40 (25q15). The last of these indices lies in the middle of 
the series of n – 15q15 values estimated using the regression 
models. The model life table parameter is calculated as

15 15

15 15
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where the estimates of n – 15p15 come from Step 1 and the l s(x) 
values come from a standard life table. Thus, one obtains 
a series of values of  corresponding to the survivorship 
estimates made from data on the different age groups of 
respondents. Higher values of  correspond to higher 
mortality. Then for each ,
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for x = 25, 35, and 45.

The workbook (see website) can calculate  and the three 
summary probabilities of dying using either a standard from 
the General family of UN Population Division (1982) model 
life tables or one from any of the four families of Princeton 
model life tables (Coale, Demeny and Vaughan 1983). The 
standard life table should be chosen to have an age pattern 
of mortality within adulthood that resembles that of the 
population being studied. Another life table can be used 
as a standard if there is reason to believe that it resembles 
more closely the pattern of adult mortality in the population 
being studied. The most suitable standard may not be the 
family of models that best captures the relationship between 
child and adult mortality. If nothing is known about the age 
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pattern of mortality in adulthood, use of the United Nations 
General or Princeton West models is recommended.

Step 3: Calculate the time location of the estimates
Each survivorship ratio produced by the adult sibling survival 
method represents an average of the mortality prevailing 
during the period since the siblings’ 15th birthdays. The 
duration of exposure of respondents’ older siblings is longer 
than that of their younger siblings but averages out at about 
n –18.3 years (this is explained in a later section). The point 
of time at which the ratio equalled period survivorship 
depends on the level of mortality and can be estimated from 
the proportion of the siblings that are alive and the age of 
the respondents.

The only additional information required to calculate the 
dates to which each of the adult morality estimates refer is 
the date on which the inquiry that asked about the survival 
of brothers and sisters was conducted. This can be calculated 
as the average of the dates on which the interviews took 
place or taken as the mid-point of the period of fieldwork if 
exact dates of interview are not available.

The estimates are calculated as the date of fieldwork 
minus T, where T can be calculated for each estimate using 
the following equation and the coefficients in Table 23.2:

( )5 5( ) ( )ln nT a n b n S −= − .

Table 23.2  Coefficients for calculating the time location of 
estimates of adult survivorship from the proportions of respondents 
with living sisters or brothers

n a(n) b(n)
25 3.23 1.12
30 5.46 1.95
35 7.52 2.78
40 9.38 3.62
45 11.00 4.45
50 12.32 5.28

Source: Timæus, Zaba and Ali (2001)

Worked example
This example uses data on the survival of brothers and sisters 
collected in the 2003 World Health Survey in Bangladesh 
(accessed 17 November 2012). This survey collected data 
from adult men and adult women on both their brothers 
and sisters. The reports made by women about their sisters 
are used to illustrate the calculations involved in the method.

Step 1: Calculate the conditional life table survivorship 
ratios
The number of sisters that respondents reported as having 
survived to their 15th birthdays and the number of these 
sisters that they reported to be still alive are shown in the 
second and third columns of Table 23.3. These numbers 
were tabulated using the standard approach, weighting the 
reports only by the survey weights. The proportions alive 
in the fourth column are calculated by dividing the counts 
in the third column by those in the second column. The 
survivorship ratios are presented in the sixth column of 
Table 23.3. They were estimated from the proportions in 
the fourth column using the regression coefficients shown in 
Table 23.1. For example, for respondents aged 25–29,

10 15 0.0003 1.0011 0.9533 0.9541p = − + × = .

Step 2: Convert the survivorship ratios into estimates of 
the level of mortality
The seventh column of Table 23.3 contains values for , 
the level parameter of the system of relational logit model 
life tables based on a South Princeton model life table for 
both sexes with e0=60. The eighth column of the table 
contains estimates of 25q15 (the probability of a 15-year old 
person dying before their 40th birthday). For example,  is 
calculated from the estimate of 10p15 for women as

0.9541 1
1 0.8376 0.8557ln 1 0.517
2 1 0.9541

α

 − 
= − + = − 

 

.

Having calculated , then the corresponding measure of 
25q15 is

( )

( )

2 0.517 0.8899

25 15 2 0.517 0.6902

11 0.136
1
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Step 3: Calculate the time location of the estimates
The dates in the ninth column of Table 23.3 were calculated 
by subtracting the time location of the estimates from the 
date of the 2003 World Health Survey in Bangladesh, which 
was taken as 30/04/2003. The time location of each estimate 
is calculated from the age group of the respondents and the 
proportions surviving using the equations in Table 23.2. For 
example, for the first estimate of sisters’ survivorship, the 
calculation is:

( )3.23 1.12 ln 0.9533 3.28T = − × = .
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Diagnostics, analysis and interpretation
Checks and validation
The number of respondents who stated that they did not 
know either how many of their siblings reached age 15 or 
how many of them are still alive or who did not answer the 
question at all should be checked before they are dropped 
from the analysis. If a lot of respondents failed to respond to 
these questions, the data supplied by those respondents who 
did answer them may not be representative of the population 
as a whole. Moreover, a high level of non-response may 
indicate that either the field staff or the respondents were 
experiencing difficulty with the questions. Thus, even when 
answers were supplied they may be rather unreliable. If a 
high level of item non-response exists, it can be illuminating 
to determine whether it is concentrated among a minority 
of field staff or a certain type of respondent.

If information about the survival of siblings has been 
collected from both men and women in a census or a large 
survey, tabulating the proportions of brothers and sisters 
alive separately for male and female respondents can be 
recommended in order to compare the consistency of their 
reports. While consistency of reporting does not guarantee 
accuracy, statistically significant differences between the 
proportions obtained from male or female respondents imply 
either that bias has been introduced into the estimates by the 
design of the question or that respondents of one or both sexes 
are answering the questions inaccurately. It is fairly common 
to find that male respondents report fewer siblings than 
female respondents and, in particular, fewer dead siblings. 
In other surveys, the two sexes may report similar numbers 
of siblings surviving to age 15 but that different numbers of 

them remain alive. The first type of discrepancy might result 
from differential age misreporting, but the second cannot.

Any bias due to clustering of mortality within families 
results in underestimates. Moreover, it seems unlikely that 
respondents invent siblings or report that their living sib-
lings have died. Thus, the analysis should probably focus on 
the data for the sex that reports lower proportions of living 
siblings.

Interpretation
The results of the example application of the indirect adult 
sibling method to data from the 2003 World Health Survey 
in Bangladesh are portrayed graphically in Figure 23.1. 
The life table indicator presented in this instance is the 
probability of dying between ages 15 and 40.

The proportions of women’s sisters alive among those 
who lived to age 15 and of men’s brothers surviving among 
those who lived to age 15 were tabulated using the standard 
approach, weighting the reports only by the survey weights. 
In contrast, the equivalent proportions of men’s sisters and 
women’s brothers alive were tabulated after further weighting 
each respondent’s responses by the inverse of their number 
of surviving same-sex siblings.

It can immediately be seen that all four series of estimates 
fluctuate somewhat erratically and that all four series also 
tend to suggest that adult mortality rose in Bangladesh dur-
ing the 1990s. This seems unlikely and may suggest that the 
estimates made from data on older respondents are biased 
downward by omission of dead siblings from the reports or 
by other biases.

The estimates of the mortality of women (i.e. the sisters’ 

Age group Sisters alive 
at 15

Sisters still 
alive

Proportion
alive (5Sn – 5) n  l(n)

l(15)
Level
()

Probability 
of dying 
(25q15)

Date

15–19 871.6 851.8 0.9773
20–24 858.8 818.7 0.9533 25 0.9541 0.517 0.136 2000.0
25–29 964.7 901.1 0.9340 30 0.9251 0.535 0.139 1997.7
30–34 766.9 702.2 0.9156 35 0.9031 0.467 0.128 1995.6
35–39 626.4 554.4 0.8850 40 0.8706 0.473 0.129 1993.5
40–44 552.8 490.7 0.8877 45 0.8774 0.226 0.093 1991.8
45–49 495.9 401.5 0.8095 50 0.7940 0.436 0.124 1989.9

Table 23.3  Estimation of women’s survivorship, the dates at which 
these estimates are located in time, and corresponding estimates of  
and 25q15, from the survival of adult sisters, Bangladesh, 2003
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mortality) produced from the reports of male and female 
respondents indicate broadly the same level of mortality. How-
ever, the estimates of the mortality of men (i.e. the brothers’ 
mortality) based on the reports of male respondents indicate 
much lower mortality than the estimates for men based on 
data supplied by women. While the latter estimates suggest 
that the mortality of men and women in early adulthood is 
broadly similar, the estimates for men produced from data 
supplied by male respondents suggest that young men have 
much lower mortality than young women in Bangladesh.

Clearly these estimates are of rather poor quality. They 
may severely underestimate the mortality of young adults in 
Bangladesh. One quite plausible explanation of the apparent 
discrepancies between the different series of estimates is 
that men are more likely to omit dead siblings from their 
reports than women, but that downward bias resulting from 
clustering of mortality at the sibship level is more severe in 
the estimates based on the reports made by same-sex siblings 
than the estimates based on the reports made by opposite sex 
siblings. The estimates based on men’s reports about their 
brothers are particularly low as they suffer severely from 

both biases. In contrast, the two series for women appear 
fairly consistent because each is severely affected by one bias 
but less affected by the other. The implication of this pattern 
of errors, if it is indeed the explanation of the differences 
between the series, is that both sets of estimates for women 
probably underestimate their mortality by more than the 
estimates for brothers based on the reports of women. Thus, 
the mortality of young women in Bangladesh may well 
remain higher than that of men of the same age.

Detailed description of method
Introduction
The initial methods developed for estimating mortality from 
information on the survival of siblings were based on the 
idea that, on average, the ages of siblings are close to the age 
of a respondent. The proportion of a respondent’s siblings 
who are still alive is, therefore, a good estimator of life table 
survivorship to the age of the respondent (Hill and Trussell 
1977; UN Population Division 1983).

Unfortunately, field experience of this approach 
demonstrated that the quality of the data collected on 

FigurE 23.1  Trends in the probability of dying between exact ages 
15 and 40 estimated from adult siblings, Bangladesh, 2003 World 
Health Survey
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siblings was often low because siblings who died before or 
shortly after the respondent’s own birth were often omitted 
by respondents, who may not know about them at all 
(Blacker and Brass 1983; Zaba 1986).

Interest in estimating mortality from data on siblings 
was revived by the development of the sisterhood method 
for measuring maternal mortality (Graham, Brass and 
Snow 1989). This requires data on how many sisters of the 
respondent survived to the age of 15, how many of them 
died thereafter, and whether sisters who died did so during 
pregnancy or within 6 to 8 weeks of the end of a pregnancy. 
Limiting the consideration of siblings to only those who 
survived to age 15 years excludes siblings who died while 
still young and, therefore, may have been unknown to or 
forgotten by the respondent. The responses supplied to the 
first two of these questions by respondents allow one to 
calculate the proportions still alive of sisters who survived to 
age 15 for each five-year age group. These proportions can 
be used to estimate the all-cause mortality of adult women. 
Comparable data on respondents’ brothers can be used to 
estimate the mortality of men.

Thus, the only information required to apply the indi-
rect adult sibling method is summary data on the propor-
tion of adult sisters and brothers that are still alive among 
those who survived to age 15 tabulated by the age group 
of the respondents. As the siblings are about the same age 
on average as the respondents, for respondents aged x, these 
proportions approximately equal lx/l15. Because the relation-
ship that exists between this measure and the proportion 
of siblings who survived to adulthood that are still alive is 
a close one, it can be estimated relatively precisely even in 
populations with unusual age patterns of mortality such as 
those experiencing severe HIV epidemics.

Mathematical exposition
Using the probability approach developed by Goodman, 
Keyfitz and Pullum (1974), Timæus, Zaba and Ali (2001) 
show that, in a stable population, the number of siblings 
ever born y years before a respondent currently aged a is 
given by aVy :
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where Equation 1 gives the number of older siblings, 
Equation 2 the number of younger siblings, integration is 
over all ages at childbearing s to , and

z = 	 the age of the mother at the birth of the respondent
f (z – y)� = the probability of the respondents’ mothers 

giving birth at age z – y conditional on having given 
birth to the respondent at age z

r = 	 the growth rate in a stable population.
Note that in Equations 1 and 2, f (x) is a birth distribution, 

which is to say the distribution of ages at giving birth of an 
individual woman, not the fertility distribution of the entire 
population.

The proportion of siblings still alive among those who 
lived to age 15 for respondents in a five-year age group, x to 
x + 5 is given by
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Calculation of the proportion of siblings alive for a given 
age of respondent requires a model of the birth distributions 
of individual women. Hill and Trussell (1977) assumed that 
all mothers experience the age-specific fertility rates of the 
general population. Thus, they could derive a sibling age 
distribution as a convolution of the fertility distribution. 
However, if women start childbearing at a wide range of 
ages, but compress all their childbearing into a small part of 
their fertile life span, as is typical in low fertility populations, 
one would expect the variance of the birth distribution to be 
considerably lower than the variance of the fertility schedule.

By contrast, when developing the sisterhood method, 
Graham, Brass, and Snow (1989) assumed that aVy, the dis-
tribution of age differences of siblings, could be represented 
by a normal distribution with a mean of zero and a variance 
of 80 years-squared. This assumption considerably simplifies 
the process of estimating the proportion of siblings who re-
main alive but is difficult to justify on theoretical grounds. In 
particular, the distribution of age differences between siblings 
would only be normal if the mother’s birth distribution itself 
was normal. Using a normal distribution for the sibling age 
difference distribution constitutes a reasonable approxima-
tion if the birth distribution is peaked (i.e. 2<35), but is less 
satisfactory for representing sibling age difference distribu-
tions in the case of flatter birth distributions, such as occur 
in high- and medium-fertility populations.



CHAPTER 23 INDIRECT ESTIMATION OF ADULT MORTALITY FROM DATA ON SIBLINGS  |  253

A further issue arises in growing or shrinking populations. 
Goldman (1978) proved that, in a growing population, an 
individual selected at random from those whose mothers 
have completed childbearing has more younger siblings ever 
born than older ones. The opposite is true in a shrinking 
population. One can understand this intuitively by consid-
ering respondents currently aged 40, all of whose mothers 
have completed childbearing. In a growing stable population, 
relatively more of these respondents will have young mothers 
(say those currently aged less than 65 if they have survived) 
than in a stationary population because, at the time of their 
birth, there would have been more women aged less than 25 
than in the corresponding stationary population. But, if the 
respondents are children of young mothers, they are more 
likely to have younger than older siblings because their moth-
ers have more childbearing before them than behind them.

Thus, the distribution of sibling age differences is not 
symmetrical: its mean lies below zero in a growing popula-
tion, while the opposite is true in a shrinking population. 
More precisely, if the variance of the underlying birth dis-
tribution is 2, then the mean of the sibling age distribu-
tion lies at approximately –r2, where r is the population 
growth rate. Thus, even if all women experienced the same 
age-specific fertility, the variance of the sibling age distribu-
tion in a growing population would still be slightly less than 
twice the variance of the fertility distribution and the dis-
tribution would be positively skewed. The opposite features 
characterize this distribution in shrinking populations.

In order to address these issues, Timæus, Zaba and Ali 
(2001) proposed a model of the sibling age differences that 
synthesized the two earlier approaches. On the basis of an 
investigation of the distributions of ages of older siblings 
reported in the birth histories collected by 12 nationally-
representative surveys conducted as part of the World Fertil-
ity Survey (WFS), they concluded that the variances of birth 
distributions in the developing world range from about 
45 to 110 years-squared. They then adapted the relational 
Gompertz model of fertility (Brass 1974, 1981) to represent 
these birth distributions, setting the  parameter in their set 
of models to values that vary between 1 and 1.8 to produce 
distributions of the appropriate width (as  increases the 
variance of the model distributions decreases). To allow for 
the absence of very short birth intervals in human popula-
tions, aV0 was set to 0 and aV1 and aV–1 to 40 per cent of 
the model values. The value of 40 per cent reproduces the 
average of the ratios aV1 / aV2 in the 12 WFS populations.

Implementation of the method
Although Equation 3 has to be evaluated numerically, in 
principle there is no reason it could not be solved directly 
for life table survivorship using the Excel Solver routine or a 
similar tool and a birth distribution, aVy that is appropriate 
for the population under study. To arrive at a unique solution, 
an assumption still has to be made about the age pattern of 
mortality within adulthood such as which standard to adopt 
in a 1-parameter system of model life tables. In practice, 
estimates are usually produced using regression models that 
have been fitted to simulated data on the survival of siblings 
generated for populations with a wide range of age structures, 
birth distributions and mortality schedules (Timæus, Zaba 
and Ali 2001). The coefficients of these models are shown 
in Table 23.1.

Mathematical exposition – time location of the estimates
Time location methods aim to estimate the time T at which 
the cohort measures of survival that produced the proportion 
of relatives surviving, c

a yp , equalled the equivalent period 
measures, apy(T ), so that
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If we denote the mean time since death of those dying 
between y and y + a by agy, by definition
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where (z)l(z) is the life table deaths at age z. Brass and 
Bamgboye (1981) show that, if mortality schedules conform 
to a system of 1-parameter relational logit model life tables 
and the trend in adult mortality is assumed to be linear in , 
the parameter of that relational system of models, the time 
at which the cohort survivorship of adults equals period 
survivorship is a weighted average of the times since death 
of the respondents’ relatives:
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This time depends on the level of mortality and the ages 
of the relatives but is independent of the rate of change 
in . Although Brass and Bamgboye’s derivation of 
Equation 3 takes advantage of a relationship between 
changes in mortality with age and with time that is specific 
to a relational logit system of life tables, it is possible to arrive 
at similar formulae for T on the basis of other reasonable 
assumptions about the trend in mortality with time by age 
(Palloni, Massagli and Marcotte 1984).

Equation 5 can be evaluated numerically, using values for 
avy and for the life table measures chosen on the basis of 
observed data. To develop a straightforward procedure for 
estimating T from observed characteristics of a population, 
a much simpler relationship must be assumed. Brass and 
Bamgboye (1981) argue that the change in T with a 
over limited age ranges is sufficiently close to linear that 
all respondents in a five-year age group can be treated as 
of the central age N. Second, they argue, at the ages and 
levels of mortality at which indirect methods are used to 
estimate adult mortality, the force of mortality increases 
approximately exponentially with age. As a consequence, for 
such applications, variation in a gy with y is slight. Therefore, 
the weighting factors for a gy in Equation 5 have little effect 
and all adult relatives can be treated as entering exposure at 
their mean age of entry, M. To a satisfactory approximation,

N MT g= .

If survivorship in adulthood fell linearly with age, so that 
the same number of deaths occurred at every age, then NgM 
would be N/2 whatever the value of M. In less extreme life 
tables, mortality rises with age more rapidly than this, and 
the deaths of the relatives are concentrated at older ages and, 
therefore, in the recent portion of the N-year period. This 
means that the time location of the estimates is closer to 
the survey date than N/2. By substituting e kz(y)l(y) for 
(z)l(z) in Equation 4 and expanding the right-hand side 
in powers of N, Brass and Bamgboye (1981) demonstrate 
that the appropriate adjustment to NgM is a function of both 
k and N:

	 1
2 6N M
N Ng k ≈ − 
 

.	 (6)

Brass and Bamgboye (1981) also demonstrate that the 
assumption that mortality increases exponentially with age 
implies that in a relational logit life table system
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Solving for kN and substituting this expression into 
Equation 6 yields an estimate of NgM, and therefore of T, of:

( )ln 1 ( )1 ln
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Thus, in this formulation, the time references of measures 
of conditional survivorship obtained from data on adult 
relatives are estimated as half the duration of exposure, N, 
reduced by a factor that depends on the level of conditional 
survivorship relative to a standard life table.

Having arrived at this expression for T on theoretical 
grounds, Brass (1985) approximates NpM by 5Sx and adopts 
as his standard life table one in which l s(x) is linear over the 
adult ages and is taken as (1 – x/80)/2. As l s(x) is linear, T = 
½N and ks becomes 0. Thus, T is estimated from observed 
data using

	
( )5ln 1 801 ln

2 3 3 80
xSN M NT

M
 − − = − +  −  

.	 (7)

In the adult sibling method, M, the age at which exposure 
begins, is exactly 15 years for every sibling. The asymme-
try of the sibling age difference distribution means that, in 
a growing population, the siblings are on average slightly 
younger than the respondents. This age difference varies 
between about zero and 1.75 years in those populations in 
which one is likely to want to apply the method. One can 
use a central value of 0.8 years in all applications. Thus, the 
duration of exposure, N, becomes (n – 2.5 – 0.8) – 15, where 
n is still the upper limit of the age group of respondents. 
Because M is fixed at 15 years, Equation 7 can be simplified 
for each age group to a linear equation of the form (Timæus, 
Zaba and Ali 2001)
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Performance in populations with 
generalized HIV epidemics
The HIV epidemic poses two problems for indirect methods 
of estimating mortality based on the survival of relatives. 
First, both the sexual and vertical routes of transmission 
produce significant selection biases in data collected in 
surveys on the survival of relatives. Second, the incidence 
of HIV infection is concentrated among young adults. 
Thus, populations with significant AIDS mortality have 
very different age patterns of mortality both from other 
populations and from the model life tables used to derive 
coefficients for converting data on survival of relatives into 
measures of life table survivorship.

A major advantage of sibling methods of measuring 
adult mortality, compared with the orphanhood method, 
is that they are free of selection biases arising from direct 
transmission of the virus. Some residual bias due to clustering 
of AIDS mortality within sibships will remain. In particular, 
the risk of HIV infection tends to vary markedly between 
localities and siblings often live close to each other. The 
impact of this, however, will be relatively small compared 
with the biases that affect data that parents have supplied 
about their children or vice versa.

Bias in the regression coefficients used to estimate life 
table survivorship remains more of a problem. With respect 
to Equation 3, it is the change in the age pattern of mortality 
experienced by the siblings as a result of AIDS that is of 
concern, not the impact of the epidemic on the sibling 
age difference distribution, as the main factor shaping this 
distribution is the age pattern of childbearing rather than 
mortality or age structure.

Timæus, Zaba and Ali (2001) assess the sensitivity of the 
adult sibling method estimates to these problems using a 
combination of empirical and simulated data. They find that 
even in the presence of the unusual age pattern of mortality 
found in populations with high AIDS mortality, the adult 
sibling method produces estimates of survivorship that are 
close to the actual values. The estimates based on data on 

respondents aged 20–24 years and more than 40 years are 
extremely accurate, while those based on data for respond-
ents aged 25 to 39 years slightly overestimate survivorship. 
This is because the regression coefficients fail to allow for the 
concentration of AIDS deaths in this age range.

To use sibling estimates of adult survivorship to monitor 
mortality trends, it is necessary to fit a model life table to 
the estimates for specific age ranges and use it to extrapolate 
to an index referring to a common range of ages. Somewhat 
surprisingly, if one converts the entire series of estimates to 
measures of survivorship from 15 to 50 years, 35p15, these 
remain fairly accurate. Those obtained from respondents 
aged 25 to 34 are more accurate than the estimates of ln/l15 
on which they are based. Errors due to the failure to allow 
for the impact of AIDS on the mortality schedule in first 
calculating the coefficients and then extrapolating to a 
common measure of survivorship largely cancel out. This 
finding is robust to variation in background mortality and 
choice of a mortality standard. Thus, estimates of 35p15 
obtained from the adult sibling method probably represent 
relatively robust indices for the monitoring of mortality 
trends as the AIDS epidemic develops. As with other indirect 
methods, if successive sets of data are collected for the same 
population, checks on the consistency of the estimates for 
periods when they overlap provide a powerful indication of 
the accuracy of the results.

Extensions and variants of the method
Most surveys that have collected the information required 
to estimate all-cause mortality of adults from data on adult 
siblings have also asked whether dead sisters died while 
pregnant or shortly after giving birth. Together these data 
provide the basis for applying the sisterhood method for 
estimating maternal mortality (Graham, Brass and Snow 
1989). It is also possible to calculate direct sibling estimates 
of adult mortality from the detailed sibling histories collected 
in many Demographic and Health Surveys and some other 
inquiries.
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Further reading and references
The adult sibling method is not discussed in the classic 
manuals on indirect estimation (Sloggett, Brass, Eldridge et 
al. 1994; UN Population Division 1983) but is described in 
the United Nations manual on estimating adult mortality 
(UN Population Division 2002). The key reference 

explaining the theoretical basis of the adult sibling method 
and the development of the regression coefficients for 
conversion of proportions of surviving siblings into life table 
indices is Timæus, Zaba and Ali (2001). This article surveys 
earlier contributions to the literature.
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Chapter 24  The generalized growth balance method
Rob Dorrington

Description of method
Hill (1987) generalized the Brass Growth Balance method 
for estimating the completeness of the reporting of deaths 
relative to an estimate of the population on the assumption 
that the population was demographically stable, to non-
stable populations closed to migration. This generalization 
can be used where one has data on the numbers by age group 
from two censuses and an estimate of the number of deaths 
by age group between the dates of the two censuses. With 
the additional information from two censuses it is possible 
to estimate age-specific growth rates in place of the constant 
growth rate implied by the assumption of stability. The 
method still assumes, however, that the proportion of deaths 
reported and the completeness of the census counts is the 
same at all adult ages and that, apart from this, the data are 
accurately reported. Moreover, in its common formulation it 
assumes that the population is closed to migration, although 
the method can be adapted to accommodate migration if 
data are available.

In all closed populations, r(x+) = b(x+) – d (x+), where 
the partial ‘birth’ rate, b(x+), is defined as the rate at which 
people turn age x in the population aged x and older and 
the partial death rate, d(x+), is the rate of mortality of 
people aged x and older. If, in this population, the deaths 
are under-reported to the same extent at each age then 
b(x+) – r(x+) = d r(x+)/c, where d r(x+) is the recorded death 
rate for ages x and older and c is the proportion of deaths 
that are reported. In practice, the count of the census 
populations from which r(x+) is estimated may not be 
complete but the assumption that the undercount is the 
same at each age makes it possible to solve for c from the 
slope of the line fitted to the b(x+) – r(x+) and d r(x+) data 
points. Mortality rates can then be estimated by dividing 
the numbers of deaths reported in each age group by c and 
dividing these numbers by an estimate of the population 
exposed to risk, to estimate the partial birth, growth and 

death rates. Moreover, as a by-product of the procedure, the 
less complete census counts can be adjusted to be mutually 
consistent, although not necessarily accurate.

Data requirements and assumptions
Tabulations of data required
•	 Number of women (men), by five-year age group, and for 

open age interval A+ (with A as high as possible), at two 
points in time, typically from the results of two censuses. 
(See the caveat below concerning the use of surveys 
instead of censuses.)

•	 Number of deaths of women (men), by five-year age 
group, and for open age interval A+, over the period 
between the two censuses or surveys.

Important assumptions
•	 The coverage of each census is the same for all ages.
•	 The completeness of reporting of deaths is the same for all 

ages above a minimum age (usually age 5 or 15).
•	 The population is closed to migration. Although the 

method can be adapted to allow for migration, accurate 
enough estimates of the net numbers of migrants to do 
so seldom exist. For national populations, net migration 
is often low enough to ignore, but for situations where 
migration is significant one needs to take this into account 
when interpreting results and deciding on an estimate of 
completeness.

Preparatory work and preliminary 
investigations
Before applying this method, you should investigate the 
quality of the data in at least the following dimensions:
•	 age structure of the population;
•	 sex structure of the population;
•	 age structure of the deaths; and
•	 sex structure of the deaths.
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If the reported deaths are for a period other than that 
between the censuses, the numbers that would have been 
reported in the intercensal period need to be estimated. 
If one has annual vital registration data, this adjustment 
involves apportioning deaths in the first and last year of the 
period. If one has deaths reported by households the year 
before the dates of each of the first and second censuses, 
one has to estimate the numbers of deaths by interpolating 
between these estimates for the intercensal period (using the 
Estimating deaths.xlsx spreadsheet).

Caveats and warnings
In applying this method, analysts must take particular care 
with the following.

The interpretation and estimation processes need to take 
into account the source of death data (vital registration, 
reported by households in censuses, or recorded in hospitals) 
as explained below. However, the biases associated with the 
source of death data tend to have less impact on the estimate 
of completeness from the Growth Balance method than on 
the Synthetic Extinct Generations method.
•	 If applying the method to sub-national geographic areas, 

the issue of migration typically becomes a greater concern.
•	 Deciding the age range to be used to fit the straight line 

to the partial birth and death rates and hence estimate 
completeness. Issues here are: the best age to choose for 
the open interval if there is evidence of age exaggeration; 
how to accommodate data points that rise above the line 
at the older ages because of falling completeness possibly 
due to retirement-associated migration from urban 
to rural areas where registration is less complete; and 
whether to exclude ages less than either 30 or 35 because 
of the impact of migration which has not been allowed 
for specifically.

•	 If completeness appears to be less than 60 per cent then 
the uncertainty is large and this should be taken into 
account when interpreting the results.

•	 It is tempting in a situation in which census data on the age 
distribution of the population and household deaths are 
available for only one census to use in this method sample 
survey data on the age distribution of the population at 
some earlier or later date. However, for reasons that have 
not been adequately researched, such a combination of 
data sources rarely gives satisfactory results.

Application of method
Although technically one could apply this method to data in 
single year age categories, the data one typically works with are 
subject to age misstatement, so in practice one usually works 
with data grouped into five-year age groups. For convenience, 
since most data are published in this format, the spreadsheet is 
set up to work with data in the standard five-year groupings. 
However, as Blacker (1988) has shown, if this grouping fails 
to remove the effect of digit preference, the method should be 
adapted to work with an alternative five-year grouping of ages 
centred on, rather than starting with, ages at which heaping 
occurs.

Step 1: If not readily available, estimate the number of 
deaths reported in the period between the dates of the 
two estimates of the population
In the case where one has annual vital registration data, 
this adjustment involves apportioning deaths in the first 
and last year of the period to the parts of the year before 
and after the mean dates of fieldwork of the two inquiries. 
Unless the age pattern of deaths is changing very rapidly, 
this approximation will have no effect on the results.

If one lacks data on the number of deaths between the two 
inquiries but this interval falls between two periods for which 
one does have such estimates (for example, because each 
inquiry included a question about deaths in the household 
during the previous year), one can use the Estimating deaths 
spreadsheet. This spreadsheet estimates the number of 
deaths between two points in time given estimates of deaths 
over two other periods. To use this spreadsheet, you need the 
number of deaths divided into five-year age groups for two 
periods (periods 1 and 2), the start and end dates for each of 
these periods, and the start date and end date of the period 
for which one wishes to estimate the number of deaths.

Step 2: Cumulate population, deaths and migrants 
downwards
To estimate partial birth, death (and migration) rates one 
needs to cumulate the numbers in the population, and the 
number of deaths (and the net number of migrants) for 
ages x and older. Thus, in the case of the population the 
following equation is used:

5

5( )
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y A
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N x N N
−

∞
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+ = +∑
where A is the age at the start of the open age interval.
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Analogous equations are used to calculate the number of 
deaths aged x and older, D(x+). In the case where these are 
available (unlikely though this may be) analogous equations 
can be used to calculate the net number of migrants aged 
x and older, NM(x+)). Where the numbers of migrants is 
not known this column is set to zero (or left blank) and 
the method is applied taking into account this omission, as 
described below.

Step 3: Calculate the person-years of life lived, PYL(x+)
In order to estimate partial birth and death rates (and if one 
has data on the net numbers of migrants, migration rates) 
one needs to estimate the person-years of exposure. This is 
estimated using the following formula:

( )( )
1

2

2 1 1 2( ) ( ) ( )x xPYL x t t N t N t∞ ∞+ = − ×

where t1 is the time of the first census, and t2 the time of the 
second census.

Step 4: Calculate the number of people who turned x in 
the population, N(x)
The number of people who turned x (i.e. were ‘born’ into 
the open age interval x+) in the population is estimated as 
the geometric mean of the numbers in a cohort at times t1 
and t2 divided by 5, multiplied by the length of the period 
between the censuses, in years, using the following formula:
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Step 5: Calculate partial birth and death rates, b(x+) 
and d(x+), and partial growth rate r(x+) corrected for 
migration, i(x+)
The partial birth and death rates are estimated using the 
following formulae:
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while the partial growth rate less the partial migration rate is 
calculated using the following formula:
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Step 6: Plot graph of b(x+)–r(x+)+nm(x+) against d(x+), 
and examine to decide on the range over which the line 
should be fitted
Start by setting the lower age to 5 and the upper age to 
A–1, where A is the age at the start of the open interval 
of the data. Inspect the diagnostic plots and decide on the 
age interval over which the line is to be fitted. If there is 
greater age exaggeration in ages at death than in ages of the 
living the points plotted to the right (older ages) will fall 
progressively below the line with age. This indicates that a 
lower maximum age is called for – stepping down in five-
year steps until the effect is removed. Also, if the absolute 
value of the residuals of the end points are too large (e.g. 
exceed 0.01) then the maximum age should be lowered to 
prevent these points unduly influencing the slope of the 
line. If the age exaggeration is the same in the population 
and the deaths then this will have no effect on the slope and 
hence the estimate of completeness of reporting, but the age-
specific death rates will be biased downward for these ages.

If the points plotted at the younger ages (left-hand side), 
particularly ages 15 to 30, deviate noticeably from the 
straight line and one has not included any data on migration, 
this probably indicates that there is significant migration 
(unless there is age differential under-enumeration). One 
should thus increase the lower age of the age interval used 
to fit the line to age 30 or 35, depending on which produces 
the most sensible fit to the data.

Step 7: Fit line and estimate completeness, c
In order to estimate the completeness of reporting of deaths 
relative to the population, one starts by plotting b(x+)–
r(x+)+i(x+) against d(x+) and estimating the coefficients 
of the straight line fitted to these points, using orthogonal 
regression, as follows:
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where b is the slope of the line and a the intercept, the 
yi represent the b(x+)–r(x+)+i(x+), the xi represent the 
d(x+) and µy and µx represent the means of the two series, 
respectively.
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After fitting the straight line to all the points, one inspects 
the plotted points relative to the line and the residuals in 
order to decide on the best range of ages to use to determine 
the completeness of reporting of deaths. How one decides 
this is discussed in more detail below but any residuals greater 
than 1 per cent in absolute value should be excluded. A line 
is then fitted to these points, from which new values of a and 
b are determined. As a general rule, it is not recommended 
to truncate at an age ending in zero in a population with 
significant digital preference.

The completeness of reporting of deaths, c, is derived 
from the values of a and b as follows. Since
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Step 8: Estimate mortality rates adjusted for 
incompleteness of reporting of deaths
In order to compute mortality rates one needs first to correct 
the census population for relative under-enumeration. This 
is achieved by dividing the numbers from the first census by 
k1 and the numbers from the second census by k2.

Next one needs to adjust the number of deaths for 
incompleteness by dividing the reported number of deaths 
by the estimate of completeness, c.

The adjusted person-years of exposure, PYLa(x,5), are 
estimated in the same way as before but using the population 
corrected for under-enumeration as follows:
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Next one needs to adjust the number of deaths for 
incompleteness by dividing the reported number of deaths 

by the estimate of completeness, c, and dividing this by 
PYLa(x,5) to produce mortality rates adjusted for the 
incompleteness of the reporting of deaths as follows:
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Note that technically one could drop the k1/k2 adjustment 
and still get the same estimates of the mortality rates (since 
the same adjustment is made to both the numerator and 
the denominator). However, in that case the estimate 
of completeness is relative to the average of the census 
populations ignoring the fact that one is undercounted 
relative to the other.

Step 9: Smooth using relational logit model life table
Because the age-specific rates can be quite erratic they need 
to be graduated (smoothed). This can be achieved by fitting 
a Brass relational logit function to a sex-specific standard 
life table which is considered to have the same shape as that 
generated by the mortality rates of the population being 
investigated.

The workbook (see website) contains a spreadsheet that 
allows one to produce a smooth set of mortality rates by 
using a relational logit model fitted to the life table generated 
by the adjusted mortality rates. The user can choose between 
the standard from the General family of United Nations 
model life tables or one from any of the four families of 
Princeton model life tables. The logit transforms of these 
tables together with a model life table of a population 
experiencing an AIDS epidemic (Timæus 2004) appear 
in the Models spreadsheet. This spreadsheet also allows the 
user to input logit transforms of an alternative life table if 
there is reason to assume that it has a similar pattern of adult 
mortality to that of the population being studied.

In order to fit the model, probabilities of people aged 
x dying in the next 5 years, 5qx, are estimated from the 
adjusted rates of mortality as follows:
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From this the life table with a radix of l5 = 1 is calculated as 
follows:

( )5 51x x xl l q+ = − .

The coefficients,  and  are determined by fitting the 
relational logit model as follows:
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s
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and superscript ‘s’ designates values based on a standard life 
table.

The fitted life table is then generated from the standard 
life table using the coefficients  and  as follows:

fitted s
x xγ α βγ= +
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The smoothed mortality rates are derived from this life table 
as follows:
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and  is the age above which the life table has no more 
survivors.

Worked example
This example uses data on the numbers of males in the 
population from the South African Census in 2001 and 
the Community Survey in 2007, on number of deaths 
from vital registration for the years 2001 to 2007, and on 
the net number of migrants estimated from the change in 
foreign-born counted in the two surveys, less an estimate 
of the number of South Africans who emigrated between 
the two surveys. The example appears in the GGB_South 
Africa_males workbook.

Step 1: If not readily available, estimate the number of 
deaths reported in the period between the dates of the 
two estimates of the population
The registered deaths for the years 2001 to 2007 for South 
African males are given in Table 24.1.

Table 24.1  Calculation of deaths between census dates, South 
African males, 2001–2007

Age 2001 2002–
2006 2007

Total 
between 
censuses

0–4 29,005 186,346 40,314 197,912
5–9 2,118 14,733 2,854 15,566

10–14 1,745 10,535 2,233 11,207
15–19 4,470 23,857 4,860 25,473
20–24 8,931 51,588 10,875 54,960
25–29 16,834 96,705 18,405 102,802
30–34 20,892 137,355 28,245 145,588
35–39 21,068 137,502 29,258 145,900
40–44 19,322 128,217 26,973 135,936
45–49 17,881 113,891 24,761 121,010
50–54 16,883 104,508 22,790 111,157
55–59 14,544 90,919 21,317 96,854
60–64 15,097 84,351 17,410 89,930
65–69 13,011 77,680 17,878 82,843
70–74 14,035 68,147 13,771 73,036
75–79 10,846 59,859 12,534 63,871
80–84 9,161 44,986 8,872 48,163
85+ 7,602 43,233 10,009 46,196

The reference time for the Census in 2001 was midnight 
between 9 and 10 October 2001. The Community Sur-
vey took place over a number of weeks in February so we 
can assume a reference time of midnight between 14 and 
15 February 2007. Thus, if we assume deaths occur uni-
formly over the respective calendar years, we can apportion 
the deaths in 2001 and in 2007 and add these to the total 
for the years 2002 to 2006 to get the total number of deaths 
between the two estimates of the population. For example, 
for the age group 20–24 the number is calculated as follows:

( )

( )

22 30 31
8931 51588

365
31 14

10875 54960.
365

+ +
+

+
+ =

Step 2: Cumulate population, deaths and migrants 
downwards
One accumulates the numbers in the population, deaths 
and migrants from the oldest age downwards (Table 24.2).
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Age 5Nx(t1) 5Nx(t2) 5Dx 5NMx P1(x+) P2(x+) D(x+) NM(x+)

0 2,223,006 2,505,744 197,912 10,605 21,434,045 23,348,679 1,568,404 128,946
5 2,425,066 2,560,642 15,566 2,848 19,211,039 20,842,935 1,370,492 118,341

10 2,518,985 2,452,339 11,207 5,153 16,785,973 18,282,293 1,354,926 115,492
15 2,453,156 2,553,293 25,473 16,574 14,266,988 15,829,955 1,343,719 110,339
20 2,099,417 2,362,519 54,960 14,803 11,813,832 13,276,662 1,318,246 93,766
25 1,899,275 2,033,165 102,802 4,714 9,714,415 10,914,143 1,263,286 78,963
30 1,594,624 1,875,483 145,588 13,331 7,815,140 8,880,977 1,160,484 74,249
35 1,441,657 1,548,185 145,900 9,693 6,220,516 7,005,495 1,014,896 60,918
40 1,233,813 1,306,900 135,936 7,464 4,778,859 5,457,310 868,996 51,225
45 967,744 1,104,294 121,010 8,719 3,545,046 4,150,410 733,060 43,761
50 769,627 888,042 111,157 9,413 2,577,302 3,046,116 612,050 35,042
55 552,402 708,812 96,854 4,640 1,807,675 2,158,074 500,893 25,629
60 444,592 491,871 89,930 5,081 1,255,273 1,449,261 404,039 20,989
65 304,835 394,305 82,843 4,922 810,681 957,391 314,108 15,908
70 232,604 241,976 73,036 4,334 505,846 563,086 231,266 10,986
75 136,466 163,112 63,871 2,980 273,242 321,110 158,229 6,652
80 90,856 87,698 48,163 1,662 136,776 157,998 94,359 3,672
85 45,920 70,299 46,196 2,009 45,920 70,299 46,196 2,009

Step 3: Calculate the person-years of life lived, PYL(x+)
Calculating person-years lived requires an estimate of the 
time between the two counts. This has been calculated using 
the YEARFRAC function in Excel on the basis of the date 
of the day following the time reference for the censuses. 
Counting days and dividing by 365 produces a slightly 
different estimate (5.3507 years) but has a negligible impact 
on the estimate of completeness.

The person-years of life lived is given in column 2 of 
Table 24.3 and is calculated from the numbers of the 
cumulated population in columns 2 and 3 of Table 24.2. 
For age 20, for example, as follows:

( )
1

2(20 ) 5.3541 2099417 2362519
67053861.

PYL + = ×
=

Step 4: Calculate the number of people who turned x in 
the population, N(x)
The numbers of people who turned x are shown in the third 
column of Table 24.3. For example, the number who turned 
20 is estimated from the population numbers in columns 2 
and 3 of Table 24.1 as follows:

( )
1
25.3541(20) 2518985 2553293

5
25778889.

N = ×

=

Step 5: Calculate partial birth and death rates, b(x+) 
and d(x+), and partial growth rate r(x+) corrected for 
migration, i(x+)
The partial birth and death rates are shown in columns 4 
and 6 of Table 24.3. The partial birth and death rates are 
calculated from the partial births (column 3 of Table 24.3) 
and the partial deaths (column 8 of Table 24.2) as follows 
for age 20, for example:

2577889(20 ) 0.03845
67053861

b + = =

1318246(20 ) 0.01966
67053861

d + = = .

The partial growth rate less the partial net in-migration rate 
is shown in column 5 of Table 24.3 and is calculated for 
age 20, for example, using the cumulated populations given 
in columns 2 and 3 of Table 24.3 and cumulated net in-
migration given in the last column of Table 24.2 as follows:

Table 24.2  Calculation of the cumulated populations, deaths and 
migrants, South African males, 2001–2007



264  |  ADULT MORTALITY MULTIPLE CENSUS METHODS

Age PYL(x+) N(x) b(x+) r(x+) – i(x+) d(x+) = X b(x+) – r(x+) 
+i(x+) = Y a + bx Residuals 

y –(a + bx)
0 119,775,275 #N/A 0.00000 –0.0047
5 107,136,837 2,554,810 0.02385 0.01413 0.01279 0.00972 0.0093 0.0004

10 93,793,458 2,611,355 0.02784 0.01472 0.01445 0.01312 0.0111 0.0020
15 80,461,835 2,715,670 0.03375 0.01805 0.01670 0.01570 0.0135 0.0022
20 67,053,861 2,577,889 0.03845 0.02042 0.01966 0.01803 0.0168 0.0013
25 55,129,886 2,212,329 0.04013 0.02033 0.02291 0.01980 0.0203 –0.0005
30 44,604,915 2,020,991 0.04531 0.02223 0.02602 0.02308 0.0237 –0.0006
35 35,344,071 1,682,498 0.04760 0.02049 0.02871 0.02712 0.0266 0.0005
40 27,342,320 1,469,826 0.05376 0.02294 0.03178 0.03082 0.0300 0.0008
45 20,537,160 1,249,916 0.06086 0.02735 0.03569 0.03352 0.0343 –0.0007
50 15,001,678 992,684 0.06617 0.02891 0.04080 0.03726 0.0398 –0.0026
55 10,574,924 790,897 0.07479 0.03071 0.04737 0.04408 0.0470 –0.0029
60 7,221,483 558,171 0.07729 0.02396 0.05595 0.05334 0.0564 –0.0030
65 4,716,866 448,343 0.09505 0.02773 0.06659 0.06732 0.0680 –0.0006
70 2,857,463 290,826 0.10178 0.01619 0.08093 0.08559 0.0836 0.0020
75 1,585,932 208,577 0.13152 0.02599 0.09977 0.10553 0.1041 0.0014
80 787,071 117,144 0.14884 0.02230 0.11989 0.12654 0.1261 0.0005
85 304,201

Table 24.3  Calculation of the cumulated populations, deaths and 
migrants, South African males, 2001–2007

Figure 24.1 Diagnostic plots, South African males, 2001–2007
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Step 6: Plot graph of b(x+)– r(x+) + i(x+) against d(x+), 
and examine to decide on the range over which the line 
should be fitted
In order to plot the graph and fit the line to all of the data 
points, one starts by setting the lower age to 5 and the upper 
age to 84 (since the open interval for these data is 85+). The 
values of b(x+)–r(x+)+i(x+) plotted against d(x+) are shown 
in Figure 24.1.

Inspection of the diagnostic plots in Figure 24.1 sug-
gests that the points lie fairly close to the fitted straight line, 
indicating that there is little migration which has not been 
accounted for. Thus there is little reason to alter the age range 
over which the line is fitted. Thus, as might be expected, 
increasing the minimum age has very little effect on the esti-
mate of completeness of 92 per cent. Likewise, even though 
the results may be affected to some extent by a falling off 
of completeness at the older ages (see the application of the 
Synthetic Extinct Generations method to these data), the 
estimate is little changed by excluding the last or the last two 
points (i.e. reducing the upper age of age interval used to fit 
the data). Dropping further points, however, increases com-
pleteness to implausible levels which suggests that the data 
(probably the population data) are far from perfect.

Step 7: Fit line and estimate completeness, c
The coefficients of the straight line fitted to the points in 
Figure 24.1 are estimated as follows:

0.03483 1.0907
0.03193

y

x

b
σ
σ

= = =

0.0427 1.0878 0.045 0.00626a = − × = − .

The relative completeness of enumeration of the census 
populations is estimated as follows:

( )1

2

exp 0.00467 5.3541 0.9753k
k

= − × = .

Thus k2>k1 and so we assume k2 = 1 and hence k1 = 0.9753 
(i.e. the first population is undercounted relative to the 
second by some 2.5 per cent).

The completeness of reporting of deaths, c, is 92 per cent 
(relative to the 2007 count), calculated as follows:

( )exp 0.004675 5.3541
0.9175

1.0907
c

− ×
= = .

Step 8: Estimate mortality rates adjusted for 
incompleteness of reporting of deaths
The adjusted population as at the first census date is the 
enumerated population given in column 2 of Table 24.2 
divided by k1. For example the adjusted population for age 
20 is 2099417

2152629
0.9753

= .

The adjusted population at the second census date is the 
enumerated population given in column 3 of Table 24.2 
divided by k2. Since, by assumption, k2 = 1, these numbers 
are the same as those given in column 3 of Table 24.2.

Next the deaths are adjusted for incompleteness by 
dividing the number of reported deaths in each age group 
shown in column 4 of Table 24.2 by the estimate of 
completeness. These numbers are shown in column 4 of 
Table 24.4. For example, for age 20 the number is derived 
from the number of reported deaths, 54 960, as follows:

54960
59946

0.9175
= .

The adjusted person-years of life lived (column 5 of 
Table 24.4) is the geometric average of the populations in 
columns 2 and 3 of Table 24.4 multiplied by the length (in 
years) of the period between the censuses, which in this case 
is 5.3541 years. For age 20 this is

( )
1

2(20,5) 5.3541 2152629 2362519 12074140PYL = × = .

The mortality rates adjusted for incompleteness of reporting 
of deaths (column 6 of Table 24.4) are derived by dividing 
the adjusted deaths by the adjusted person-years of life lived. 
For example, for the 20–24 age group the adjusted rate is 
calculated as follows:

59946 0.0050
12074140

= .

Step 9: Smooth using relational logit model life table
Estimates of probabilities of people aged x dying in the next 
5 years, 5qx, estimated from the adjusted rates of mortality 
which appear in column 6 of Table 24.4, are shown in the 
second column of Table 24.5. For example, the probability 
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Age Adjusted 
5Nx(t1)

Adjusted 
5Nx(t2)

Adjusted 
5Dx

Adjusted 
PYL(x,5)

Adjusted 
5mx

0
5 2,486,532 2,560,642 16,979 13,510,001 0.0013
10 2,582,831 2,452,339 12,224 13,474,797 0.0009
15 2,515,334 2,553,293 27,784 13,568,508 0.0020
20 2,152,629 2,362,519 59,946 12,074,140 0.0050
25 1,947,414 2,033,165 112,129 10,653,675 0.0105
30 1,635,041 1,875,483 158,796 9,375,725 0.0169
35 1,478,197 1,548,185 159,137 8,099,564 0.0196
40 1,265,085 1,306,900 148,269 6,884,383 0.0215
45 992,273 1,104,294 131,988 5,604,563 0.0236
50 789,134 888,042 121,242 4,482,045 0.0271
55 566,403 708,812 105,641 3,392,442 0.0311
60 455,861 491,871 98,089 2,535,277 0.0387
65 312,561 394,305 90,359 1,879,609 0.0481
70 238,500 241,976 79,663 1,286,217 0.0619
75 139,925 163,112 69,665 808,863 0.0861
80 93,159 87,698 52,533 483,940 0.1086
85 47,084 70,299 50,387 308,032 0.1636

Table 24.5  Calculation of smoothed mortality rates using a 
relational logit model life table, South African males, 2001–2007

Age 5qx lx/l5 Obs. Y(x) AIDS Cdn. 
l s(x) Cdn. Y s(x) Fitted Y(x) Fitted l(x) T(x) Smooth 

5mx

0
5 0.0063 1 1.0000 1 50.898 0.0033
10 0.0045 0.9937 –2.5333 0.9785 –1.9081 –2.0551 0.9839 45.938 0.0029
15 0.0102 0.9892 –2.2605 0.9632 –1.6326 –1.7292 0.9695 41.055 0.0025
20 0.0245 0.9792 –1.9250 0.9512 –1.4853 –1.5550 0.9573 36.238 0.0043
25 0.0513 0.9552 –1.5293 0.9324 –1.3120 –1.3500 0.9370 31.502 0.0089
30 0.0812 0.9062 –1.1339 0.8969 –1.0818 –1.0777 0.8962 26.919 0.0157
35 0.0936 0.8326 –0.8019 0.8420 –0.8365 –0.7875 0.8285 22.608 0.0204
40 0.1022 0.7546 –0.5616 0.7794 –0.6311 –0.5446 0.7482 18.666 0.0237
45 0.1112 0.6775 –0.3711 0.7148 –0.4593 –0.3414 0.6644 15.134 0.0241
50 0.1267 0.6021 –0.2072 0.6560 –0.3228 –0.1799 0.5890 12.001 0.0230
55 0.1445 0.5259 –0.0518 0.6048 –0.2127 –0.0497 0.5248 9.216 0.0254
60 0.1764 0.4499 0.1005 0.5530 –0.1064 0.0760 0.4621 6.749 0.0332
65 0.2146 0.3705 0.2649 0.4918 0.0163 0.2212 0.3912 4.616 0.0497
70 0.2682 0.2910 0.4452 0.4119 0.1781 0.4125 0.3047 2.876 0.0709
75 0.3543 0.2130 0.6535 0.3178 0.3819 0.6536 0.2130 1.582 0.0998
80 0.4269 0.1375 0.9180 0.2173 0.6408 0.9598 0.1279 0.730 0.1459
85 #N/A 0.0788 1.2293 0.1201 0.9959 1.3799 0.0595 0.261 0.2070

Table 24.4  Calculation of adjusted 
mortality rates, South African males, 
2001–2007
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of a 20-year old woman dying before reaching age 25 is 
calculated as follows:

5 20
5 0.005 0.02452

1 2.5 0.005
q ×

= =
+ ×

.

The life table proportions of five-year olds alive at age x + 5 
estimated from the proportion alive at age x using these 
values appear in column 3 of Table 24.5. For example, the 
proportion alive at age 25 is calculated as follows:

( )25 0.9792 1 0.02452 0.9552l = − = .

The logit transformations of the proportions surviving 
appear in column 4 of Table 24.5. For example, the logit 
transformation of the l20 is calculated as follows:

20
1 0.97920.5ln 1.925

0.9792
γ − = = − 

 
.

The logit transformation of the conditional life table for 
males based on the AIDS life table with e0=50 in column 5 
of Table 24.5 appears in column 6 of Table 24.5. As can be 
seen from Figure 24.2, the AIDS model does not fit the data 

particularly well, but fits better than any table which does 
not reflect the impact of HIV on mortality.

The coefficients,  and  are determined as the intercept 
and slope of the straight line fitted to the logit transforma-
tions in columns 4 and 6 of Table 24.5 over the range of 
ages chosen by the user (45 and 80 in this example), namely 
0.2019 and 1.1828 respectively.

These coefficients are then applied to the logit transfor-
mation of the conditional model life table to produce the 
fitted logits in column 7 of Table 24.5. Thus, for example, 
the fitted logit at age 20 is calculated as follows:

( )20 0.2019 1.1828 1.4853 1.555fittedγ = + × − = − .

These values are then used to produce the fitted life table in 
column 8 of Table 24.5. For example, the value at age 20 is 
calculated as follows:

( )( )20
1 0.9573

1 exp 2 1.555
fittedl = =

+ × −
.

The conditional years of life lived, Tx, which appear in 
column 9 of Table 24.5 are then calculated from the fitted 

Figure 24.2  Observed logits and adjusted mortality rates against 
expected derived from the male AIDS model life table, South African 
males, 2001–2007



268  |  ADULT MORTALITY MULTIPLE CENSUS METHODS

life table and these numbers are then used to produce the 
smoothed mortality rates which appear in column 10 of 
Table 24.5. For example, for age 80

( )80
50.261 0.1279 0.0595 0.7299
2

T = + + =

5 80
0.1279 0.0595 0.1459
0.7299 0.261

fittedm −
= =

−
.

Diagnostics, analysis and interpretation
Checks and validation
The estimate of completeness is 92 per cent. The first 
check on this result is a comparison with the results for the 
opposite sex. For example, applying the same method as 
described above for men to the data for women during the 
same period (GGB_South Africa_females) gives an estimate 
of completeness of 89 per cent. Past research (Dorrington, 
Moultrie and Timæus 2004) leads to the expectation that 
the estimates should be similar, so the results are sufficiently 
close to validate the estimates.

A second check on the results is to compare them with 
the result from the Synthetic Extinct Generations method 
(SEG_South Africa_males), which estimated the completeness 
of death reporting over the age range 5 to 84 to be 94 per 
cent, which is also sufficiently close to validate the results.

A third check is to compare estimates of various key 
indicators of mortality with those from other sources, such 
as previous estimates for the country or the World Population 
Prospects (UN Population Division 2011). The estimate of 
45q15 from the observed mortality rates after adjusting for 
incompleteness is 52.3 per cent, while the estimate of 45q15 
from the WPP for the period 2000–2005 is 52.9 per cent, 
again suggesting little reason to question the results.

As a matter of interest, application of the Brass Growth 
Balance method to these data (estimating the population in 
the middle of the period as the average of the two survey 
populations) provides an estimate of completeness, using 
the same age range, of 85 per cent. Increasing the minimum 
age of range of the data used to fit the straight line to 35 
increases the estimate to 88 per cent, still somewhat lower 
than the estimate of 92 per cent produced above.

Interpretation
As mentioned already, when deciding on the age range over 
which to fit the straight line, each of the open intervals from 

85+ down to 75+ produced virtually the same estimate of 
the completeness of death reporting. However, below 75+ 
the estimates increase to 100 per cent for 70+, 105 per cent 
for 65+ and 108 per cent for 60+. Even though it is prob-
able that the census and survey underestimate the number 
of men, the undercount is likely to have been concentrated 
among young adults and is unlikely to have been so great as 
to raise the completeness of reporting of the deaths relative 
to the estimate of the population to more than 100 per cent. 
Moreover, other things being equal, the lower the age of the 
open interval the less robust the estimate of completeness. 
Thus, the lower estimates obtained from open-ended age 
groups for higher ages are preferred.

Method-specific issues with 
interpretation
Source of reported deaths
Generally there are two sorts of problems with the deaths 
data: those that lead to under/over coverage that is constant 
by age, which is precisely what the method is intended to 
address, and those which lead to differential coverage by 
age, which can distort the estimates. Although the general 
approach remains essentially the same irrespective of the 
source of the death data, different sources of death data are 
prone to different biases which might impact on the interpre-
tation of the results. These are illustrated by way of particular 
examples, but, in general terms, the analyst needs to look out 
for the following biases in the death data.

1)  Vital registration
If the proportionate split of the population between urban 
and rural (or appropriate proxies) areas differs significantly 
by age and the completeness of reporting of deaths in urban 
areas is significantly higher than it is in rural areas, then the 
assumption that completeness is independent of age is likely 
to be violated by a falling off of completeness with age at ages 
over 50 if a proportion of people move from urban to rural 
areas on retirement. If ignored, this violation is likely to lead 
to an underestimate of the average level of completeness.

2)  Deaths reported by households
The data are subject to four potential problems:
•	 If a significant proportion of households dissolve on the 

death of a key person (e.g. the sole breadwinner), then the 
deaths of such people go unreported, leading to a violation 
of the assumption that completeness is invariant with age. 
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If a significant proportion of deaths in some age groups are 
of individuals who do not live in private households (for 
example, they live in homes for the elderly), the breach of 
the assumption could be even more severe. However, this is 
not an issue in most developing countries.

•	 In situations where young adults leave the home they grew 
up in to work in urban areas, it is possible that they are re-
garded as being members of more than one household (or 
of neither household) and their deaths could be reported 
more than once (or not at all), again leading to a violation 
of the assumption of constant reporting of deaths by age. 
In this case one can limit the impact by ignoring the data 
below a specific age in determining completeness.

•	 Reference period error: Since there is often confusion 
about the exact period for which deaths are to be 
reported, not to mention uncertainty about exact dates of 
death, it is possible for there to be overall under- or over-
reporting of deaths. Provided one can assume that this is 
independent of the age of the deceased, this distortion 
will be accounted for in the estimate of completeness and 
is not a problem for estimating mortality rates.

•	 The reference period covers a small proportion of the in-
tercensal period. For example, it is common for house-
holds to be asked to report on deaths only for the year 
preceding the census. Not only might such a short period 
result in significant random fluctuation, but there is a 
problem that one does not have an estimate of the popu-
lation at the start of this reference period. How one might 
deal with this is illustrated in the examples given, but if 
one has, in addition, deaths reported by households at the 
first census, one can use the two sets of data on deaths to 
estimate the number of deaths during the intercensal pe-
riod, as was discussed above. However, since the question 
asking households to report on deaths in the previous year 
was used relatively seldom before the 2010 round of cen-
suses, one may only have the single set of data on deaths. 
In this case, provided there are no reasons for assuming 
that the age pattern of mortality has changed rapidly over 
the period, it is recommended that one calculates the age-
specific death rates for the year and applies these to the 
person-years of life lived for the interval to get an estimate 
of deaths for the period. If there are reasons for suspect-
ing that mortality has changed rapidly, for example due 
to HIV/AIDS, then this adaptation is likely to underes-
timate or overestimate the mortality and the use of death 
distribution methods is not recommended.

3)  Deaths recorded in health facilities
Little is known about how well this source of data works. 
However, it can be expected that completeness would 
depend on the distribution of health services from which the 
data have been gathered, and in many developing countries 
such services are likely to be concentrated in urban areas. So, 
again, if the proportion of the population living in urban 
rather than rural areas varies with age, then completeness 
cannot be assumed to be independent of age. It is also 
possible that certain causes will predominate in facilities 
and if these causes are significant, and age-related, this could 
lead to a further violation of the assumption of constant 
completeness by age.

Examples using deaths reported by 
households in a census/survey
The examples below use the same data as used in the 
GGB_South Africa_males and GGB_South Africa_females 
workbooks with the exception that instead of using the 
vital registration as the source of the death data, deaths are 
estimated from deaths reported by households in the 2001 
Census and the 2007 Community survey as having occurred 
in the year preceding the census/survey. These numbers are 
given in Table 24.6.

The numbers of deaths occurring between the date of 
the Census (midnight between 9 and 10 October 2001) 
and the survey (assumed to be midnight between 14 and 
15 February 2007) are estimated using the Estimating 
deaths_South Africa_males_hhd and the Estimating deaths_
South Africa_females_hhd spreadsheets.

Applying the Generalized Growth Balance method to 
these data for males (in the GGB_South Africa_males_hhd 
workbook), suggests that these estimates of the number of 
deaths are more or less as completely reported as the vital 
registration. However, they estimate 45q15 at 54.3 per cent 
which is slightly higher than that produced using registered 
deaths. Applying the Generalized Growth Balance method 
to these data for females (in the GGB_South Africa_females_
hhd workbook), suggests that the deaths of women reported 
by households are far less complete than the registered 
deaths. It also estimates 45q15 at 50.3 per cent, which is 
much higher (and less plausible relative to the probability 
for males) than the 42 per cent produced using registered 
deaths.
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Table 24.6  Deaths reported by households to have occurred in the 
year preceding census/survey, South Africa

2001 Census 2007 Community 
Survey

Age Males Females Males Females
0–4 35,873 32,096 48,322 44,418
5–9 3,868 3,155 4,505 5,216

10–14 2,590 2,284 3,442 3,259
15–19 5,628 5,122 8,246 7,878
20–24 10,976 13,246 16,360 21,702
25–29 17,787 19,727 27,551 35,840
30–34 20,038 18,292 34,832 42,576
35–39 19,816 15,521 38,061 34,809
40–44 17,417 12,124 33,604 28,823
45–49 15,840 10,105 27,829 20,973
50–54 15,077 9,144 28,223 18,891
55–59 12,781 7,755 22,868 13,118
60–64 13,428 10,367 18,775 14,912
65–69 11,820 10,195 17,532 14,298
70–74 11,885 10,809 14,879 14,645
75–79 8,794 8,393 12,966 14,151
80–84 7,484 9,371 9,204 12,063
85+ 7,115 12,389 11,735 18,178

The reason for the much poorer performance of the method 
when applied to deaths of women reported by households 
can be seen by a comparison of the estimated numbers 
of deaths for the period derived from deaths reported by 
households to the numbers expected after correcting the 
vital registration for incompleteness of reporting, as shown 
in Table 24.7. From this we see that there is a significant 
decline in completeness of reporting of deaths of women 
by households with age from age 55, probably as the result 
of the disintegration of households on the death of these 
women, usually because these households were headed by 
the women who died.

There is also evidence of over-reporting of deaths below 
age 30 for males and 25 for females, possibly because their 
deaths are reported by more than one household.

To simulate the situation where only the most recent 
census asked about deaths in the previous year, the number 
of deaths in each age group between the times of the 2001 
Census and the 2007 Community Survey using only the 
deaths reported by households in the 2007 Community 
Survey are estimated as follows:

( )( )( )
1
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2 1 5 1 5 2

5 2

( ) ( )
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x

D t
t t N t N t

N t
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Applying the method to these estimates of the deaths 
produces estimates of 45q15 of 58.6 per cent for males and 
57.8 per cent for females. Unlike the previous estimates, 
these are estimates of mortality in the year preceding the 
second census/survey. They might therefore be expected to 
be higher than those for the whole period, since mortality 
has been increasing over the period due to HIV/AIDS. 
However, as might also be expected, deriving an estimate 
from a single year of deaths (derived, in addition, in this 
case from a relatively small sample survey) produces far less 
reliable estimates, particularly in the case (for these data) 
of females. Alternative estimates (Bradshaw, Dorrington 
and Laubscher 2012) suggest that for 2006 the correct 
probabilities should be closer to 55 per cent for males and 
45 per cent for females.

Detailed description of method
Mathematical exposition
The General Growth Balance method follows the same logic 
as Brass’s Growth Balance method (Brass 1975), which had 
its origins in work by Carrier (1958), who first proposed 
a way of estimating mortality from the age distribution of 
deaths. The method derives from the simple relationship 
found in the balancing equation for a population (assumed 
for convenience of explanation to be) closed to migration. In 
such a population, the number of people in the population 
at time t2 = the number at time t1 plus the births that have 
occurred between time t1 and t2 less the deaths that have oc-
curred between times t1 and t2, i.e.

 
N0(t2) = N0(t1) +B – D, 

where B and D are the births and deaths, respectively, that 
occurred between times t1 and t2. This equation can be gen-
eralized to hold for any population aged x and older, pro-
vided we have an estimate of the number of people who 
turned x (i.e. joined the age interval through aging) between 
the times t1 and t2, Nx, and the number of deaths aged x and 
older that occurred between times t1 and t2, Dx. Thus

	 2 1( ) ( )x x x xN t N t N D∞ ∞ ∞= + − .	 (1)

If we rewrite Equation 1 as

2 1( ) ( )x x x xN t N t N D∞ ∞ ∞− = −
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and divide through by the person-years of exposure between

times t1 and t2, 
2

1

( )
t

xt
N t dt∞∫ , one can express this balance 

equation in terms of rates, i.e.

	 ( ) ( ) ( )r x b x d x+ = + − + , 	 (2)
where
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b(x +)
 
and d(x +)

 
are often referred to as partial or segmental 

birth and death rates, respectively.

These relationships only hold if there is complete and 
accurate recording of birthdays and deaths by age between 
times t1 and t2, and counting of the population by age at 
times t1 and t2.

Now, suppose that instead of accurate data only a 
proportion (the same for all ages) of deaths are reported, 
and only a (different) proportion (the same for all ages) 
of each census population, are counted. Suppose further 
that, instead of the true values Nx(t1), Nx(t2) and Dx, 
we have reported values 1( )r

xN t∞ , 2( )r
xN t∞  

and r
xD∞  such 

that 1 1 1( ) ( )r
x xN t k N t∞ ∞= ⋅ , 2 2 2( ) ( )r

x xN t k N t∞ ∞= ⋅  and
r
x xD c D∞ ∞= ⋅ .

Then, if we use the following approximations:
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≈ −

Males Females

Age Reported Expected Ratio Reported Expected Ratio

0–4
5–9 22,683 16,979 134% 22,995 14,575 158%

10–14 16,462 12,224 135% 15,173 10,349 147%
15–19 38,013 27,784 137% 35,666 26,874 133%
20–24 74,934 59,946 125% 95,993 84,611 113%
25–29 124,403 112,129 111% 152,718 154,437 99%
30–34 150,792 158,796 95% 166,488 170,680 98%
35–39 159,016 159,137 100% 137,837 141,399 97%
40–44 140,172 148,269 95% 111,910 115,746 97%
45–49 120,016 131,988 91% 85,284 93,408 91%
50–54 118,989 121,242 98% 76,941 81,793 94%
55–59 97,977 105,641 93% 57,353 72,131 80%
60–64 88,088 98,089 90% 69,220 78,877 88%
65–69 80,451 90,359 89% 67,007 86,099 78%
70–74 72,827 79,663 91% 69,536 93,404 74%
75–79 59,632 69,665 86% 61,942 88,314 70%
80-84 45,365 52,533 86% 58,410 77,084 76%
85+ 51,779 50,387 103% 83,753 108,002 78%

Table 24.7  Ratio of estimates of deaths derived from deaths 
reported by households to the expected numbers of deaths, South 
Africa
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and Equation 2 becomes
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From this one can solve for k1, k2 and hence c, on the 
assumption that coverage of the better enumerated census is 
100 per cent, by assuming the larger of k1 and k2 = 1.

Fitting of the straight line
There are two aspects to determining the straight line that 
best represents the relationship between the partial birth and 
death rates, namely, the choice of method and the choice of 
points used to determine the slope and intercept.

Fitting the straight line using unweighted least squares 
regression is not recommended since this method gives 
too much weight to outliers, which tend to be less reliable, 

particularly at the older ages. Thus it is recommended 
that one fit the line using a more robust method such as 
the ‘mean’ line (i.e. the line defined as that joining the two 
points represented by the mean of the vertical axis values 
and the mean of the horizontal axis values of the first half 
and the second half of the age range) or the ‘trimmed mean’ 
line (i.e. the same as the mean line except that the average 
of the points is a weighted average – weighting the less 
reliable points, usually at the extremes, less than the other 
points). These methods are explained in detail in Manual X 
(UN Population Division 1983: 144–145). An alternative 
is described in more detail in the UN Manual on Adult 
Mortality (UN Population Division 2002: 105–110). It is 
similar to the ‘mean’ line, except that one splits the range 
of points into three equally sized groups,1 and determines 
the line that joins the medians of the independent and 
dependent variables in the lowest third and the highest third 
of points.

Bhat (2002) points out that each method has its 
drawbacks and suggests, since it matters not whether the 
partial birth or partial death rates are treated as dependent 
variable, that orthogonal regression is the best method for 
dealing with age misstatement. This reflects both vertical 
and horizontal distance from the line (by minimizing the 

orthogonal residual sum of squares (ORSS) = 
2 2

2 2
i i

i i i

x y
x y+∑ ). 

Using this method, the c, the completeness of the death 
reporting, is estimated as the ratio of the standard deviation 
of the partial death rates to the standard deviation of the 
partial birth rates. The intercept is the mean of the partial 
birth rates, minus the mean of the partial death rates divided 
by c. This is the approach used in the applications of the 
Generalized Growth Balance method in the accompanying 
workbooks.

Limitations
This method is less vulnerable to age misreporting than 
the Synthetic Extinct Generations method. However, the 
common tendency to exaggerate the age reported at death 
(relative to that recorded at census) will manifest itself by the 
plotted points falling off to the right (i.e. below the fitted 

1	 Where it is not possible to divide the total number of points, 
n, into three equally sized groups then the highest and lowest 
group are taken as the top and bottom, respectively, int(n/3)+1 
points.
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line) over the range of exaggerated ages. This can be catered 
for by reducing the age of the open interval to the point 
which removes this effect.

Migration which is not allowed for in the model is likely 
to affect the young adult population (mainly between 20 
and 35) but to have much less effect on deaths, which largely 
occur in old age. Unaccounted-for immigration will tend 
to lower the slope and hence lead to an over-estimate of 
the extent of death registration and an under-estimate of 
mortality rates. Unaccounted-for emigration will have the 
opposite effect.

Often one lacks reliable estimates of the net number of 
migrants by age over the intercensal period. In such situations 
one could proceed as follows. If the migration is significant 
and unknown and the points above age 30 lie close to a 
straight line, one might estimate completeness by fitting the 
straight line to the data from age 35 and above. If migra-
tion is slight, some demographers advocate fitting the straight 
line to data down to age 5 to limit this distortion, on the 
assumption that any differences in completeness of reporting 
of deaths at these younger ages from that of the older ages is 
unlikely to lead to any major distortions since the mortality is 
very light between ages 5 and 14. Others (Hill, You and Choi 
2009) suggest that provided the migration is not too signifi-
cant, an improved estimate might be provided by averaging 
the estimate of completeness produced with that produced 
by applying the Synthetic Extinct Generations method to the 
same data. Although using these adaptations probably pro-
duces better estimates than simply ignoring migration, there 
is, unfortunately, little research into the accuracy of the esti-
mated completeness produced by these adaptations.

Fluctuations in the completeness of death registration 
with age are likely to introduce curvature in the pattern of 
points. Consequently, one of the strengths of this method 
is that if the points for successive age boundaries fall on a 
reasonably straight line, then it is probably reasonable to 
assume that completeness is constant with respect to age. 
However, where some but not all the points lie on a straight 
line, one way of deciding which points to discard is to 
calculate the segmental growth rate for each successive open 
interval and then use those points for which the values of

 
ra+ 

are reasonably consistent.
Perhaps the most important limitation of the method 

is that the plot of partial birth rates against partial death 
rates is, with the exceptions mentioned above, diagnostically 
quite limited.

Extensions
If the ages were recorded accurately and the assumption of 
constant census coverage by age held, then the method could 
be adapted to deal with the situation where completeness of 
reporting of the deaths was constant only for a limited age 
range (x to x + n)2 by limiting the age range of the balance 
equation. Thus Equation 2 would become

( )( ) ( )n x n xr b x d b x n= + − − + + ,
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The LHS of the analogous regression equation based on 
observations becomes ( ) ( )r r r

n xb x b x n r+ − + + − .
Perhaps because data in developing countries are rarely 

accurate enough, little experience exists with how well this 
alternative approach works in practice.

Further reading and references
Analysis of the sensitivity of the method to common data 
errors and violation of the assumptions is fairly limited. 
However, the reader is referred to Hill, You and Choi 
(2009) for an analysis of the assumptions underlying 
the death distribution methods in the absence of HIV 
and to Dorrington and Timæus (2008) for an analysis 
in a population experiencing significant HIV. Murray, 
Rajaratnam, Marcus et al. (2010), in contrast, used 
stochastic simulations to assess these methods, concluding 
that the methods were not particularly reliable. However, 
to date their work has had very limited impact on the use 

2	 Such as vital registration where completeness might fall off 
above retirement age, if people retired from urban to rural 
areas, or deaths reported by households where household 
might disintegrate on the death of the last adult.
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of these methods, possibly because their description of their 
simulations is short on detail and because their assessment is 
based on perhaps unrealistically high migration.
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Chapter 25  The Synthetic Extinct Generations method
Rob Dorrington

Description of method
Bennett and Horiuchi (1981, 1984) generalized the Preston 
and Coale method for estimating the completeness of the 
reporting of deaths relative to an estimate of the population, 
into what has eventually become known as the Synthetic 
Extinct Generations (SEG) method. Basically these methods 
make use of the observation that, in a closed population, the 
number of people of a given age, a, alive at a point in time 
must equal the number of people who will die from that age 
forward. The key insight on which SEG methods are based 
is that the future stream of deaths of a cohort can be replaced 
by current deaths at each age above a if the effects of future 
age-specific population growth can be taken into account. 
The simplest example is a stationary (life table) population, 
in which future deaths above age a will be equal to current 
deaths above that age. Somewhat more complex is the case 
where the population is stable (i.e. a population with an 
unchanging adult age distribution growing at a constant 
rate, r, each year) and closed to migration. In this case, if the 
reported data are accurate, the number of deaths at age x, t 
years in the future, will equal the number of deaths at age x 
currently, multiplied by ert. This is the model underlying the 
Preston and Coale method.

In the more general case where the population is not 
stable, an equivalent relationship exists if one replaces ert 

by 
( , )

x

a
r y t dy

e ∫  where r(y,t) represent the growth rate of the 
population aged y at time t.

If the deaths reported at time t can be assumed to be 
reported to the same extent, c, at every adult age, then 
the estimate of the future number of cohort deaths will be 
underestimated to the same extent. Thus, it is possible to 
estimate the completeness of reporting of deaths by dividing 
the sum of the estimates of future cohort deaths derived 
from the number of deaths at any date by the population 
at the same date. Mortality rates can then be estimated by 

dividing the numbers of deaths reported in each adult age 
group by c and then dividing these numbers by an estimate 
of the population exposed to risk based on the population 
used to estimate the partial birth and death rates.

Data requirements and assumptions
Tabulations of data required
•	 Number of women (men), by five-year age group, and for 

open age interval A+ (with A as high as possible), at two 
points in time, typically from the results of two censuses. 
(See the caveat below concerning the use of surveys rather 
than censuses.)

•	 Number of deaths of women (men), by five-year age 
group, and for open age interval A+, over the period 
between the two censuses or surveys.

Important assumptions
•	 The coverage of each census is the same for all ages.
•	 The completeness of reporting of deaths is the same for all 

ages above some minimum age (usually age 15).
•	 The population is closed to migration. Although the 

method can be adapted to allow for migration, accurate 
enough estimates of the net numbers of migrants to do 
so seldom exist. For national populations, net migration 
is often low enough to ignore, but for situations where 
migration is significant one needs to take this into account 
when interpreting results and deciding on an estimate of 
completeness.

Preparatory work and preliminary 
investigations
Before applying this method, you should examine the 
quality of the data in at least the following dimensions:
•	 age structure of the population;
•	 sex structure of the population;
•	 age structure of the deaths; and
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•	 sex structure of the deaths.
If the reported deaths are for a period other than that 

between the censuses the numbers that would have been 
reported in the intercensal period need to be estimated. 
If one has annual vital registration data, this adjustment 
involves apportioning deaths in the first and last year of the 
period. If one has deaths reported by households the year 
before the dates of each of the first and second censuses, 
one has to estimate the numbers of deaths by interpolating 
between these estimates for the intercensal period (using the 
Estimating deaths spreadsheet).

The SEG methodology uses age-specific population 
growth rates in its calculations. If the completeness of 
census enumeration varies from one census to the next by 
a proportionately constant amount at all ages, such growth 
rates will be biased by a fixed amount, delta. The Generalized 
Growth Balance methodology explicitly estimates this bias. 
The SEG methodology does not explicitly estimate delta, but 
non-zero values of delta result in a linear trend in estimates 
of completeness of death recording with age. Thus delta can 
be estimated iteratively by finding the value that produces 
coverage estimates that are constant by age between selected 
lower and upper age limits.

Caveats and warnings
In applying this method, analysts must take particular care 
with the following.
•	 The interpretation and estimating processes need to take 

into account the source of death data (vital registration, 
reported by households in censuses, or recorded in hospi-
tals) as explained below. Biases associated with the source 
of death data tend to have more impact on the estimate 
of completeness from the Synthetic Extinct Generations 
method than on the Generalized Growth Balance method.

•	 If applying the method to sub-national geographic areas, 
the issue of migration typically becomes a greater concern.

•	 Deciding the age range which is to be used to determine 
delta (the estimate of the coverage of one census relative 
to the other). Issues here are whether the best estimate of 
delta is the intercept determined as a result of applying 
the Generalized Growth Balance method to the same data 
(which would be the case, for example, if completeness 
of reporting of deaths was thought to decrease after 
retirement, for reasons explained below), and whether 
to exclude ages below 30 or 35 because of the impact of 
migration which has not been allowed for specifically.

•	 Deciding on the age range to use for determining the 
estimate of completeness. Typically this range might 
exclude young adults if there is significant unaccounted-
for migration, or the elderly if the results suggest that 
a lower proportion of their deaths are reported than of 
deaths of younger adults or if age misreporting of the 
elderly appears to affect ages of the living and the dead 
differently.

•	 Ensuring that the solver routine in Excel has run 
satisfactorily (i.e. has produced a sensible result). 
Occasionally Solver offers a solution which is manifestly 
too low. In such situations it is best to adjust delta 
manually in the right direction and apply Solver to this 
new starting value.

•	 Ensuring that the estimate of life expectancy at the age 
of the open interval is reasonable. Often data on older 
people are scanty and particularly prone to errors. Thus 
estimates of life expectancy based on these data can be 
implausible (usually over-estimating life expectancy). The 
higher the age of the open interval, the lower the impact 
of any error.

•	 If completeness appears to be less than 60 per cent, then 
the uncertainty is large and this should be taken into 
account when interpreting the results.

•	 It is tempting in a situation in which census data on the 
age distribution of the population and household deaths 
are available for only one census, to combine this with 
data on the age distribution of the population from a 
sample survey at some earlier or later date. However, for 
reasons that have not been adequately researched, such 
a combination of data sources rarely gives satisfactory 
results.

Application of method
Although technically one could apply this method to data in 
single year age categories, the data one typically works with 
are subject to age misstatement, so in practice one usually 
works with data grouped into five-year age groups. For 
convenience, since most data are published in this format, 
the spreadsheet is set up to work with data in the standard 
five-year groupings. However, as Blacker (1988) has shown, 
if this grouping fails to remove the effect of digit preference, 
the method should be adapted to work with an alternative 
five-year grouping of ages centred on, rather than starting 
with, ages at which heaping occurs.



CHAPTER 25 THE SYNTHETIC EXTINCT GENERATIONS METHOD  |  277

Step 1:  If not readily available, estimate the number of 
deaths reported in the period between the dates of the 
two estimates of the population
In the case where one has annual vital registration data, this 
adjustment involves apportioning deaths in the first and last 
year of the period to the parts of the year before and after 
the mean dates of fieldwork of the two inquiries. Unless the 
age pattern of deaths is changing very rapidly, this will have 
no effect on the results.

If one lacks data on the number of deaths between the 
two inquiries but this interval falls between two periods 
for which one does have such estimates (for example, 
because each inquiry included a question about deaths in 
the household during the previous year), one can make 
use of the Estimating deaths spreadsheet. This spreadsheet 
estimates the number of deaths between two points in time 
given estimates of deaths over two other periods. To use this 
spreadsheet, you need the number of deaths divided into 
five-year age groups for two periods (periods 1 and 2), the 
start and end dates for each of these periods, and the start 
date and end date of the period for which one wishes to 
estimate the number of deaths.

Step 2: Estimate the growth rates adjusting for migration 
and differential census coverage
Age-specific growth rates adjusting for migration and 
differential census coverage are estimated from the two 
census populations and the numbers of migrants over the 
intercensal period by age group as follows:
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where 5Nx(t) 
is the population aged between x and x + 5 at 

time t, 5NMx is the net number of migrants (in- less out-
migrants) aged between x and x + 5, and t1 and t2 are the 
times of the two censuses. Delta is the correction for the 
completeness of one census relative to the other. It is either 
set equal to the estimate from the Generalized Growth 
Balance method, or solved for iteratively as explained below.

Step 3: Estimate the life expectancy at age A and at each 
five-year age intervals down to 65
This can be done in one of several ways.

1)	�Use estimates from an independent source, if reliable 
estimates are available. Possible sources would be esti-
mates produced by previous research or from population 
projections such as the World Population Prospects (UN 
Population Division 2011).

2)	�Use the estimates derived from the data after applying the 
Generalized Growth Balance method. The workbook im-
plementing that method produces such estimates as part 
of the output.

3)	�Use the ratio of the reported deaths in the age group 10 
to 39 last birthday to those in the age group 40 to 59 last 
birthday (30D10/20D40) to determine (by comparison) a 
level of the West model life table, from which estimates of 
life expectancy can be read. These estimates are included 
as part of the workbook implementing this method. 
Unfortunately, since the West model life table does not 
reflect mortality resulting from HIV/AIDS, this approach 
is unsuitable for countries that have significant numbers 
of AIDS deaths.

4)	�Solve for the life expectancy iteratively by starting with a 
reasonable guess such as those estimated from the West 
table (although in some cases this may not work in coun-
tries with significant numbers of AIDS deaths) or from 
an independent source. Then estimate completeness (as 
described below), copy the life expectancies based on this 
level of completeness from the Life expectancies spread-
sheet of the associated workbook, paste the values of these 
into the Method spreadsheet of the associated workbook 
and re-estimate completeness. Repeat if necessary until 
the change to life expectancies is no longer significant. 
Unfortunately, if there are reasons for suspecting that, 
even after correcting the rates for incompleteness, mor-
tality is underestimated at the older ages (for example, if 
there is significant age exaggeration, or relatively higher 
incompleteness at the older ages) then this approach will 
overestimate the life expectancies and hence overestimate 
the overall level of completeness of reporting.

Step 4: Estimate the number of people who turned x, 
and the number aged x to x + 4 last birthday, from the 
reported deaths
The number of people who turned x during the period 
over which the deaths were reported is estimated from the 
reported deaths as follows:

( ) ( )5 5 5 5
ˆ ˆ exp 5 exp 2.5x x x x xN N r D r+= +
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and
( ) ( )( )2ˆ exp 6A A A A A AN D r e r e∞ ∞ ∞= × − ×

where A is the age at the start of the open interval, nrx is the 
annual population growth rate in the age group x to x + n last 
birthday, and eA is the life expectancy at age A.

The number of people aged x to x + 4 last birthday during 
the period over which the deaths were reported is estimated 
from the numbers who turned x in five-year steps as follows:

( )5 5
ˆ ˆ ˆ2.5x x xN N N += + .

Step 5: Estimate the number of people aged x to x + 4 last 
birthday during the period between the two censuses, 
from the census populations
The number of people aged x to x + 4 during the period over 
which the deaths are reported is estimated from the census 
populations by multiplying the geometric mean of the 
numbers in that age group in the two census populations by 
the length of the period between the two censuses (measured 
in years) as follows:

( )( )
1

2
5 2 1 5 1 5 2( ) ( )x x xN t t N t N t= − × .

Step 6: Calculate the ratios of the estimates derived from 
deaths to those derived from the census populations
Two sets of ratios of the estimates derived from the deaths 
to those derived from the census population are calculated. 
The first is the ratios in quinquennial age groups, which are 
calculated directly. The second is the ratios of the numbers 
from age x to that age of the open interval, A, with the 
numbers of people who turned x to A – 1 during the period 
being calculated as the aggregate of the numbers in five-year 
age groups between ages x and A – 5. In other words,
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5
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ˆ ˆ
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A x x x
a x

N N
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−
=
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Step 7: Estimate the completeness of reporting of deaths
In order to determine the level of completeness of reporting 
one first needs to decide if the growth rates need to be 
corrected for relative completeness of the population 
censuses. The interpretation of the plots of the ratios is 
discussed in more detail below. However, essentially the 

amount by which the growth rates need to be corrected 
(delta) for relative completeness of the census populations 
is identified as the amount which produces the most level 
set of ratios by age. The Method spreadsheet is set up so 
that Solver (Data, Solver, Solve) will find the value of delta 
that minimizes the absolute deviation from the mean of the 
ratios over the age range specified by the user.

It is suggested that the intercept, a, from the application 
of the Generalized Growth Balance method to the same data 
be used as an initial estimate of delta. If this estimate of 
delta produces a level series of ratios across adult ages but 
with significant curvature downward at the older ages, this 
could indicate a fall off of completeness at the older ages. 
This might be the case if, for example, people retired from 
urban areas to rural areas, where completeness of registration 
was lower, or there was a drop off in reporting of deaths by 
households due to disintegration of some households on the 
death of a member. In such a situation it is important not 
to set delta to produce a level set of ratios, but rather to use 
the initial value.

If one is solving for both delta and the life expectancies 
iteratively, the values of life expectancies will need to be 
pasted from the Life expectancies spreadsheet into the Method 
spreadsheet and a new estimate of delta set. This process 
may need to be repeated two or three times, until there is no 
change in the life expectancies.

Finally, one decides on the age range of ratios to be used 
to determine the completeness. If there is a significant cur-
vature upward at the older ages, this probably indicates age 
exaggeration, particularly for deaths, and one needs to try 
and identify an age for the open interval below which the 
age exaggeration is not significant. If completeness drops off 
at ages below 35, this could indicate unaccounted for out-
migration. If this is suspected then one should exclude these 
ages from determining delta or completeness.

Completeness is estimated from the quinquennial age 
group-specific ratios. In order to produce a robust estimate 
it is calculated as the sum of 50 per cent of the median plus 
25 per cent of each of the 75th and 25th percentile of these 
ratios.

Step 8: Estimate mortality rates adjusted for 
incompleteness of reporting of deaths
In order to compute mortality rates one needs first to correct 
the census population for relative under enumeration. This is 
achieved by multiplying the numbers from the first census by 
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( )( )2 1exp t tδ− − , and the numbers from the second census 
by 1, if delta is less than zero, and the reverse if delta >0.

The adjusted person-years of exposure, PYLa(x,5), are 
estimated by multiplying the geometric average of the 
corrected populations by the length of the period between 
the censuses (in years) as follows:
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Next, one needs to adjust the number of deaths for 
incompleteness by dividing the reported number of deaths 
by the estimate of completeness, c, and dividing this by 
PYLa(x,5) to produce mortality rates adjusted for the 
incompleteness of the reporting of deaths as follows:

5
5 ( ,5)

x
x a

D c
m

PYL x
= .

If it is decided that completeness fell after retirement then 
the estimates of the rates at these ages might be improved by 
replacing c by the age group-specific estimates of complete-
ness at these ages. There is an option in the spreadsheet to 
implement this.

Note that technically one could drop the adjustment for 
under-coverage of one census relative to the other and still 
get the same estimates of the mortality rates since the same 
adjustment is made to both the numerator and the denomi-
nator. However, in that case the estimate of completeness is 
relative to the average of the census populations ignoring the 
fact that one is undercounted relative to the other.

Step 9: Smooth using relational logit model life table
Because the age-specific rates can be quite erratic they need 
to be graduated (smoothed). This can be achieved by fitting 
a Brass relational logit function to a sex-specific standard 
life table which is considered to have the same shape as that 
generated by the mortality rates of the population being 
investigated.

The accompanying workbooks contain a spreadsheet 
(see website) that allows one to produce a smooth set of 
mortality rates by using a relational logit model fitted to the 
life table generated by the adjusted mortality rates. The user 
can choose between the standard from the General family of 

United Nations model life tables or one from any of the four 
families of Princeton model life tables. The logit transforms 
of these tables together with a model life table of a population 
experiencing an AIDS epidemic (Timæus 2004) appear in 
the Models spreadsheet. This spreadsheet also allows the 
user to input logit transforms of an alternative life table if 
there is reason to assume that it has a similar pattern of adult 
mortality to that of the population being studied.

In order to fit the model, probabilities of people aged 
x dying in the next 5 years, 5qx, are estimated from the 
adjusted rates of mortality as follows:
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x

x
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m
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+
.

From this the life table with a radix of l5 = 1 is calculated as 
follows:

( )5 51x x xl l q+ = − .

The coefficients,  and  are determined by fitting the 
relational logit model as follows:

s
x xγ α βγ= +

where

10.5ln x
x

x

l
l

γ
 −

=  
 

and superscript ‘s’ designates values based on a standard life 
table.

The fitted life table is then generated from the standard 
life table using the coefficients  and  as follows:

fitted s
x xγ α βγ= +

and
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x

l
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The smoothed mortality rates are derived from this life table 
as follows:
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i.e.
( )5 5

5
2

fitted fitted
x x x xT T l l+ += + +

and  is the age above which the life table has no more 
survivors.

The life expectancies, which are of particular interest if 
one wants to estimate the life expectancies at the older ages 
iteratively, are derived as follows:

x
x

x

Te
l

= .

Worked example
This example uses data on the numbers of males in the 
population from the South African Census in 2001 and 
the Community Survey in 2007, on number of deaths 
from vital registration for the years 2001 to 2007, and on 
the net number of migrants estimated from the change in 
foreign-born counted in the two surveys, less an estimate 
of the number of South Africans who emigrated between 
the two surveys. The example appears in the SEG_South 
Africa_males workbook.

Step 1: If not readily available, estimate the number of 
deaths reported in the period between the dates of the 
two estimates of the population
The registered deaths for the years 2001 to 2007 for South 
African males are given in Table 25.1.

The reference time for the Census in 2001 was midnight 
between 9 and 10 October 2001. The Community Survey 
took place over a number of weeks in February so we can 
assume a reference time of midnight between 14 and 15 
February 2007. Thus if we assume deaths occur uniformly 
over the respective calendar years we can apportion the 
deaths in 2001 and 2007 and add these to the total for 
the years 2002 to 2006 to get the total number of deaths 
between the two estimates of the population. For example, 
for the age group 20–24 the number is calculated as follows:

( )

( )

22 30 31
8931 51588

365
31 14

10875 54960.
365

+ +
+

+
+ =

Table 25.1  Calculation of deaths between census dates, South 
African males, 2001–2007

Age 2001 2002–2006 2007
Total 

between 
censuses

0–4 29,005 186,346 40,314 197,912
5–9 2,118 14,733 2,854 15,566

10–14 1,745 10,535 2,233 11,207
15–19 4,470 23,857 4,860 25,473
20–24 8,931 51,588 10,875 54,960
25–29 16,834 96,705 18,405 102,802
30–34 20,892 137,355 28,245 145,588
35–39 21,068 137,502 29,258 145,900
40–44 19,322 128,217 26,973 135,936
45–49 17,881 113,891 24,761 121,010
50–54 16,883 104,508 22,790 111,157
55–59 14,544 90,919 21,317 96,854
60–64 15,097 84,351 17,410 89,930
65–69 13,011 77,680 17,878 82,843
70–74 14,035 68,147 13,771 73,036
75–79 10,846 59,859 12,534 63,871
80–84 9,161 44,986 8,872 48,163
85+ 7,602 43,233 10,009 46,196

Step 2: Estimate the growth rates adjusting for migration 
and differential census coverage
Age-specific growth rates less the net in-migration rate and 
adjusted for differential census coverage appear in column 6 
of Table 25.2. They are calculated for the 20 to 25 age group, 
for example, using the populations given in columns 2 and 
3, the net in-migration given in column 5 of Table 25.2 and 
delta (estimated below) as follows:

( )

( )
( )

1
2

5 20

ln 2362519 2099417
5.3541

14803

5.3541 2099417 2362519

-0.00467 0.0161

r =

−
×

+ =

where 5.3541 is the time between the census and survey 
calculated using the YEARFRAC functions in Excel.

Step 3: Estimate the life expectancy at age A and five-
year age intervals down to 65
The estimates derived after applying the Generalized Growth 
Balance method to the same data are as shown in column 2 
of Table 25.3.



CHAPTER 25 THE SYNTHETIC EXTINCT GENERATIONS METHOD  |  281

The ratio of the reported deaths in the age group 10 to 39 
last birthday to those in the age group 40 to 59 last birthday 
from column 4 of Table 25.2 is

485930 1.0451
464957

= .

The life expectancies of the male Princeton West model life 
table which corresponds to this are determined (from the 
table in the Life expectancies spreadsheet of the workbook) 
by interpolation and are shown in column 3 of Table 25.3 
For example for age 65:

( )65
1.045 1.0129.65 9.35 9.65 9.452
1.062 1.012

e −
= + − =

−
.

Solving for the life expectancy and delta iteratively by 
starting with the estimates from the West table produces 
an estimate of delta (as explained in more detail below) of 
–0.0066 and the final estimates of life expectancy which 
appear in column 4 of Table 25.3.

Since the prevalence of HIV/AIDS was high in South 
Africa one cannot use the estimates derived from the West 

life tables given in the Life expectancies spreadsheet of the 
workbook in estimating the completeness of reporting of 
deaths. In addition, since – discussed below – it appears 
that completeness could be falling with age for ages above 
age 55, the iterative estimates may not be ideal. Thus for 
this example, delta is set equal to the intercept, a, from the 
application of the Generalized Growth Balance method to 
the same data, and the life expectancies are as appear in 
column 5 of Table 25.3.

Table 25.3  Life expectancies from different sources, South African 
males 2001–2007

x
Generalized 

Growth 
Balance

Princeton 
West

Iterative 
estimates

Delta fixed 
to GGB 
estimate

65 11.8 9.45 11.6 11.7
70 9.4 7.37 9.3 9.4
75 7.4 5.55 7.3 7.4
80 5.7 4.06 5.6 5.7
85 4.4 2.90 4.3 4.4

Age 5Nx(t1) 5Nx(t2) 5Dx 5NMx 5rx Est Nx Est 5Nx

0 2,223,006 2,505,744 197,912 10,605 0.0168
5 2,425,066 2,560,642 15,566 2,848 0.0053 2,304,653 11,334,968
10 2,518,985 2,452,339 11,207 5,153 –0.0101 2,229,335 11,405,753
15 2,453,156 2,553,293 25,473 16,574 0.0016 2,332,967 11,556,063
20 2,099,417 2,362,519 54,960 14,803 0.0161 2,289,459 10,871,687
25 1,899,275 2,033,165 102,802 4,714 0.0076 2,059,216 9,851,950
30 1,594,624 1,875,483 145,588 13,331 0.0242 1,881,564 8,529,425
35 1,441,657 1,548,185 145,900 9,693 0.0074 1,530,206 7,153,512
40 1,233,813 1,306,900 135,936 7,464 0.0050 1,331,199 6,238,580
45 967,744 1,104,294 121,010 8,719 0.0184 1,164,233 5,276,384
50 769,627 888,042 111,157 9,413 0.0199 946,320 4,242,847
55 552,402 708,812 96,854 4,640 0.0405 750,818 3,191,145
60 444,592 491,871 89,930 5,081 0.0122 525,640 2,332,526
65 304,835 394,305 82,843 4,922 0.0407 407,371 1,662,114
70 232,604 241,976 73,036 4,334 –0.0007 257,475 1,106,744
75 136,466 163,112 63,871 2,980 0.0249 185,223 721,856
80 90,856 87,698 48,163 1,662 –0.0148 103,519 412,486
85 45,920 70,299 46,196 2,009 0.0683 61,475

Table 25.2  Growth rates and estimate of the numbers who turned 
x and the numbers aged between x and x + 5 derived from the 
numbers of deaths, South African males, 2001–2007
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Step 4: Estimate the number of people who turned x, 
and the number aged x to x + 4 last birthday, from the 
reported deaths
The number of people who turned x during the period 
between the two censuses as estimated from the numbers 
of deaths using an open interval of 85+, growth rates from 
column 6 of Table 25.2 and the estimate of life expectancy 
at age 85 of 4.347 given in the fifth column of Table 25.3, 
is as shown in column 7 of Table 25.2. For example, the 
estimate of the number of people who turned 80 in the 
period between the censuses is calculated as follows, using 
the growth rate for the population in open interval 85+ of 
0.0638 and the growth rate for the population aged between 
80 and 85 of –0.0148, is

( )
( )85 2

exp 0.0638 4.347ˆ 46196 61475
0.0638 4.347 6

N
× 

= =  − × 

( )( )
( )( )

80
ˆ 61475exp 5 0.0148

48163exp 2.5 0.0148 103519

N = × −

+ × − = .

The number of people aged x to x + 4 last birthdays during 
the period between the two censuses, estimated from the 
reported deaths is given in column 8 of Table 25.2. For 
example, the number who turned 20 to 24 last birthday is 
calculated as follows:

( )5 20
ˆ 2.5 2289458.6 2059216.1 10871687.N = + =

Step 5: Estimate the number of people aged x to x + 4 last 
birthday during the period between the censuses, from 
the census populations
The number of people aged between x and x + 5 during the 
period between the two censuses appears in column 2 of 
Table 25.4 and is calculated for the 20 to 24 age group, for 
example, using the populations given in columns 2 and 3 
of Table 25.2 and the time between the two censuses, as 
follows:

( )
1
2

5 20 5.3540689 2099417 2362519
 11923972.

N = ×

=

Table 25.4  The number aged x to x + 4 last birthday estimated 
from the census population and the ratios of the estimates derived 
from the numbers of deaths to this, South African males, 2001–2007

Age Obs 5Nx c :  5Nx c :  A–xNx

0 12,636,377
5 13,341,976 0.8496 0.8981

10 13,307,209 0.8571 0.9050
20 11,923,972 0.9118 0.9231
25 10,521,174 0.9364 0.9256
30 9,259,118 0.9212 0.9230
35 7,998,828 0.8943 0.9235
40 6,798,761 0.9176 0.9322
45 5,534,858 0.9533 0.9371
50 4,426,301 0.9586 0.9310
55 3,350,250 0.9525 0.9191
60 2,503,746 0.9316 0.9028
65 1,856,232 0.8954 0.8865
70 1,270,220 0.8713 0.8799
75 798,803 0.9037 0.8885
80 477,921 0.8631 0.8631

Step 6: Calculate the ratios of the estimates derived from 
deaths to those derived from the census populations
The ratios of the numbers of people aged between x and 
x + 5 during the period between the censuses estimated 
from the reported deaths (column 8 of Table 25.2) to those 
estimated from the censuses (column 2 of Table 25.4) are 
given in columns 3 and 4 of Table 25.4. Examples of these 
calculations for age 65 are as follows:

5 65

5 65

ˆ 1662114 0.8954
 1856232 

N
N

= =

20 65

20 65

ˆ 1662114+1106744+721856+ 412486= = 0.8865.
1856232+1270220+798803+ 477921

N
N

Step 7: Estimate the completeness of reporting of deaths
Setting delta to the intercept of the application of the 
Generalized Growth Balance method produces a series of 
ratios which, although reasonably level, appears to fall off 
with increasing age from about age 50 (see from Figure 25.1). 
Thus for this example Solver was not used to estimate delta.

Completeness was estimated from the ratios in the age 
range 25 to 64. This was done to avoid, to some extent, 
biasing the estimate downwards due to the falling off 
of the ratios at the extreme ages although the method of 
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determining the estimate is fairly robust to fluctuations at 
individual ages. This produced an estimate of completeness 
of 94 per cent as follows:

( )0.5 0.9340 0.25 0.9203 0.9527
0.9353 94%.

c = × + +
= =

where 0.9340 is the median, 0.9203 the 25th percentile 
and 0.9527 the 75th percentile of the ratios in column 3 of 
Table 25.3 between ages 25 and 65.

Step 8: Estimate mortality rates adjusted for 
incompleteness of reporting of deaths
The adjusted population as at the first census date which 
appears in column 2 of Table 25.5 is the enumerated popu-
lation given in column 2 of Table 25.2 multiplied by exp(–
(–0.00467)  5.3541) since delta is less than 0. For example 
the adjusted population for age 20 is

( )( )2099417 exp 0.00467 5.3541 2152629× − − × = .

The adjusted population at the second census date which ap-
pears in column 3 of Table 25.5 is the enumerated popula-
tion given in column 3 of Table 25.2 since delta is less than 0.

Next the deaths are adjusted for incompleteness by 
dividing the number of reported deaths in each age group 
shown in column 4 of Table 25.2 by the estimate of 
completeness. These numbers are shown in column 4 of 
Table 25.5. For example, for age 20 the number is derived 
from the number of reported deaths, 54 960, as follows:

54960
58764

0.9353
= .

As it appears that completeness may have declined at the 
older ages, the option to use age-specific completeness 
above age 65 is chosen. Thus, for example, the number of 
deaths between 70 and 75 corrected for incompleteness is 
calculated as follows:

73036
83824

0.8713
= .

The adjusted person-years of life lived (column 5 of 
Table 25.5) is the geometric average of the populations in 
columns 2 and 3 of Table 25.5 multiplied by the length (in 
years) of the period between the censuses, which in this case 
is 5.3541 years. For age 20 this is

Figure 25.1  Completeness by age of registered deaths, South African 
males, 2001–2007
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( )
1

2(20,5) 5.354069 2152629 2362519
12074140.

PYL = ×
=

The mortality rates adjusted for incompleteness of reporting 
of deaths (column 6 of Table 25.5) are derived by dividing 
the adjusted deaths by the adjusted person-years of life lived. 
For example, for the 20–24 age group the adjusted rate is 
calculated as follows:

58764 0.0049
12074140

= .

Step 9: Smooth using relational logit model life table
Estimates of probabilities of people aged x dying in the next 
5 years, 5qx, estimated from the adjusted rates of mortality 
which appear in column 6 of Table 25.5, are shown in the 
second column of Table 25.6. For example, the probability 
of a 20-year old woman dying before reaching age 25 is 
calculated as follows:

5 20
5 0.0049 0.0240

1 2.5 0.0049
q ×

= =
+ ×

.

The life table proportions of five-year olds alive at age x + 5, 
estimated from the proportion alive at age x using these 

values, appear in column 3 of Table 25.6. For example the 
proportion alive at age 25 is calculated as follows:

( )25 0.9796 1 0.0240 0.9560l = − = .

The logit transformations of the proportions surviving 
appear in column 4 of Table 25.6. For example, the logit 
transformation of the l20 is calculated as follows:

20
1 0.97960.5ln 1.9350

0.9796
γ − = = − 

 
.

The logit transformation of the conditional life table for 
males based on the AIDS life table with e0=50 in column 5 
of Table 25.6 appears in column 6 of Table 25.6. As can be 
seen from Figure 25.2, the AIDS model does not fit the data 
particularly well, but fits better than any table which does 
not reflect the impact of HIV on mortality.

The coefficients,  and  are determined as the intercept 
and slope of the straight line fitted to the logit transforma-
tions in columns 4 and 6 of Table 25.6 over the range of 
ages chosen by the user (45 and 80 in this example), namely 
0.1928 and 1.2008 respectively.

These coefficients are then applied to the logit transfor-
mation of the conditional model life table to produce the 

Table 25.5  Calculation of adjusted 
mortality rates, South African males, 
2001–2007

Age Adjusted 
5Nx(t1)

Adjusted 
5Nx(t2) Adjusted 5Dx

Adjusted 
PYL(x,5) Adjusted 5mx

0
5 2,486,532 2,560,642 16,644 13,510,001 0.0012
10 2,582,831 2,452,339 11,983 13,474,797 0.0009
15 2,515,334 2,553,293 27,236 13,568,508 0.0020
20 2,152,629 2,362,519 58,764 12,074,140 0.0049
25 1,947,414 2,033,165 109,919 10,653,675 0.0103
30 1,635,041 1,875,483 155,667 9,375,725 0.0166
35 1,478,197 1,548,185 156,001 8,099,564 0.0193
40 1,265,085 1,306,900 145,347 6,884,383 0.0211
45 992,273 1,104,294 129,387 5,604,563 0.0231
50 789,134 888,042 118,852 4,482,045 0.0265
55 566,403 708,812 103,560 3,392,442 0.0305
60 455,861 491,871 96,156 2,535,277 0.0379
65 312,561 394,305 92,518 1,879,609 0.0492
70 238,500 241,976 83,824 1,286,217 0.0652
75 139,925 163,112 70,679 808,863 0.0874
80 93,159 87,698 55,803 483,940 0.1153
85 47,084 70,299 53,524 308,032 0.1738
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Age 5qx lx/l5
Obs. 
Y(x)

AIDS 
Cdn. l s(x)

Cdn. 
Y s(x)

Fitted 
Y(x)

Fitted 
l(x) T(x) e(x) Smooth 

5mx

0
5 0.0061 1 1.0000 1 51.206 51.2 0.0030

10 0.0044 0.9939 –2.5433 0.9785 –1.9081 –2.0984 0.9852 46.243 46.9 0.0028
15 0.0100 0.9894 –2.2705 0.9632 –1.6326 –1.7676 0.9717 41.351 42.6 0.0024
20 0.0240 0.9796 –1.9350 0.9512 –1.4853 –1.5907 0.9601 36.521 38.0 0.0041
25 0.0503 0.9560 –1.5395 0.9324 –1.3120 –1.3827 0.9408 31.769 33.8 0.0086
30 0.0797 0.9079 –1.1444 0.8969 –1.0818 –1.1062 0.9014 27.164 30.1 0.0152
35 0.0919 0.8356 –0.8128 0.8420 –0.8365 –0.8116 0.8352 22.822 27.3 0.0200
40 0.1003 0.7588 –0.5731 0.7794 –0.6311 –0.5650 0.7559 18.845 24.9 0.0235
45 0.1091 0.6827 –0.3831 0.7148 –0.4593 –0.3588 0.6721 15.275 22.7 0.0239
50 0.1243 0.6082 –0.2199 0.6560 –0.3228 –0.1948 0.5962 12.104 20.3 0.0230
55 0.1418 0.5326 –0.0653 0.6048 –0.2127 –0.0626 0.5313 9.285 17.5 0.0255
60 0.1732 0.4571 0.0861 0.5530 –0.1064 0.0650 0.4676 6.788 14.5 0.0335
65 0.2191 0.3779 0.2493 0.4918 0.0163 0.2124 0.3954 4.631 11.7 0.0502
70 0.2802 0.2951 0.4354 0.4119 0.1781 0.4066 0.3072 2.874 9.4 0.0718
75 0.3586 0.2124 0.6553 0.3178 0.3819 0.6513 0.2137 1.572 7.4 0.1013
80 0.4475 0.1362 0.9235 0.2173 0.6408 0.9622 0.1274 0.719 5.6 0.1480
85 #N/A 0.0753 1.2542 0.1201 0.9959 1.3887 0.0586 0.255 4.3 0.2097

Table 25.6  Calculation of smoothed mortality rates using a 
relational logit model life table, South African males, 2001–2007

Figure 25.2  Observed logits and adjusted mortality rates against 
expected derived from the male AIDS model life table, South African 
males, 2001–2007
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fitted logits in column 7 of Table 25.6. Thus, for example, 
the fitted logit at age 20 is calculated as follows:

( )20 0.1928 1.2008 1.4853 1.5907fittedγ = + × − = − .

These values are then used to produce the fitted life table in 
column 8 of Table 25.6. For example the value at age 20 is 
calculated as follows:

( )( )20
1 0.9601

1 exp 2 1.5907
fittedl = =

+ × −
.

The conditional years of life lived, Tx, which appear in 
column 9 of Table 25.6, are then calculated from the fitted 
life table. These numbers are then used to produce the 
smoothed mortality rates which appear in column 10 of 
Table 25.6. For example, for age 80,

( )80
50.255 0.1274 0.0586 0.719
2

T = + + =

5 80
0.1274 0.0586 0.1480
0.719 0.2655

fittedm −
= =

−
.

The life expectancies which appear in column 10 of 
Table 25.6 are the numbers in column 9 divided by the 
numbers in column 8. For example, the life expectancy at 
age 65 is

4.631 11.71
0.3954

= .

Diagnostics, analysis and 
interpretation
Checks and validation
The estimate of completeness is 94 per cent. The first 
check on this result is a comparison with the results for the 
opposite sex. For example, applying the same method as 
described above for men to the data for women during the 
same period (in the SEG_South Africa_females workbook) 
gives an estimate of completeness of 93 per cent. Past 
research (Dorrington, Moultrie and Timæus 2004) leads to 
the expectation that the estimates should be similar, so the 
results are sufficiently close as to validate the estimates.

A second check on the results is to compare them with 
the result from the Generalized Growth Balance method (in 
the GGB_South Africa_males workbook), which estimated 

the completeness of death reporting over the age range 5 to 
84 to be 92 per cent. This again supports the result.

A third check is to compare estimates of various key 
indicators of mortality with those from other sources, such 
as previous estimates for the country or the World Population 
Prospects (UN Population Division 2011). The estimate of 
45q15 from the observed mortality rates after adjusting for 
incompleteness is 51.9 per cent, while the estimate of 45q15 
from the WPP for the period 2000–2005 is 52.9 per cent, 
again suggesting no reason to question the results.

As a matter of interest, application of the Preston and 
Coale method to these data (estimating the population in 
the middle of the period as that average of the two survey 
populations) provides an estimate of completeness, using the 
same age range, of 84 per cent. Increasing the minimum age 
of range of the data used to determine delta to 35 increases 
the estimate to 86 per cent, still somewhat lower than the 
estimate of 94 per cent produced above.

Interpretation
Inspection of the estimates of completeness (Figure 25.1) 
suggests that the completeness of death reporting appears to 
fall steadily with age from about age 55, which is consistent 
with migrant workers retiring from urban areas to rural 
areas, where completeness of registration was lower. Since 
these estimates were produced using the estimate of delta 
produced by application of the Generalized Growth Balance 
method and it is entirely plausible that people have retired 
from urban to rural areas, reducing delta to produce a more 
level set of estimates is inappropriate.

Since migration has been taken into account, the falloff 
in estimates of completeness at the younger ages is probably 
due to the opposite of what is happening at the older ages, 
namely, young people moving from rural to urban areas to 
find employment. It would be wrong, therefore, to allow 
estimates at these ages to influence the estimate of overall 
completeness unduly.

The lack of smoothness in the series of the ratios of 5Nx is determined by the estimates of the population from the 
census and survey, and not from the deaths. Thus, the erratic 
nature of this series is probably indicative of errors due to 
relative undercounting in particular age groups and/or age 
misreporting in the census or survey population estimates.
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Method-specific issues with 
interpretation
Source of reported deaths
Generally there are two sorts of problems with the death 
data: those that lead to under/over coverage that is constant 
by age, which is precisely what the method is intended to 
address, and those which lead to differential coverage by 
age, which can distort the estimates. Although the general 
approach remains essentially the same irrespective of the 
source of the death data, different sources of death data 
are prone to different biases which might impact on the 
interpretation of the results. These are illustrated by way of 
particular examples, but, in general terms, the analyst needs 
to look out for the following biases in the death data.

1)  Vital registration
If the proportionate split of the population between urban 
and rural (or appropriate proxies) areas differs significantly 
by age and the completeness of reporting of deaths in urban 
areas is significantly higher than it is in rural areas, then the 
assumption that completeness is independent of age is likely 
to be violated by a falling off of completeness with age at ages 
over 50 if a proportion of people move from urban to rural 
areas on retirement. If ignored, this violation is likely to lead 
to an underestimate of the average level of completeness.

2)  Deaths reported by households
The data are subject to four potential problems:
•	 If a significant proportion of households dissolve on the 

death of a key person (e.g. the sole breadwinner), then 
the deaths of such people go unreported, leading to a 
violation of the assumption that completeness is invariant 
with age. If a significant proportion of deaths in some 
age groups are of individuals who do not live in private 
households (for example, they live in homes for the 
elderly), the breach of the assumption could be even more 
severe. However, this is not an issue in most developing 
countries.

•	 In situations where young adults leave the home they grew 
up in to work in urban areas, it is possible that they are re-
garded as being members of more than one household (or 
of neither household) and their deaths could be reported 
more than once (or not at all), again leading to a violation 
of the assumption of constant reporting of deaths by age. 
In this case, one can limit the impact by ignoring the data 
below a specific age in determining completeness.

•	 Reference period error: Since there is often confusion 
about the exact period for which deaths are to be 
reported, not to mention uncertainty about exact dates of 
death, it is possible for there to be overall under- or over-
reporting of deaths. Provided one can assume that this is 
independent of the age of the deceased, this distortion 
will be accounted for in the estimate of completeness and 
is not a problem for estimating mortality rates.

•	 The reference period covers a small proportion of the 
intercensal period, for example, the common situation in 
which households report on deaths for the year preceding 
the census. Not only might such a short period result in 
significant random fluctuation, but in addition one does 
not have an estimate of the population at the start of 
this reference period. How one might deal with this is 
illustrated in the examples given. Essentially, if one has, in 
addition, deaths reported by households at the first census, 
one can use the two sets of data on deaths to estimate 
the number of deaths during the intercensal period, as 
was discussed above. However, since the question asking 
households to report on deaths in the previous year was 
used relatively seldom before the 2010 round of censuses, 
one may only have the single set of data on deaths. In 
this case, provided there are no reasons for assuming 
that the age pattern of mortality has changed rapidly 
over the period, it is recommended that one calculates 
the age-specific death rates for the year and applies these 
to the person-years of life lived for the interval to get 
an estimate of deaths for the period. If there are reasons 
for suspecting that mortality has changed rapidly, for 
example due to HIV/AIDS, then this adaptation is likely 
to underestimate or overestimate the mortality and the 
use of death distribution methods is not recommended.

3)  Deaths recorded in health facilities
Little is known about how well this source of data works. 
However, it can be expected that completeness would depend 
on the distribution of health services from which the data 
have been gathered, and in many developing countries such 
services are likely to be concentrated in urban areas. So, again, 
if the proportion of the population living in urban rather 
than rural areas varies with age, then completeness cannot be 
assumed to be independent of age. It is also possible that cer-
tain causes will predominate in facilities, and if these causes 
are significant and age-related, this could lead to a further 
violation of the assumption of constant completeness by age.
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In all such cases, one should avoid the temptation of 
adjusting delta to produce a level sequence of the ratios, and 
ensure that the estimate of c is determined over an age range 
which excludes the ages where distortions exist.

General diagnostic interpretation
In practice both the sequences of 5 5

ˆ
x xN N

 
and ˆ

A x A xN N  
are affected by violations of the assumptions. However, 
part of the power of this technique is that most of the 
typical violations of assumptions produce fairly distinctive 
characteristic deviations from the expected horizontal plot 
and in certain circumstances these patterns are interpretable. 
The following are examples:
•	 Incorrect estimate of relative coverage of the censuses: If δ  is 

too high the sequences fall nearly linearly with increasing 
age towards the underlying value of completeness and 
vice versa, as can be concluded from inspection of 
Equation 1 below. The effect is greater for 5 5

ˆ
x xN N

than for ˆ
A x A xN N .

•	 Exaggeration of reported age: Typically, relatives reporting 
deaths exaggerate the person’s age at death more than 
living individuals reporting their own ages. This produces 
rising sequences of points which are imperceptible up 
to the age at which exaggeration begins, followed by a 
sharp upward curve thereafter. Again, it can be seen from 
inspection of Equation 1 below, that age exaggeration 
leads to an increase in the number of deaths in the 
older age categories. In addition, transfers within an 
age category lead to those deaths being multiplied by a 
larger exponential term, although this effect is far smaller. 
Although such a pattern would also be produced by 
rising completeness in death registration with age beyond 
a certain age there appears to be no evidence of this in 
practice (Preston, Coale, Trussell et al. 1980).

•	 Age misstatement in the population estimates and age-specific 
miscounting: This is exhibited by an erratic sequence of the 
ratios over the age span. Since 5

ˆ
xN
 
is cumulative in form, 

it tends to follow the age distribution of the population 
quite closely and hence, if there are zigzags, it is likely 
that the peaks are associated with inflated population 
estimates and the troughs with deflated ones. If these 
fluctuations are independent of age they will not distort 
the estimate of completeness particularly. However, if 
they are systematic, for example due to unaccounted for 
migration beneath a certain age, it may be desirable not 
to include these points in estimating the completeness.

Examples using deaths reported by 
households in a census/survey
The examples below use the same data as used in the 
SEG_South Africa_males and SEG_South Africa_females 
workbooks with the exception that instead of using the 
vital registration as the source of the death data, deaths are 
estimated from deaths reported by households in the 2001 
Census and the 2007 Community survey as having occurred 
in the year preceding the census/survey. These numbers are 
given in Table 25.7.

The numbers of deaths occurring between the date of 
the Census (midnight between 9 and 10 October 2001) 
and the survey (assumed to be midnight between 14 and 
15 February 2007) are estimated using the Estimating 
deaths_South Africa_males_hhd and the Estimating deaths_
South Africa_females_hhd workbooks.

Applying the Synthetic Extinct Generations method to 
these data for males using the estimate of relative incom
pleteness of census coverage (delta) derived from the 
application of the Generalized Growth Balance method 
to these data, SEG_South Africa_males_hhd, suggests that 
these estimates of the number of deaths are more or less as 

2001 Census 2007 Community Survey

Age Males Females Males Females

0–4 35,873 32,096 48,322 44,418
5–9 3,868 3,155 4,505 5,216

10–14 2,590 2,284 3,442 3,259
15–19 5,628 5,122 8,246 7,878
20–24 10,976 13,246 16,360 21,702
25–29 17,787 19,727 27,551 35,840
30–34 20,038 18,292 34,832 42,576
35–39 19,816 15,521 38,061 34,809
40–44 17,417 12,124 33,604 28,823
45–49 15,840 10,105 27,829 20,973
50–54 15,077 9,144 28,223 18,891
55–59 12,781 7,755 22,868 13,118
60–64 13,428 10,367 18,775 14,912
65–69 11,820 10,195 17,532 14,298
70–74 11,885 10,809 14,879 14,645
75–79 8,794 8,393 12,966 14,151
80–84 7,484 9,371 9,204 12,063

85+ 7,115 12,389 11,735 18,178

Table 25.7  Deaths reported by households to have occurred in the 
year preceding census/survey, South Africa
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completely reported as the vital registration. However these 
data estimate 45q15 at 53.9 per cent, which although similar, 
is slightly higher than the estimate produced using registered 
deaths. Applying the Synthetic Extinct Generations method 
to these data for females, SEG_South Africa_females_hhd. 
suggests that the deaths of women reported by households 
are far less complete than the registered deaths and estimates 
45q15 at 49.3 per cent. This is higher (and less plausible 
relative to the probability for males) than the 42 per cent 
produced using registered deaths.

The reason for the much poorer performance of the 
method applied to deaths of women reported by households 
can be seen by a comparison of the estimated numbers 
of deaths for the period derived from deaths reported by 
households to the numbers expected after correcting the 
vital registration for incompleteness of reporting, as shown 
in Table 25.8. From this we see that there is a significant 
decline in completeness of reporting of deaths of women 
by households with age from age 55, probably as the result 
disintegration of households on the death of these women, 
usually because these households were headed by the women 
who died.

There is also evidence of over-reporting of deaths below 
age 30 for males and 25 for females.

In the situation where only the most recent census asked 
about deaths in the previous year, the number of deaths in 
each age group between the times of the 2001 Census and 
the 2007 Community Survey using only the deaths reported 
by households in the 2007 Community Survey are estimated 
as follows:

( ) ( )( )
1

25 2
2 1 5 1 5 2

5 2

( ) ( )
( )

x
x x

x

D t
t t N t N t

N t
− × .

Applying the method to these estimates of the deaths 
produce estimates of 45q15 of 58.1 per cent for males and 
55.6 per cent for females. Unlike the previous estimates, 
these are estimates of mortality in the year preceding the 
second census/survey and therefore might be expected to 
be higher than those for the whole period, since mortality 
has been increasing over the period due to HIV/AIDS. 
However, as might also be expected, deriving an estimate 
from a single year of deaths (derived, in addition, in this 
case from a relatively small sample survey) produces far less 
reliable estimates, particularly in the case (for these data) 
of females. Alternative estimates (Bradshaw, Dorrington 
and Laubscher 2012) suggest that for 2006 the correct 
probabilities should be closer to 55 per cent for males and 
45 per cent for females.

Males Females
Age Reported Expected Ratio Reported Expected Ratio

0–4
5–9 22,683 16,979 134% 22,995 14,575 158%

10–14 16,462 12,224 135% 15,173 10,349 147%
15–19 38,013 27,784 137% 35,666 26,874 133%
20–24 74,934 59,946 125% 95,993 84,611 113%
25–29 124,403 112,129 111% 152,718 154,437 99%
30–34 150,792 158,796 95% 166,488 170,680 98%
35–39 159,016 159,137 100% 137,837 141,399 97%
40–44 140,172 148,269 95% 111,910 115,746 97%
45–49 120,016 131,988 91% 85,284 93,408 91%
50–54 118,989 121,242 98% 76,941 81,793 94%
55–59 97,977 105,641 93% 57,353 72,131 80%
60–64 88,088 98,089 90% 69,220 78,877 88%
65–69 80,451 90,359 89% 67,007 86,099 78%
70–74 72,827 79,663 91% 69,536 93,404 74%
75–79 59,632 69,665 86% 61,942 88,314 70%
80–84 45,365 52,533 86% 58,410 77,084 76%

85+ 51,779 50,387 103% 83,753 108,002 78%

Table 25.8  Ratio of estimates of deaths 
derived from deaths reported by households 
to the expected numbers of deaths, South 
Africa
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Detailed description of method
Mathematical exposition
The basic idea of the Synthetic Extinct Generations method 
was originally proposed by Vincent (1951), namely that 
the number of persons at a particular age at a point in time 
must equal the total number of deaths arising from this 
population from that time until the last survivor has died. 
This method is a generalization of the method proposed 
by Preston, Coale, Trussell et al. (1980), which required 
that the population be stable. Thus, for a cohort followed 
prospectively,

0

( , ) ( , )
a

N a t D a s t s ds
ϖ −

= + +∫ ,

where N(a,t)
 

represents the number of people in the 
population at time t, aged a exactly and D(a + s, t + s)ds 

 represents the number of deaths at time t + s + ds, aged a + s 
to a + s  + ds.

These numbers of deaths in turn can be estimated from 
the number of deaths recorded in a given interval, on the 
assumption that mortality rates remain constant over that 
interval, by noting that deaths at any particular age will 
grow at the accumulated population growth rate at that age 
from time t to t + s. That is,

0
( , )

( , ) ( , )
s
r a s t z dz

D a s t s D a s t e
+ +∫+ + = + ,

where r(a + s, t + z)dz represents the annual growth rate of the 
population aged a + s in the time interval t + z to t +z + dz. 
If mortality is unchanging over time, it can be shown that 
r(a + s, t + z)= r(a + s –z , t) and hence that

0
( , )

0

( , ) ( , )
sa r a s z t dz

N a t D a s t e ds
ϖ − + −∫= +∫ ,

which can be rewritten as

	

( , )
( , ) ( , )

x

a
r y t dy

a

N a t D x t e dx
ϖ ∫= ∫ .	 (1)

Thus, it is possible to derive an estimate of the population 
at each age based on the age-specific numbers of deaths over 
a particular interval and the age-specific population growth 
rates. Comparison of these estimates of the population to 
the estimates derived from censuses gives an estimate of 
completeness of the deaths relative to that population.

Implementation of the method in practice
Since the data one typically works with are subject to age 
misstatement, in practice one usually works with data 
grouped into five-year age groups.

Thus, assume that in practice one has data on the 
following: the number of reported deaths over a number 
of years, from times t1 to t2, in five-year age groups, 5

r
xD , 

up to an open interval at age A, r
AD∞ ; and the number of 

people in the population at each of times t1 and t2, in the 
same age groups reported by the censuses, 5 ( )r

xN t
 
up to 

( )r
AN t∞  (where t = either t1 or t2). These data can then be 

used to apply the method by computing 5
r
xD  and r

xN∞ , and 

approximating r
xN  by ( )( )

1
2

2 1 5 5 1 5 2( ) ( ) 5r r
x xt t N t N t−− ×  

and 2

1

( )
t r

xt
N t dt∞∫  by ( )( )

1
2

2 1 1 2( ) ( )r r
x xt t N t N t∞ ∞− × .

As suggested by Bennett and Horiuchi (1981), a com-
putational form of Equation 1 can be derived, namely that

	 5 5 5 5exp 5 exp 2.5x x x x xN N r D r+    = × + ×    ,	 (2)

where Nx 
represents the number of people in the population 

who turned x between the census at time t1 and the census 
at time t2, and 5rx 

represents the average annual growth rate 
of the population aged x to x + 4 last birthday between times 
t1 and t2.

Bennett and Horiuchi (1981, 1984) suggest using the 
age group-specific growth rates to improve both the ˆ

xN  at 
the older ages and ˆ

AN , where A is the age at the start of 
the open-ended age interval. They suggest calculating ˆ

AN  
as follows:

( ) ( )2ˆ exp 6r
A A A A A AN D r e r e∞ ∞ ∞

 = × − ×  ,

where r
AD∞  represents the reported deaths aged A and older, 

and eA 
represents life expectancy at age A.

They also suggest that in order to allow for the curvature, 
particularly at the older ages, Equation 2 could be modified 
as follows:

5 5 5 5 5
ˆ ˆ exp 5 exp 2.5r

x x x x x xN N r D rγ+    = × + × ×    ,

where

( )

5
5 5

5
2

5

1.00 2.26

0.218 5 0.826

r
x

x x
x

x x

D
r

N

r r

γ = − ×

+ × − .
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In addition to this, they suggest that over the age of 60 the 
5

ˆ
xN  be approximated by “imposing a stable population 

curve over the five-year span and then determining the 
area under the curve accordingly” (Bennett and Horiuchi 
1981: 210). However, in practice the data are rarely accurate 
enough to warrant such a refinement, and it seldom makes 
much difference to the estimate of completeness.

In practice, in order to correct, to some extent, for the 
effects of digit preference in age reporting and also to 
make the death data consistent with population data for 
conventional five-year age groups, it is usual to compute
5 5

ˆ ˆ ˆ2.5( )x x xN N N += + .
Furthermore, since the sequence of 5 5

ˆ
x xN N  ratios 

(or even 10 5 10 5
ˆ

x xN N− −  as suggested by Bennett and 
Horiuchi (1981)) is usually still somewhat erratic because 
of age misreporting and differential omission of persons in 
particular age spans, it is usual to assume that the percentage 
reported is roughly constant with respect to age for ages 
greater than, say, 10. One estimates this fixed proportion, c, 
by either the mean or median of the values of 5 5

ˆ
x xN N  over 

a representative span of ages (after, if necessary, correcting 
the age group-specific growth rates for the differential 
completeness of the two censuses). Allowing for differential 
completeness of the two censuses is achieved by adding a 
constant factor, , to the age group-specific growth rates 
derived from the reported population numbers to produce a 
‘flat sequence’ of 5 5

ˆ
x xN N .

To see this, suppose 

1 1 1( ) ( )r
x xN t k N t∞ ∞=  and 2 2 2( ) ( )r

x xN t k N t∞ ∞= .

Then

2 22
5

1 1 1

2
5 5

1

( )( )ln ln
( ) ( )

ln ,

r
xr x

x r
x x

x x

k N tN tr t t
N t k N t

kr t r
k

δ

∞∞

∞ ∞

  
= =        

 
= + = − 

 

where

1

2

ln k t
k

δ
 

=  
 

.

Thus 1 tδ− ⋅ , where t is the length of the intercensal period, 
gives an indication of the differential completeness between 
the two estimates of the population used to estimate the age 
group specific growth rates.

The sequence of 5 5
ˆ

x xN N  values is usually plotted 

together with that of ˆ
A x A xN N , where 

5

5
ˆ ˆ

A

A x a
a x

N N
−

=

=∑ . 

The latter ratio tends to be more stable and assists with in-
terpretation of the data.

Extensions
If the ages were recorded accurately and the assumption 
of constant census coverage by age held (not a very likely 
situation), then the method could be adapted to deal with 
the situation where completeness of reporting of the deaths 
was constant only for a limited age range (x to x + n) by 
applying a truncated version of the method which eliminates 
from consideration deaths and population aged x + n and 
older. This adaptation could, for example, be applied to vital 
registration data where completeness might fall off above 
retirement age if people retired from urban to rural areas. It 
could also be applied where deaths reported by households 
where household might disintegrate on the death of the last 
adult. However, unless x + n is high this method is unlikely 
to be very robust. Analogous adaptation of the Generalized 
Growth Balance method is easier and seems to be a little 
more robust.
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Further reading and references
Analysis of the sensitivity of the method to common data 
errors and violation of the assumptions is fairly limited. 
However, the reader is referred to Hill, You and Choi 
(2009) for an analysis of the assumptions underlying the 
death distribution methods in the absence of HIV and to 
Dorrington and Timæus (2008) for an analysis in a population 
experiencing significant HIV. Murray, Rajaratnam, Marcus 

et al. (2010), in contrast, used stochastic simulations to assess 
these methods. However, to date their work has had very 
limited impact on the use of Death Distribution methods, 
possibly because their description of their simulations is 
short on detail and because their assessment is based on 
perhaps unrealistically high migration.
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Chapter 26  Indirect estimation from orphanhood 
in multiple inquiries

Ian M Timæus

Description of the method
The basic orphanhood method estimates the mortality of 
adult women and men indirectly from data on the survival 
status of respondents’ mothers and fathers respectively. 
In order to apply the method, censuses and surveys must 
minimally have included the questions ‘Is your mother 
alive?’ and/or ‘Is your father alive?’. By allowing for the 
mean age at which the mothers and fathers have children 
in the population concerned, it is possible to convert the 
proportion of persons in each age group with living mothers 
and living fathers into life table measures of survivorship in 
adulthood (l25 + n/l25 for women and l35 + n/l35 for men).

Once data on orphanhood have been collected in two 
successive inquiries, it is possible to derive synthetic cohort 
measures of parental survival for the intervening period and 
estimate life table measures for this period from them. In 
particular, if adults aged 15 to 49 have been asked about 
the survival of their parents, one can estimate survivorship 
from orphanhood in adulthood, which is to say for synthetic 
cohorts based at age 20. Synthetic cohort methods can 
provide estimates of adult mortality for a clearly defined 
and relatively up-to-date period. This is especially useful in 
countries experiencing generalized HIV epidemics where 
the level of adult mortality is likely to have changed abruptly 
in the last couple of decades. The approach also potentially 
reduces bias resulting from underreporting of orphanhood 
by respondents who were orphaned at a young age.

If a supplementary question has been asked in a single 
inquiry about when dead parents died, one can use this 
information to reconstruct the proportions of respondents 
with living mothers and fathers at earlier dates and analyse 
orphanhood in the intervening periods in the same way as 
data from multiple inquiries.

One advantage that orphanhood methods have over direct 

questions about deaths in households is that adult mortality 
can be estimated in this way in moderately-sized inquiries. 
In contrast, only censuses or unusually large surveys can 
yield direct estimates based on deaths in the year before the 
inquiry that are sufficiently precise to be useful. Moreover, 
orphanhood methods do not assume that the population is 
closed to migration. However, the results from them will 
not be representative for small states or sub-national areas 
in which a substantial proportion of the population are in-
migrants or have emigrated.

Data requirements
To estimate the mortality of adult women:
•	 The proportions of respondents whose mother is alive by 

five-year age group of respondent at two or more different 
dates. (Those who did not know or did not declare their 
mother’s survival status should be excluded from the 
calculations.)

•	 The number of births in the year before a demographic 
inquiry tabulated by five-year age group of women giving 
birth.

To estimate the mortality of adult men:
•	 The proportion of respondents whose father is alive by 

five-year age group of respondent at two or more different 
dates. (Those who did not know or did not declare their 
father’s survival status should be excluded from the 
calculations.)

•	 The number of births in the year before a demographic 
inquiry tabulated by five-year age group of the women 
giving birth.

•	 An estimate of the difference between the ages of men and 
women having children, such as the difference between 
the median ages of currently married men and women.
These tables should generally be produced separately for 
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male and female respondents and estimates made from both 
sets of proportions and for the two sexes combined.

The synthetic cohort method described here estimates 
adult mortality from orphanhood data supplied by adult 
respondents, which is to say those aged 15 or more years. 
While no data on younger age groups are required to 
produce the synthetic cohort estimates, if they were collected 
they should usually be entered into the spreadsheet so that 
they can be used to produce estimates by means of the basic 
orphanhood method.

If sample or design weights have been provided with the 
data, remember to apply them in the manner appropriate to 
your statistical software when deriving the tabulations used 
as inputs.

Important assumptions
An inherent limitation of the orphanhood method is that 
data on parents’ survival can only be collected from those 
of their offspring who are alive themselves. The survival of 
adults who have no living children is unrepresented in the 
reported proportions of parents alive. Moreover, parents 
with more than one surviving child are over-represented 
in comparison to those with exactly one surviving child in 
proportion to the number of their surviving children. Thus, 
the method only produces unbiased results if the mortality 
of parents is unrelated to how many of their children are alive 
at the time that the data are collected. In general though, the 
selection bias that arises from breaches in this assumption is 
small (Palloni, Massagli and Marcotte 1984). In populations 
affected by generalized HIV epidemics, however, it is likely 
to be more severe.

Preparatory work and preliminary 
investigations
Before starting the analysis, one should check how many 
respondents stated that they did not know whether their 
mother or, more commonly, father was alive or failed to 
answer the questions at all. The response rate on these ques-
tions is usually very high and one can simply exclude from 
the analysis those respondents who either answered ‘don’t 
know’ or did not answer the question. In effect, this amounts 
to assuming that the proportion of these respondents’ parents 
that have died is the same as for respondents that answered 
the question. However, a few surveys have collected suffi-
ciently incomplete data to suggest that non-response bias 
could be a substantial problem. For example, it is possible 

that most people who fail to answer the question have dead 
parents. If this is the case, such unreported orphans could 
represent a substantial proportion of all orphans, particularly 
in the younger age groups, producing a substantial down-
ward bias in the final estimates of mortality.

One useful check on the quality of the orphanhood data 
is to compare the responses of male and female respondents 
of the same age. One would not expect the proportion of 
parents that have died to differ significantly between men and 
women of the same age. If the proportions diverge among 
older respondents, this could reflect gender differences 
in patterns of age misreporting or could indicate that the 
gender that reports fewer dead parents (usually the men) is 
more likely to lose touch with their families and is assuming 
wrongly that some parents remain alive who have died.

When two or more sets of data on the survival of parents 
are available, one should usually estimate mortality from 
each set of data independently using the basic orphanhood 
method as well as produce estimates from synthetic cohort 
data on orphanhood in adulthood in order to compare the 
three sets of results. The accompanying Excel workbook (see 
website) produces both basic and synthetic cohort estimates.

Caveats and warnings
•	 The estimates derived from the orphanhood method 

are conditional survivorship probabilities, that is to say 
probabilities of survival across an interval in adulthood 
conditional on being alive at the start of the interval. To 
obtain a complete life table, estimates of survivorship 
from birth to adulthood must be calculated using another 
source of data on child mortality.

•	 In a number of applications in East Africa and elsewhere, 
the orphanhood method has yielded results that indicate 
implausibly rapid declines in mortality and gross 
inconsistencies between the estimates from successive 
enquiries. This appears to be due to ‘the adoption effect’, 
that is under-reporting of orphanhood among those whose 
parents die when they are very young (Blacker 1984; 
Blacker and Gapere 1988; Hill 1984; Timæus 1986). 
Children who are orphaned at a young age tend to be 
reared by other relatives and are often enumerated as their 
own children. This means they are enumerated as having 
a living parent, and can give rise to very low mortality 
estimates. Misreporting appears to be particularly 
common when the mother dies. As the respondents get 
older, the chance that their foster, adoptive or step-parent 
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has died, as well as their biological parent, increases. 
This implies that the bias is most pronounced for young 
children, whose substitute parent is very likely to be alive. 
Procedures for estimating adult mortality from synthetic 
cohort data on orphanhood reported by young adults 
were developed specifically to address this problem, but 
cannot completely eliminate the bias in the results in 
populations where orphanhood is severely underreported.

•	 Although estimates can be made using data on respondents 
aged in their forties, the parents of many of these 
respondents are elderly and have very high mortality. This 
means that the precision with which one can estimate 
mortality from parental survival data is inherently much 
lower than it is for younger respondents.

•	 Like all methods that involve the analysis of change 
between two independent inquiries, the synthetic cohort 
approach to the analysis of orphanhood data is vulnerable 
to bias resulting from differences in data quality between 
the two inquiries. If respondents were more likely to report 
dead parents as living in one of the inquiries than the 
other, the resulting bias will be magnified in the synthetic 
cohort estimates. Mortality will be overestimated if too 
few orphans were reported in the earlier inquiry and 
underestimated if too few orphans were reported in the 
later inquiry. In addition, estimates based on the change 
in the proportion of parents that are alive in between two 
surveys have larger sampling errors than the two sets of 
proportions from which they are calculated.

Application of method
Step 1: Calculate the mean ages of childbearing of 
women and men
To apply the orphanhood method, one requires an estimate 
of the average age at which the parents had children in order 
to control for variation in the age range over which they 
have been exposed to the risk of dying. Women’s mean age 
of childbearing is usually calculated from census or survey 
data on births in the last year by five-year age group at 
interview of the women giving birth. The measure is simply 
the average age of women giving birth calculated without 
adjusting for the age structure of the population using the 
following formula:
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In this equation, (x + 2) represents the mid-point of the age 
group of women with a half-year downward shift to allow for 
the fact that women giving birth in the year before interview 
did so 6 months ago, on average, and were 6 months younger 
at that time. This calculation can be done in the workbook 
(see website). If the data used to calculate fM  are tabulated 
by women’s age at giving birth, the mid-point of each age 
group would become x + 25.

There is no need to adjust the births data for reference-
period errors before calculating fM . Moreover, the mortality 
estimates are not very sensitive to bias in this indicator. 
However, if evidence exists that the age pattern of births has 
been distorted severely by women exaggerating their ages, 
the number of births by age could be recomputed from an 
adjusted age distribution and adjusted fertility distribution 
before calculating fM .

In principle, the mean age of motherhood should refer 
to the time at which the respondents were born, which may 
be any time between 5 and 45 years before the collection 
of the orphanhood data. An estimate based on fertility data 
collected in the first of the pair of inquiries that asked about 
orphanhood should be adequate in populations which at 
that time had yet to experience substantial fertility decline. If 
fertility is believed to have fallen and earlier census or survey 
data exist, fM  could also be calculated from the earlier 
data to determine if it has changed. If it has, then the best 
way of deciding on final values of fM  for the estimation 
of adult mortality will depend on what data are available 
and the pattern of change in fertility. One option might be 
to calculate fM  from data collected at about the time that 
fertility began to fall and use that value for age groups of 
respondents born then or earlier and to interpolate linearly 
between that value and the current one to estimate fM  for 
younger age groups of respondents.

The mean age at which men have children is usually 
estimated by adding an index of the difference in the ages 
of men and women bearing children to the mean age of 
childbearing of women:

m fM M d= + .

One estimate of this difference that can be readily calculated 
from census data is the difference between the median ages 
of currently married men and currently married women. It is 
more appropriate than the difference between the singulate 
mean ages at marriage of men and women in populations 
in which marital dissolution or polygynous marriage is 
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common. The median is used rather than the mean so that 
differential age exaggeration by older respondents, who 
are probably no longer bearing children anyway, does not 
distort the estimate.

This approach to the estimation of the mean age of men 
at the birth of their children assumes that the ages of the 
fathers of children born to unmarried women are the same, 
on average, as the ages of the fathers of children born to 
married women. They may not be and this could introduce 
a significant bias into the estimate of mM  in populations in 
which childbearing outside marriage is common. While it is 
difficult to think of a solution to this problem, fortunately 
the mortality estimates are not very sensitive to errors in the 
estimate of mM .

Step 2: Calculate the synthetic cohort measures of 
orphanhood in adulthood
The workbook (see website) contains separate sheets for the 
calculation of these proportions for adult women and for 
adult men. Either the number of respondents by five-year 
age group with living mothers and the number answering the 
question or the proportions with living mothers calculated 
from them should be entered into the maternal orphanhood 
sheet. Similarly, either the number of respondents by five-
year age group with living fathers and the number answering 
the question or the proportions with living fathers calculated 
from them should be entered into the paternal orphanhood 
sheet. For both the mothers and the fathers, the more recent 
set of results should be entered in the upper panel of the 
sheet and the more distant set in the lower panel. While 
the data can be for female respondents, male respondents, 
or respondents of both sexes, the two sets of results should 
usually be tabulated on the same basis.

The spreadsheet calculates the synthetic cohort measures of 
orphanhood by means of a ‘variable r’ method. The average 
proportions of respondents with living parents for the period 
between the two inquiries are multiplied by the exponential 
of the growth rates in those proportions during the period 
cumulated from age 20. This ‘removes’ the effect of popula-
tion growth, producing stationary proportions relative to the 
proportion with living parents at the base age of 20. These sta-
tionary proportions reflect the rate at which adults are being 
orphaned during the period between the two inquiries.

The average proportion of respondents with living 
mothers (or fathers) in an age group over the period between 
the two inquiries is calculated as

5 5 5( ) ( ) ( )x x xS t S t S t h= × +

where t indicates the first inquiry, t + h the second inquiry 
occurring h years later, and t  a measure applying to the 
intervening period. Having calculated these measures, the 
average proportion of the parents of individuals aged exactly 
20 that are alive during the period can be estimated as

5 15 5 20(20, ) ( ) ( )S t S t S t= × .

The growth rates in the proportions of parents that are alive 
by age group of respondent between the first and second 
inquiry are calculated as
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Then the synthetic cohort proportions that have living 
parents among those who had a living parent at age 20 can 
be calculated as
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where t indicates adjusted synthetic cohort (i.e. period) 
measures for time t .

Step 3a: Calculate the conditional life table survivorship 
ratios for women
The survivorship of women is estimated between a lower 
age of 45 and age 25 + n, where n is the upper limit of 
each successive age group of respondents. The following 
regression equation and the coefficients shown in Table 26.1 
are used:

20 45 5 5( ) ( ) ( ) ( ) (20, )f
n np a n b n M c n S S tτ− −= + + .

Table 26.1  Coefficients for the estimation of women’s survivorship 
from the proportions of adult respondents with living mothers among 
those with living mothers at age 20

n a(n) b(n) c(n)
25 –0.8623 0.00292 1.7861
30 –0.3822 0.00679 1.2062
35 –0.4355 0.01197 1.1310
40 –0.5995 0.01847 1.1419
45 –0.7984 0.02547 1.1866
50 –0.9360 0.03039 1.2226

Source: Timæus (1991) 
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For example, when n is 30, life table survivorship is esti-
mated over the ten-year age interval from exact age 45 to 
exact age 55 using data on survival of mothers supplied by 
respondents aged 25–29 years.

Step 3b: Calculate the conditional life table survivorship 
ratios for men
Each estimate of the survivorship of men is produced using 
data on two adjacent five-year age groups, not a single age 
group. Men’s survivorship is measured from age 55 to 35 + n, 
where n is the midpoint of the pair of age groups, using the 
following regression equation and the coefficients shown in 
Table 26.2:

20 55 5 5

5

( ) ( ) ( ) ( ) (20, )
( ) ( ) (20, ).

m
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n

p a n b n M c n S S t
d n S S t

τ
τ
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For example, when n is 40, life table survivorship is 
estimated over the 20-year age interval from exact age 55 to 
exact age 75 using the data on survival of fathers supplied by 
respondents in the two age groups 35–39 years and 40–44 
years.

Table 26.2  Coefficients for the estimation of men’s survivorship 
from the proportions of adult respondents with living fathers among 
those with living fathers at age 20

n a(n) b(n) c(n) d(n)
25 –0.0554 0.00757 0.0239 0.8080
30 –0.7539 0.01558 0.6452 0.6498
35 –1.0809 0.02273 0.9289 0.4807
40 –1.1726 0.02647 0.9381 0.4372

Source: Timæus (1991)

Step 4: Convert the survivorship ratios into estimates of 
the level of mortality
The series of conditional survivorship ratios, npb, obtained 
from different age groups of respondents all refer to the 
interval between the two surveys. They represent incomplete 
life tables with a base at age 45 for women and age 55 for 
men. The series will be to some extent erratic as a result of age 
reporting, sampling, and other errors. It can be smoothed by 
fitting a 2-parameter logit model life table to the ratios. The 
logits of the conditional survivorship ratios are calculated as
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The equivalent logits of the standard life table are
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The  and  parameters of the fitted model are the intercept 
and slope of a regression of the Yx values on s

xY . In principle, 
the estimates for older age groups are less vulnerable to 
sampling error than those on younger age groups as they are 
based on more parental deaths. However, these estimates can 
indicate lower mortality than the estimates for younger age 
groups, perhaps because the respondents are exaggerating 
their ages. Thus, one should exclude any estimates at either 
end of the series that are out of line with the others from the 
range of ages used to estimate  and .

Once one has calculated  and , smoothed estimates of 
conditional survivorship can be calculated as
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The smoothed estimates of conditional survivorship refer to 
a clearly defined period of time and depend only to a limited 
extent on assumptions made during the estimation process 
about the age pattern of mortality. They will not be distorted 
greatly in populations with unusual age patterns of mortality 
such as those experiencing generalized HIV epidemics. 
Thus, if possible, they should be used as they are in further 
analyses. Nevertheless, it is often necessary to convert the 
synthetic cohort estimates into a common index of mortality 
in order to compare those for men and women directly or to 
compare both series with estimates of mortality from other 
sources. This can be done by fitting a 1-parameter model life 
table to each conditional survivorship ratio and obtaining 
the desired index from the fitted model.

A wide range of indices have been used for this purpose, 
including the level parameters of various systems of model 
life tables, survivorship ratios, life expectancy at various ages 
between 5 and 30, and temporary life expectancy between 
ages 25 and 70, 45e25. Using the parameters of the models has 
the advantage of emphasizing that the full life table is being 
estimated by fitting a model, rather than measured directly. 
The measures of life expectancy summarize survivorship 
across adulthood as a whole, while using survivorship ratios 
or temporary life expectancies avoids extrapolation into 
old age from measures for younger adults. Increasingly, in 
recent years, the estimates have been presented in terms of 
the probability of dying between exact ages 15 and 60, 45q15, 
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as this measure has found favour with several international 
agencies as a summary indicator of the mortality of young 
and middle-aged adults.

In the applications of the orphanhood method presented 
here the survivorship ratios are converted into the  
parameter of a 1-parameter system of logit model life tables, 
and then into estimates of the conditional probability of 
dying across a wider range of ages. (Note that, even if the 
same standard is used and  is 1, the  parameter of a fitted 
model based at age 0 will not be the same as  in models 
that have been fitted to measures of conditional survivorship 
from age 45 or 55.)

The spreadsheet (see website) calculates conditional sur-
vivorship between exact ages 30 and 60, 30q30, exact ages 15 
and 60, 45q15, or exact ages 50 and 70, 20q50. The first two 
indices are useful for comparing the synthetic cohort esti-
mates with those from the basic orphanhood method and 
other adult mortality measures respectively; the third is most 
useful for comparing the estimates made from orphanhood 
in adulthood for men and women or for assessing the inter-
nal consistency of a series of such estimates without extrap-
olating from survivorship in middle age to younger adult 
ages. The parameters of the 1-parameter models are calcu-
lated from the estimates of n – 20pb as
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where the estimates of n – 20pb come from Step 2, with b = 45 
for the estimates of the survivorship of women and b = 55 
for those of the survivorship of men, and the s

xl  values come 
from a standard life table. Thus, one obtains a series of 
estimates of  corresponding to the measures of conditional 
survivorship made from data on the different age groups 
of respondents. Higher values of  correspond to higher 
mortality. Then, for each, summary measures such as 20q50, 
30q30 and 45q15 can be calculated as
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The spreadsheet (see website) can calculate these measures 
using either a standard from the General set of United 
Nations model life tables or one from any of the four 
families of Princeton model life tables. The standard life 
table should be chosen to have an age pattern of mortality 

within adulthood that resembles that of the population being 
studied. Another life tables can be used as a standard instead 
if there is reason to believe that it resembles more closely the 
pattern of adult mortality in the population being studied. 
The most suitable life table may not be from the family of 
models that best captures the relationship between child and 
adult mortality. If nothing is known about the age pattern of 
mortality in adulthood, use of the United Nations General 
or Princeton West models is recommended.

As the estimates all refer to the same period, it makes 
sense to produce the final estimate of survivorship for the 
period between the two inquiries by averaging a contiguous 
set of estimates that excludes any outlying values made from 
data on the youngest and oldest respondents. Such outliers 
can be identified in a plot of the logits of the conditional 
survivorship ratios against a standard series. If there is a clear 
upward or downward trend in  across the age groups in the 
fitted 1-parameter models, the mortality standard to which 
the estimates are being fitted may be inappropriate. The 
analysis should probably either adopt another standard or 
modify the rate at which mortality increases with age in the 
selected one by adjusting its  parameter.

Step 5: Calculate the time location of the estimates
Each survivorship ratio refers to the period between the 
dates to which the two sets of orphanhood data refer. One 
may wish to ascribe them to an exact date within this 
period, so that they can be plotted and compared with other 
estimates of adult mortality. If one assumes a constant rate 
of change in mortality, they can be thought of as referring 
to the geometric average of the dates of the two inquiries. 
The date of each inquiry can be calculated as the average 
of the dates on which the interviews took place or taken as 
the mid-point of the period of fieldwork if exact dates of 
interview are not available.

Worked example
This example, implemented in the workbook (see website), 
uses data on the survival of mothers and fathers collected in 
the 1989 and 1999 Censuses of Kenya.

Step 1: Calculate the mean ages of childbearing of 
women and men
For women the mean age of childbearing is a straightforward 
average of the ages of women giving birth and can either be 
calculated as such from individual-level data or estimated 
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approximately from a tabulation of births by five-year 
age group of mother. For this application it has been 
calculated using data from the first of the pair of censuses 
(see Table 26.3), although in Kenya one could also do so 
using data from previous censuses to check whether ages at 
childbearing have changed over time:

16 585 300 26.75
620 000

f , ,M
,

= = .

Table 26.3  Calculation of the mean age at childbearing, Kenya, 
1989 Census

Age group Births in the 
last year B(i )

Mid-point 
age N B(i )*N

15–19 73,600 17 1,251,200
20–24 193,400 22 4,254,800
25–29 170,220 27 4,595,940
30–34 95,180 32 3,045,760
35–39 56,340 37 2,084,580
40–44 23,240 42 976,080
45–49 8,020 47 376,940

TOTALS 620,000 16,585,300

The mean age of childbearing of men is calculated by adding 
the difference between the median ages of currently married 
men and women to the mean age of childbearing of women. 
It can be seen from Table 26.4 that the median age of 
currently married men falls between the mid-point of the 
age group 30–34 and the mid-point of the age group 35–39. 
By linear interpolation:

0.5 0.3886Median for men 32.5 5 36.52
0.5272 0.3886

−
= + × =

−

and

0 5 0 4234Median for women 27 5 5 30 31
0 5597 0 4234

. .. .
. .

−
= + × =

−
.

Then the estimated mean age of childbearing of men is

26.75 (36.52 30.31) 32.96m fM M d= + = + − = .

Step 2: Calculate the synthetic cohort measures of 
orphanhood in adulthood
Proportions of Kenyans with living mothers averaged across 
the period between the 1989 and 1999 Censuses of Kenya 
are shown in the fourth column of Table 26.5. They are the

Table 26.4  Ages of currently married men and women, Kenya, 
1989 Census

Age 
group

Married 
men

Married 
women

Cumulative 
proportion 

of men

Cumulative 
proportion 
of women

10–14 2,800 6,680 0.0010 0.0019
15–19 18,040 212,060 0.0071 0.0612
20–24 173,840 623,040 0.0664 0.2356
25–29 464,720 670,760 0.2250 0.4234
30–34 479,460 487,180 0.3886 0.5597
35–39 406,000 387,000 0.5272 0.6681
40–44 330,140 305,500 0.6398 0.7536
45–49 250,540 243,120 0.7253 0.8216
50–54 212,820 189,240 0.7979 0.8746
55–59 161,760 137,120 0.8531 0.9130
60–64 135,060 113,860 0.8992 0.9449
65–69 101,860 75,540 0.9340 0.9660
70–74 72,080 49,980 0.9586 0.9800
75–79 56,240 30,100 0.9778 0.9884
80+ 65,120 41,380 1.0000 1.0000

TOTAL 2,930,480 3,572,560

geometric averages of the proportions reported in the two 
censuses shown in the second and third columns of the 
table. For example, in the age group 25–29,

5 25( ) 0.8839 0.8771 0.8805S t = × = .

The proportion with living mothers at exact age 20 is 
calculated from these estimates for age groups 15–19 and 
20–24:

(20, ) 0.9446 0.9156 0.9300S t = × = .

Census day in 1999 was 24th August, while in 1989 it was 
25th October. Thus, the growth rate over the decade in the 
proportion of Kenyans with living mothers for the same age 
group is

5 25
ln(0.8771) ln(0.8839)( ) 0.00078

9.83
r t −

= = − .

For the first age group, the growth rate cumulated from age 
20 to 22.5 is simply

( )5 202.5 0.00170 2.5 0.00425r t = − × = − .



300  |  ADULT MORTALITY MULTIPLE CENSUS METHODS

For the second age group, the growth rate cumulated to age 
20 to 27.5 is

( ) ( )
20

5 5 25
20,5

5 2.5

5 0.00170 2.5 0.00078 0.01045

a
a

r t r t
=

+

= ×− + ×− = −

∑

while for the third age group it is

( ) ( )

( )

25
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5 2.5
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2.5 0.00018 0.01195

a
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r t r t
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+

= × − −
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∑

and so on.
The synthetic cohort proportions that have living 

mothers among those who had a living mother at age 20 in 
the seventh column of Table 26.5 are calculated from the 
averaged proportions and growth rates in the fourth and 
fifth columns. For example, for the 25–29 age group,

0.010455 ( ) 0.8805 0.9369
(20, ) 0.9300

xS
e

S
τ
τ

−= ⋅ = .

The calculations made in this step for the data on paternal 
orphanhood are identical and are shown in Table 26.6.

Step 3a: Calculate the conditional life table survivorship 
ratios of women
These survivorship ratios are shown in the eighth column of 
Table 26.5 and are calculated from the proportions in the 

seventh column using the regression coefficients shown in 
Table 26.1 and the estimate of fM  of 26.75 from Step 1. 
For example, for respondents aged 25–29,

10 45 0.3822 0.00679
26.75 1.2062 0.9369 0.9295

p = − +
× + × = .

Note that each life table measure is similar in value to the 
proportion from which it was calculated.

Step 3b: Calculate the conditional life table survivorship 
ratios of men
These survivorship ratios are shown in the eighth column of 
Table 26.6 and are calculated from the proportions in the 
seventh column using the regression coefficients shown in 
Table 26.2 and the estimate of mM  of 32.96 from Step 1. 
For example, for the final estimate in Table 26.6:

20 55 1.1726 0.02647 32.96 0.9381
0.6156 0.4372 0.4772 0.4860

p = − + × +
× + × = .

Step 4: Convert the survivorship ratios into estimates of 
the level of mortality
To smooth the series of estimates of conditional survivorship 
by fitting a 2-parameter logit model life table to them, one 
first calculates the logits of the ratios. For example, the 
estimate of 10p45 for women made from data on respondents 
aged 25–29 is

1 1 0.9295ln 1.290
2 0.9295xY − = = − 

 
.

Age 
group

Proportion 
alive 1989

5Sn – 5(t)

Proportion 
alive 1999
5Sn – 5(t + h)

Proportion 
alive

5Sn – 5(t )

Growth 
rate

Age
n

Proportion 
alive

5Sn – 5(t)

Estimated
l(25 + n)

l(45)

Smoothed
l(25 + n)

l(45)

Probability
of dying
(30q30)

15–19 0.9557 0.9336 0.9446
20–24 0.9233 0.9080 0.9156 –0.00170 25 0.9804 0.9669 0.9667 0.192
25–29 0.8839 0.8771 0.8805 –0.00078 30 0.9369 0.9295 0.9291 0.172
30–34 0.8229 0.8244 0.8236 0.00018 35 0.8751 0.8745 0.8804 0.167
35–39 0.7553 0.7691 0.7622 0.00184 40 0.8139 0.8240 0.8145 0.140
40–44 0.6258 0.6685 0.6468 0.00671 45 0.7057 0.7203 0.7244 0.140
45–49 0.5335 0.5653 0.5492 0.00589 50 0.6184 0.6329 0.6037 0.113

Table 26.5  Estimation of women’s survivorship in the interval 
between two inquiries, and corresponding estimates of  and 30q30, 
from maternal orphanhood in adulthood, Kenya, 1989–1999
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The equivalent value for the UN General model life table 
with e0 = 60 is

1 0.7887 0.7103ln 1.102
2 0.7103

s
xY − = = − 

 
.

Regressing the logits of the observed estimates of conditional 
survivorship on the standard logits, excluding the final 
point (based on respondents aged 45–49) which dips 
below the line, gives parameter estimates of  = – 0.3398 
and  = 0.8597. The fact that the estimate of  is less than 
1 indicates that the mortality of women in Kenya increases 
less steeply than in the standard across the age range 45 to 
75 years.

Having obtained  and , the smoothed conditional 
survivorship ratio for the second age group, for example, 
can be calculated as

( )( )10 45
1ˆ

1 exp 2 0.3398 0.8597 1.1016
0.9291.

p =
+ − + ×−

=

The full series of fitted survivorship ratios is shown in the 
ninth column of Table 26.5 for women and of Table 26.6 
for men. Taking the estimates of 5p45 and 25p45 from 
Table 26.5, the conditional probability of dying between 
exact ages 50 and 70 in the fitted 2-parameter model is 
1 – 0.7244/0.9667 = 0.251.

Estimates of 30q30, the probability of dying between exact 
ages 30 and 60, calculated by fitting 1-parameter models 
to the estimated survivorship ratios, are shown in rightmost 
columns of Table 26.5 and Table 26.6. For example,  is 
calculated from the estimate of 10p45 for women as

0.9295 1
1 0.7103 0.7887ln 1 0.228
2 1 0.9295

α

 − 
= − + = − − 

 

.

Having calculated , then the corresponding measure of 
30q30 is ( )

( )

2 0.228 0.8655

30 30 2 0.228 0.3064

11 0.172
1

eq
e

− −

− −

+
= − =

+
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Step 5: Calculate the time location of the estimates
The synthetic cohort estimates are measures of adult 
mortality during the period between the two inquiries. 
Their time location can be ascribed to the geometric average 
of the dates of field work of the two inquiries. Thus, in this 
application to the 1989 and 1999 Censuses of Kenya:

1989.81 1999.64 1994.72T = × = .

Diagnostics, analysis and interpretation
Checks and validation
The number of respondents who stated that they did not 
know whether their mother or father is alive or who did not 
answer the questions at all should be checked before they are 
dropped from the analysis. If many of the respondents failed 
to respond to these questions, the data supplied by those 
respondents who did answer them may not be representative 
of the population as a whole. Moreover, a high level of 
non-response may indicate that either the field staff or 
the respondents experienced difficulty with the questions. 
Thus, even when answers were supplied they may be rather 

Age 
group

Proportion 
alive 1989

5Sn – 5(t)

Proportion 
alive 1999
5Sn – 5(t + h)

Proportion 
alive

5Sn – 5(t )

Growth 
rate

Age
n

Proportion 
alive

5Sn – 5(t)

Estimated
l(35 + n)

l(55)

Smoothed
l(35 + n)

l(55)

Probability
of dying
(30q30)

15–19 0.8670 0.8368 0.8518 

20–24 0.7971 0.7730 0.7849 –0.00312 25 0.9525 0.9052 0.9045 0.259 
25–29 0.7136 0.7055 0.7096 –0.00117 30 0.8519 0.7816 0.7849 0.257 
30–34 0.6071 0.6074 0.6073 0.00004 35 0.7270 0.6395 0.6370 0.244 
35–39 0.4972 0.5198 0.5084 0.00453 40 0.6156 0.4860 0.4678 0.225 
40–44 0.3729 0.3953 0.3839 0.00592 0.4772 

Table 26.6  Estimation of men’s survivorship in the interval 
between two inquiries, and corresponding estimates of  and 30q30, 
from paternal orphanhood in adulthood, Kenya, 1989–1999
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unreliable. If a high level of item non-response exists, it can 
be illuminating to determine whether it is concentrated 
among a minority of field staff or certain type of respondent.

If information about the survival of mothers and fathers 
has been collected from both male and female respondents in 
a census or a large-scale survey with small sampling errors, 
it is possible to tabulate the proportions of mothers and 
fathers alive separately for respondents of each sex in order to 
compare the consistency of their reports. While consistency of 
reporting does not guarantee accuracy, statistically significant 
differences between the proportions obtained from male or 
female respondents imply that at least one sex, and possibly 
both of them, are answering the questions inaccurately.

It is fairly common to find that women report lower 
proportions of living parents than men. Some analysts 
believe that this is because women stay in closer contact with 
their parents than men and that some men are stating that 
their parents are alive because they do not know that they 
have in fact died. If correct, this would imply that the data 
supplied by women are more accurate. However, no strong 
evidence exists to support this interpretation and other errors, 
such as differential age misreporting by male and female 
respondents, may also produce inconsistencies between the 
proportions reported by men and women. Because synthetic 
cohort estimates are calculated, in essence, from the first 
differences between two sets of proportions, they have larger 
sampling errors than other orphanhood-based estimates of 
mortality. Thus, especially if the data come from surveys of 
a few thousand households, it is advisable to base the final 
estimates of adult mortality on the combined responses both 
sexes unless clear evidence exists that one should focus on 
the data supplied by female respondents.

Interpretation
The results of the example analysis of the orphanhood data 
from the 1989 and 1999 Censuses of Kenya are portrayed 
graphically in Figure 26.1. According to the 1989 Census 
data on orphanhood, adult mortality in Kenya was 
declining slowly in the late 1970s and early 1980s. The level 
of mortality was fairly low and a large differential existed 
between the mortality of men and women. By contrast, the 
1999 Census data suggest that mortality rose steadily for 
both men and women to a considerably higher level between 
the late-1980s and mid-1990s.

One reassuring feature of these results is that the 
mortality estimates for 1985–1986 from the two censuses 

are consistent. Those from the 1989 Census (the most 
recent points on the dotted lines) are based on reports 
about the survival of the parents of respondents who are still 
children. Those for only slightly later made from the 1989 
Census (the earliest points on the solid lines) are made from 
the reports of respondents who were aged in their thirties 
in 1999. While such consistency between estimates made 
from the reports of respondents of different ages in different 
inquiries does not guarantee their accuracy, it is suggestive of 
it and rules out the presence of certain (but not all possible) 
errors, including bias resulting from the adoption effect. 
This effect is most severe for estimates made from data on 
children because, the younger a child is when its parent dies, 
the more likely it is that a question about whether the parent 
is alive will be answered with reference to an adoptive, foster, 
or step parent who has reared them. As the respondents get 
older, these misreported cases become proportionately less 
important compared with the rapidly increasing number of 
parental deaths that occur as both the respondents and their 
parents get older. Thus, if the adoption effect was a problem 
in Kenya one would expect the 1989 Census estimates of 
adult mortality in the mid-1980s to be lower than the 1999 
Census estimates for the same years.

If the mortality estimates obtained from younger 
respondents by the basic orphanhood method were biased 
downward, one would expect the synthetic cohort estimates 
of mortality derived from orphanhood data supplied by 
young adults to be higher than those from the basic method 
for the same dates. In Kenya, they are not – they are lower.

This pattern of synthetic data on young adults yielding 
lower estimates than lifetime data on children is unusual. It 
probably reflects the growing importance of AIDS mortality 
in Kenya during the course of the 1990s. The synthetic 
cohort estimates are based mainly on the experience of 
parents aged 50 years of more, who have not been affected 
greatly by the AIDS epidemic. Thus, using standard model 
life tables to determine 30q30 from these data produces 
underestimates because mortality at ages 30 to 50 in the 
fitted models is lower than in Kenya.

In contrast, the parents of the young respondents, whose 
reports are the basis for the most up-to-date estimates 
obtained from the basic orphanhood method, are largely in 
their 30s and 40s. AIDS mortality peaks in this age range. 
Thus, using standard model life tables to determine 30q30 
from these data produces overestimates because mortality at 
ages 50 to 60 in the fitted models is higher than in Kenya.
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The synthetic cohort estimates provide support for this 
interpretation. In this application, the conditional prob-
ability of dying between ages 30 and 60 declines as the age 
group of the respondents increases for both men and women 
(see Table 26.5 and Table 26.6). This suggests that mortality 
is relatively high at younger ages within the age range 45 to 
75 years and relatively low in late middle age in Kenya com-
pared with United Nations’ General family of model life 
tables. This is also suggestive of high AIDS mortality among 
younger adults. The actual value of 30q30 in the mid-1990s 
probably falls somewhere between the estimates produced 
by the two variants of the orphanhood method. Adopting a 
standard age pattern of mortality that increases more slowly 
with age, by setting the  parameter of the standard life table 
to 0.7 and recalculating , produces an internally more con-
sistent set of indices for both of the sexes. It also reduces 
the inconsistencies between the synthetic cohort estimates 
and the most up-to-date estimates obtained from the 1999 
Census data using the basic orphanhood method. Thus, the 
probability of dying between ages 30 and 60 in Kenya in the 

mid-1990s, conditional on surviving to age 30, was prob-
ably about 20 per cent for women and 30 per cent for men.

Figure 26.2 presents a second application of the synthetic 
cohort approach to analysing two sets of orphanhood data 
collected in successive inquiries. It analyses data from the 
1986 and 1999 Censuses of the Solomon Islands. In this 
application, the statistic plotted is the probability of dying 
between ages 15 and 60 conditional on being alive at age 
15 (45q15). One immediately obvious contrast between 
these series of estimates and those for Kenya and the Arab 
countries for which results are presented in the discussion 
of the basic orphanhood method is that they suggest that 
gender inequalities in adult mortality in the Solomon 
Islands are small.

This application of the estimation method provides clear 
evidence of problems with the orphanhood data collected in 
the 1986 Census. First, the estimates suggest that mortality 
was declining very rapidly but the most recent of the earlier 
series of estimates, based on data on children, indicate 
substantially lower mortality than the estimates for a couple 

Figure 26.1  Trends in the conditional probability of dying 
between exact ages 30 and 60 estimated from orphanhood, Kenya, 
1989 and 1999 Censuses
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of years later that were made using data collected from older 
respondents in the 1989 Census. Inconsistencies of this sort 
usually indicate that the more recent estimates from the first 
of the censuses are too low because orphanhood of children 
is being underreported due to the adoption effect. Because 
the tendency to underreport in this way may be an enduring 
feature of the culture of a population, such inconsistencies 
also cast doubt on the most recent estimates made from data 
collected in the later census. The second problem with the 
estimates from the 1986 Census of the Solomon Islands is 
that they suggest that women have higher adult mortality 
than men. This is very uncommon.

The estimates made for the early 1990s from synthetic 
cohort data on orphanhood in early adulthood support 
the suggestion that the lifetime estimates calculated from 
orphanhood data on children collected in 1999 are also 
too low. Because they are based exclusively on the reports 
of adults the synthetic cohort estimates are probably the 
most reliable estimates presented in Figure 26.2. Thus, it 
can be tentatively concluded that the probability of dying 

between ages 15 and 60 in the Solomon Islands fell from 
about 30 per cent to about 17.5 per cent in the two decades 
starting in the early 1970s.

Detailed description of method
Introduction
Simple, robust methods for estimating mortality from cohort 
data on orphanhood collected in a single inquiry were first 
published in Brass and Hill (1973). Zlotnik and Hill (1981) 
were the first to point out that, once the question ‘Is your 
mother alive?’ or ‘Is your father alive?’ has been asked in 
two successive inquiries in the same population, it becomes 
possible to calculate synthetic cohort measures of parental 
survival from the two sets of answers that reflect adult 
mortality in the intervening period. Because these estimates 
are made from changes in parental survival between the 
two inquiries, they are vulnerable to differential reporting 
and sampling errors. The time reference of the measures 
is usually more recent, however, than that of any of the 
estimates based on respondents’ lifetime experience.

Figure 26.2  Trends in the probability of surviving from exact age 
15 to 60 estimated from orphanhood, Solomon Islands, 1986 and 
1999 Censuses
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Synthetic cohort data also have another advantage: 
if deaths occurring during the period between the two 
inquiries are reported fully, omission of more distant deaths 
will have no impact on the results. Thus, synthetic cohort 
data on the survival of parents are potentially less vulnerable 
than lifetime data to the so-called ‘adoption effect’, that 
is underreporting of orphanhood by respondents whose 
parents died when the respondents were still young children. 
This is important because the adoption effect is the major 
bias affecting the orphanhood method, explaining the 
implausible results and inconsistencies between successive 
surveys found in a number of applications of this method.

The most straightforward way of purging the reports 
of this bias is to analyse only the synthetic cohort data on 
adults (Timæus 1991). One can do this by constructing 
a synthetic cohort, based at 20 years of age, from data on 
parental survival at two dates. This cohort indicates the 
proportion of the adult population whose mothers or fathers 
would remain alive, at current levels of mortality, among 
those who, at exact age 20, had a living mother or father. 
Such a synthetic cohort can be constructed solely from the 
relatively reliable data supplied by young adults.

Timæus (1991) proposes basing the cohort at 20 years 
for two reasons. First, this choice minimizes the possibility 
of underestimating orphanhood at the base age and 
consequently overestimating subsequent orphanhood and 
adult mortality. Second, because information on two age 
groups is needed to estimate parental survival at the exact 
age dividing the groups, this approach makes it possible to 
apply the method to data collected in surveys in which only 
women aged 15 to 49 are asked about orphanhood.

The generalization to all populations of the relationships 
between age structure, increase, and mortality stated by 
stable population theory (Preston and Coale 1982) provides 
a convenient way of constructing such synthetic cohorts. 
Stationary synthetic cohort measures of parental survival 
can be obtained by adjusting the reported proportions with 
living parents using the age-specific growth rates in these 
proportions to remove the impact of past trends in mortality. 
When the data come from two inquiries, adjustment using 
age-specific rates of increase in parental survival has the 
advantage over methods based on chaining cohort changes 
of being easy to apply to an interval between the inquiries of 
other than five and ten years.

Mathematical exposition
Preston and Coale (1982) show that in any closed population 
defined by age,
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where N(a,t) is the number of individuals aged a at time 
t and μ(z,t) and r(z,t) are the force of mortality and rate 
of growth respectively at age z and time t. Attrition of the 
population with living mothers or living fathers, denoted 
NO, can be decomposed into the mortality of the parents 
and the mortality of the population itself (Preston and Chen 
1984; Timæus 1986):

0 0 0

( , ) ( , ) ( , )

(0, ) ( , )

a a a
NOz t dz z t dz r z t dz

NO t NO a t e e e
µ π∫ ∫ ∫

= ⋅ ⋅ ⋅

where π(z,t) represents the instantaneous rate of orphanhood, 
and rNO(z,t) the rate of growth of the population with living 
parents, at age z and time t. Assuming that orphans and 
the rest of the population have identical mortality and using 
the fact that N(0,t) º NO(0,t), division of the expression for 
non-orphans by that for the total population produces
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Taken as a whole, the left-hand term represents the stationary 
probability of an individual aged a having a living mother 
or father, denoted S(a,t), whereas NO(a,t)/N(a,t) equals the 
equivalent unadjusted proportion, S(a,t). With survey data, 
it is more convenient to work with the rate of increase in 
the proportion of the population with living parents, r s(z,t), 
than with its equivalent, rNO(z,t) – r(z,t), the difference 
between the rates of increase for the non-orphaned and the 
total populations.

The population above any given age can be treated as 
self-contained and the relationship between age structure, 
increase, and mortality stated in Equation 1 will continue to 
hold for such populations. Thus, using the notation already 
established,
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for a > 20. When both sides are divided by S(20,t) this 
becomes
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In discrete form, for age groups x to x + 5,
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Implementation of the method
In order to simplify the estimation of life table measures of 
mortality from these proportions, Timæus (1991) developed 
regression models for both men’s and women’s mortality 
estimating the coefficients from data on parental survival in 
the same set of simulated populations used to estimate those 
for the basic orphanhood method (Timæus 1992).

The proportion of individuals aged a that have living 
mothers, S(a), can be calculated as the average of the 
probabilities of surviving among mothers who gave birth at 
each age y, weighting by the proportion of births that occur 
at y (Brass and Hill 1973),
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where integration is over all ages at child bearing s to . 
Dividing S(a) by S(20) for a >20, the denominators cancel. 
Thus, the proportion of a five-year age group with living 
mothers among those who had a living mother at exact age 
20 is
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for x ≥ 20. The equivalent proportion in each age group with 
living fathers is
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where f (y) represents the age-specific fertility schedule, and 
l(a) the life table survivorship, of men rather than of women 
and the ages between which childbearing occurs s and  are 
also those of men.

Equations 3 and 4 can be evaluated numerically using 
model life tables and fertility schedules and different 
age structures. Then a regression model that predicts life 
table survivorship can be fitted to these simulated data on 
parental survival. The estimation equation used for maternal 
orphanhood after age 20 is analogous to those proposed for 
orphanhood since birth (Timæus 1991, 1992). It is based 
on the observation that the proportion of respondents 
with living mothers equals a life table survivorship ratio,
( ) / ( )l B N l B+ , where N is the age of the respondents and 

B lies close to the mean age at childbearing, but also depends 
on N (Brass and Hill 1973). For practical applications, 
however, it is more convenient to adjust the proportions 
slightly on the basis of the mean age at childbearing and to 
estimate survivorship for a rounded base age, b, close to B, 
and a duration of exposure, n, which is a multiple of five 
years. Moreover, for orphanhood after age 20 years, exposure 
starts 20 years after B. Thus, survivorship is estimated from 
a base age of 45 years and the equation used to make the 
estimates takes the form:

20 45 5 5( ) ( ) ( ) ( ) (20, )f
n np a n b n M c n S S tτ− −= + + .

The equivalent equation sometimes gives poor results for 
men. More accurate estimates can be obtained if informa-
tion on the survival of fathers in two adjoining age groups 
is used to infer mortality. If age patterns of mortality and 
childbearing differ from the average patterns reflected in 
the regression coefficients, the proportions of respondents 
with a living father in the upper age group and in the lower 
age group are shifted in compensating directions in com-
parison to the proportion at the age dividing the two groups 
(Timæus 1992). If one estimates life table measures from 
data on two age groups for a duration of exposure equal to 
their midpoint, one reduces the sensitivity of the results to 
variation in the slope of the relationship between parental 
survival and life table survivorship. The mean age of child-
bearing of men in developing countries averages a little less 
than 35 years. Thus, survivorship ratios can be estimated 
from orphanhood after age 20 by using a base age of 55 
years and a model of the form:
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The coefficients for the different age groups defined by n are 
presented in Table 26.1 and Table 26.2.

Extensions of the method
Chackiel and Orellana (1985) point out that, in addition 
to analysing orphanhood data from two inquiries using 
methods for synthetic cohorts, one can collect data in 
a single inquiry that can be used to produce up-to-date 
estimates in the same way. What is required in addition to 
the usual items about parental survival is information on the 
dates when parents died. For example, the inquiry might 
ask about the year and month when the parent died or how 
many years ago they died. If the dates when parents died 
are reported with reasonable accuracy, this information can 
be used to reconstruct the proportion of respondents who 
had living parents five and ten years earlier. From these 
successive cross-sections, one can construct synthetic cohort 

measures of parental survival that are formally identical to 
those generated from data collected in a series of separate 
inquiries. Thus, they can be analysed using the procedure 
for estimating mortality from orphanhood in adulthood 
that is described here with reference to data from multiple 
inquiries.

Rather few inquiries have tried to collect information 
on when parents died. In some of them the quality of 
the responses has been very poor, but in other inquiries 
the reported dates of occurrence of deaths in the previous 
decade or so, which are the deaths that are of most analytic 
interest, seem to have been quite well reported.

An alternative way of distinguishing between more 
recent and more distant death of parents that may yield 
better quality data is to ask whether parents died before 
or after some other important demographic event in the 
respondents’ past, such as getting married or becoming a 
parent. Methods for making estimates of mortality from 
data of this type are described alongside other methods for 
the analysis of orphanhood data from a single inquiry.

Further reading and references
The basic orphanhood method is discussed in all the classic 
manuals on indirect estimation (Sloggett, Brass, Eldridge 
et al. 1994; UN Population Division 1983) but, with the 
exception of the United Nations manual on estimating adult 
mortality (United Nations Population Division 2002), these 
manuals give emphasis to the older variant of the method 
that uses weighting factors to produce life table indices, 
rather than the regression-based method normally used 
today. Although regression-based methods for women had 
been proposed previously (Hill and Trussell 1977; Palloni 
and Heligman 1985), regression methods for estimating 
men’s mortality were first developed by Timæus (1992). His 
article also surveys earlier contributions to the literature and 
discusses the theoretical basis of the method.

Methods for constructing parental survival data for 
synthetic cohorts and estimating adult mortality from them 
were first proposed in the 1980s (Chackiel and Orellana 
1985; Timæus 1986; UN Population Division 1983; 
Zlotnik and Hill 1981). The version of this approach that 
focuses on orphanhood after age 20 and is described here 
was first proposed by Timæus (1991).
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Chapter 27  Estimation of adult mortality 
from sibling histories

Ian M Timæus

Description of method
This method calculates adult mortality directly from data 
supplied by adults on their siblings (that is brothers and 
sisters). It can only be applied when an inquiry has collected 
full sibling histories. Such histories ask each respondent 
for the name, sex, age, survival status and, if dead, age at 
and year of death of each of their siblings born to the same 
mother. Information on brothers is used to estimate the 
mortality of men and information on sisters to estimate 
the mortality of women. Many surveys only collect sibling 
histories from women, but sibling histories collected from 
male respondents can be analysed using exactly the same 
methods. As respondents and their siblings are about the 
same age, on average, sibling histories can be used to measure 
mortality over approximately the same range of ages as the 
ages of respondents that the histories are collected from.

Collecting sibling histories is a complex process that 
requires careful training and supervision of field staff to be 
executed correctly. It is not an appropriate methodology to 
use in a census. Many Demographic and Health Surveys 
(DHS) collect sibling histories (referred to by the DHS 
as the ‘Maternal Mortality Module’). While most of these 
surveys have only collected histories from women aged 15 
to 49, as it is this group of women who complete a detailed 
individual interview, some DHS have collected sibling 
histories from men as well.

One advantage that sibling methods have over questions 
about household deaths is that only censuses or unusually 
large surveys can capture information on enough deaths in 
households in the year before the inquiry to yield mortality 
estimates that are sufficiently precise to be useful. Because 
respondents report on several siblings, on average, and 
one can calculate rates based on several years of exposure, 
estimates can be made from sibling history data in smaller 

inquiries. Nevertheless, all methods for the estimation of 
adult mortality require data on several thousand households. 
Another advantage of the method is that the estimation 
procedure makes few assumptions and, in particular, does 
not assume that the population being studied is closed to 
migration. However, the results from the method will not be 
representative for small states or sub-national areas in which 
a substantial proportion of the population are in-migrants 
or have emigrated.

Background
The initial methods developed for estimating mortality 
from information on the survival of siblings were indirect 
methods based on the idea that the average age of the 
siblings of respondents of any age is close to the age of the 
respondents. The proportion of a respondent’s siblings who 
are still alive is, therefore, a good estimator of life table 
survivorship to the age of the respondent (Hill and Trussell 
1977; UN Population Division 1983). Unfortunately, field 
experience of this approach demonstrated that the quality of 
the data collected on siblings was often low because siblings 
who died before or shortly after the respondent’s own birth 
were often omitted by respondents, who may not know 
about them at all (Blacker and Brass 1983; Zaba 1986).

Interest in estimating mortality from data on siblings 
was revived by the development of the sisterhood method 
for measuring maternal mortality (Graham, Brass and 
Snow 1989). This requires data on how many sisters of the 
respondent survived to the age of 15, how many of them 
died thereafter, and whether sisters who died were pregnant 
at the time of death or had been pregnant during the 6 to 
8 weeks before death. Limiting the consideration of siblings 
to only those who survived to age 15 years excludes siblings 
who died while still young and, therefore, may have been 
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unknown to or forgotten by the respondent. The responses 
supplied to the first two of these questions by respondents 
in each five-year age group allow one to calculate the 
proportions still alive of sisters who survived to age 15. The 
indirect adult sibling method was subsequently developed 
so that the all-cause mortality of adult women could be 
estimated from these proportions still alive. Comparable 
data on respondents’ brothers can be used to estimate the 
mortality of men.

The method for estimating adult mortality by calculating 
life tables directly from full sibling histories collected from 
adult respondents was pioneered by the Demographic and 
Health Surveys programme based on this earlier research 
(Rutenberg and Sullivan 1991). It is more ambitious as to 
how much information it collects from the respondents and 
makes more demands on them and the field staff conducting 
the interviews. However, by replacing indirect estimation 
based on models of demographic relationships with the 
direct measurement of adult death rates, it reduces the 
number of assumptions involved in producing the estimates 
and, more importantly, allows one to separate deaths in the 
recent past from more distant ones, which may be reported 
on less accurately.

Data requirements and assumptions
Tabulations of data required
The calculation of mortality rates directly from sibling 
history data involves much the same steps and decisions as 
the more familiar process of calculating child mortality rates 
from birth history data – indeed, the history of a respondent’s 
full set of siblings, including the respondent, is the mother’s 
birth history. However, in comparison with mortality 
estimates made for children, estimates for adults have very 
large sampling errors. This reflects the facts that death rates 
are very much lower in adulthood than childhood and that, 
in a growing population, the number of siblings exposed to 
risk is small relative to the number of children reported on 
by mothers. In any household survey, therefore, far fewer 
sibling deaths than child deaths will be reported.

The calculation of cohort measures from sibling history 
data has little to recommend it either analytically or 
computationally, particularly given the ease with which 
modern survey analysis software can deal with the calculation 
of exposure times. Thus, this document focuses on the 
calculation of age-period death rates from sibling history 
data and on deriving other mortality indicators from them.

To calculate women’s mortality one needs to tabulate:
•	 The number of deaths of respondents’ sisters by time 

period and five-year age group of the sisters at the time 
of their death.

•	 The number of sister-years of exposure by time period and 
five-year age group of the sister at the time of exposure.
To calculate men’s mortality one needs to tabulate:

•	 The number of deaths of respondents’ brothers by time 
period and five-year age group of the brothers at the time 
of their death.

•	 The number of brother-years of exposure by time period 
and five-year age group of the brother at the time of 
exposure.
The calculations of exposure time should usually exclude 

the respondent himself or herself (and do so by definition if 
one is analysing sibling histories for the opposite sex). This 
requirement is explained in the discussion of the important 
assumptions made by the method.

Tables on respondents’ own-sex siblings (i.e. women’s 
sisters and men’s brothers) should be weighted only by any 
sample or design weights provided with the data. Tables on 
respondents’ opposite sex siblings (i.e. women’s brothers and 
men’s sisters) should be further weighted by the inverse of 
the number of surviving own-sex siblings of the individual 
respondent making the reports. This requirement is also 
explained in the discussion of the important assumptions 
made by the method.

The time period over which exposure is measured can 
be defined either in terms of calendar dates or relative to 
the date when the respondent was interviewed. The latter 
approach makes efficient use of the data as it ensures that the 
experience of respondents’ siblings during the incomplete 
years in which the interviews occur are included in the 
analysis. Calculating death rates for particular calendar 
years, however, has the advantage of yielding precisely time-
referenced results that can be compared with those from 
other sources and is to be preferred. This approach usually 
entails discarding the data on the year in which the histories 
are collected but, if the majority of interviews took place late 
in that year, one might opt to include it in the most recent 
period.

The workbook (see website) is set up to calculate death 
rates for two successive periods prior to the collection 
of the data. Many DHS survey reports present rates for 
the seven-year period preceding their collection (that is, 
0–6 completed years) and one way to use the spreadsheet 
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would be to calculate rates for the three years prior to the 
inquiry and the four years prior to that. Alternately, death 
rates could be calculated for two four-year periods and for 
an eight-year period preceding the collection of the sibling 
histories. Experience suggests that the completeness of the 
reporting of dead siblings and accuracy with which their ages 
and dates of death are recalled often deteriorate rapidly for 
events occurring longer ago than that. Moreover, working 
with four-year periods rather than five-year ones minimizes 
errors that result from rounding of dates of death to five and 
ten years before the collection of the data.

The age groups of siblings for which the data are tabulated 
should broadly correspond to the ages of the respondents 
that the data were collected from. For example, in order 
to measure mortality between ages 15 and 60, one should 
ideally collect sibling histories from respondents aged 15 
to 59. If data are only collected from adults, few of them 
have siblings that are still young children and, even if reports 
on children are not biased by failure to report some dead 
siblings, the estimates are likely to have large sampling errors 
and will not be representative of all young children. Thus, 
for DHS and other surveys that collect sibling histories from 
respondents aged 15 to 49, the preferred summary index of 
mortality is 35q15, the probability that someone aged 15 dies 
before their 50th birthday.

Although the conditional probability of dying between 
ages 15 and 60 (45q15) is widely used by international 
agencies and other organizations as their preferred summary 
index of adult mortality, the number of deaths in the 55–59 
year age group reported by respondents aged 15 to 49 will 
be small relative to those reported for younger age groups. 
Thus, rather than calculating 45q15 directly, it is better to do 
so by fitting a model life table to the estimates for ages 15 
to 54 and extrapolating in this model to obtain mortality in 
the final five-year age group. This approach is implemented 
in the workbook (see website).

To eliminate ambiguities related to polygynous marriage 
and to remarriage, interviewers in most inquiries are 
instructed that ‘siblings’ means children born to the same 
mother. Whether or not this has been done, the reports 
should usually be accepted as they are. So long as respondents 
have the same group of relatives in mind when they are 
listing dead siblings as when they are listing those who are 
still alive, it is immaterial for the purpose of estimating 
mortality exactly who the parents of the siblings are.

If sibling histories have been collected from both men 

and women, their responses should usually be tabulated 
separately so that the two sets of data can be weighted 
appropriately and checked against each other.

Important assumptions
An inherent limitation of sibling-based methods for 
measuring adult mortality is that they underestimate 
mortality insofar as mortality clusters within sibships (i.e. 
sets of brothers and/or sisters born to the same mother). 
Clustering occurs whenever deaths are more concentrated 
in a small proportion of sibships than would be expected 
by chance and results from between sibship heterogeneity 
in individuals’ risk of dying (Zaba and David 1996). It 
causes downward bias in the mortality estimates simply 
because fewer members of a high mortality sibship than a 
low mortality sibship of the same size remain alive to answer 
questions about their siblings. It is impossible to correct 
fully for this because, at the extreme, sets of siblings whose 
members have all died are not reported on at all. Although 
one can assume something about them, there is no way of 
determining empirically from data collected retrospectively 
how many of these sibships existed or what their sizes were.

Estimates of the age pattern and trend in mortality will 
be biased if the extent to which mortality clusters within 
sibships varies with age. For example, if characteristics 
shared by sibs (e.g. genetic factors, early-life experiences, 
socio-economic status, life styles, and location) strongly 
influence the mortality of middle-aged adults, whereas 
mortality before age 40 has a large random component, 
estimates for older adults will underestimate mortality by 
more than those for younger adults, producing a spurious 
impression of mortality increase over time.

The issue of bias related to multiple reporting of siblings 
has received substantial attention in the literature. The 
problem exists in survey as well as census data because the 
more times an individual would be reported in a census, 
the more likely they are to be have a sibling who reports 
on them included in a probability sample.1 Moreover, even 
in surveys, potential exists for multiple responses about the 

1	 Note that the issue of calculating the sampling error of the 
mortality estimates correctly in surveys in which some 
individuals are reported on more than once and mortality 
is clustered at the level of the sibship, is distinct from the 
issue being discussed here, which is that of bias in the central 
estimate.
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same individual. For example, if two daughters of the same 
mother are interviewed in the same household, there will be 
multiple reports about other members of the sibship. The 
standard approach to analysis used, for example, in DHS 
reports is based on the events and exposure time of reported 
siblings, leaving out the exposure time of the (surviving) 
respondent herself. Events and exposure time are weighted 
only by the respondent’s sample weight, not taking into 
account numbers of surviving potential respondents in the 
sibship.

Trussell and Rodriguez (1990) demonstrate mathemati-
cally that for groups of sibships with an identical underlying 
risk of dying, this standard approach yields unbiased esti-
mates of mortality. In effect, the reduction in the number 
of deaths reported in the numerator that occurs because 
dead people cannot report on one another and the exclu-
sion of the exposure time of the living respondents from the 
denominator offset each other precisely to give the correct 
mortality rates for the sibships as a group.

The issue of the biases that could result from differential 
mortality by sibship size is bound up with the issue of 
multiple-reporting bias. It has attracted a lot of research 
interest because, unlike other factors that affect risk within 
sibships classified by sex and age of the respondent, each 
respondent’s sibship size is known. If mortality does not 
vary with sibship size, the standard estimates are the same 
for every size of sibship, including one-person sibships 
that are excluded from the analysis because the respondent 
has nobody to report on, as well as for the population as a 
whole. Even if mortality varies by sibship size, the standard 
estimates remain unbiased for each sibship size, as pointed 
out by Masquelier (2013). To obtain mortality estimates for 
the population though, one must reweight the estimates for 
sibships of different sizes by the prevalence of sibships of 
that size in the population. When respondents are reporting 
on their own sex, one can achieve this by dividing the 
proportion of respondents from surviving sibships of each 
size by the estimated probability of surviving from the age 
at which siblings are counted as entering exposure to risk to 
the current age group of the respondents across all sibships 
of the same size. To do this for single-person sibships, 
their mortality has to be estimated by extrapolation from 
mortality in larger sibships.

Gakidou and King (2006) argue that, instead, sibships 
should include the exposure of the surviving respondent but 
should always be weighted in addition by the likelihood that 

they will be reported – that is, by the inverse of the number 
of potential respondents in the sibship. As in Masquelier’s 
approach, an adjustment also must be made for sibships that 
go unreported because no member remains alive. In a multi-
survey analysis of DHS full sibling histories, Obermeyer, 
Rajaratnam, Park et al. (2010) estimate that the effect of 
not adjusting for the likelihood of reporting can bias overall 
mortality estimates downward by as much as 20 per cent.

Masquelier (2013), however, argues that Obermeyer and 
her co-authors reweighted their data files inappropriately 
and, as a result, exaggerated the size of any bias. He 
emphasizes that, if one is going to reweight, it is important 
only to adjust for multiple reporting by siblings who 
survived to the initial age from which mortality is being 
measured. In addition though, he questions whether the 
observed variation in mortality by sibship size is necessarily 
real. Instead, he argues, it may be an artefact of greater 
omission of dead siblings in the histories reported for 
large sibships. Masquelier therefore recommends using the 
standard approach, without attempting to reweight the data 
on each sibship. Then, either mortality should be estimated 
for each size of sibship and a reweighted estimate for the 
population obtained in the way described a few paragraphs 
previously or the estimates should not be reweighted at all. 
As making separate estimates for each size of sibship requires 
either a very large sample survey or fitting models to the data 
by regression methods in order to smooth them, the latter 
approach is adopted here.

When histories are being analysed on siblings of the 
opposite sex (for example, histories collected from women 
concerning their brothers), the issues are rather different. 
In this case, the respondent is not a member of the group 
that is exposed to the risk of dying. However, the standard 
calculation will still give biased results for the population as 
a whole if the mortality of siblings of one sex is associated 
with the number of siblings of the opposite sex that report 
on them. Thus, for reports on the opposite sex a clear 
case exists for weighting each report by the inverse of the 
respondent’s number of surviving siblings of their own 
sex as suggested by Gakidou and King (2006). Of course, 
questions about siblings of the opposite sex cannot generate 
any information on those sibships whose members have 
no living siblings of the respondent’s sex. Thus, adopting 
this approach is equivalent to assuming that the mortality 
of individuals in such sibships is the same as the mortality 
of the rest of the population. In surveys that collect data 



314  |  ADULT MORTALITY SURVEY DATA AND DIRECT METHODS

from both sexes, each sex supplies this information for the 
other and one can further weight the deaths and exposure 
reported by respondents by the inverse of the probability 
that siblings in each age group get reported on at all.

Preparatory work and preliminary 
investigations
The initial step in the analysis of sibling history data should 
be to assess the extent of non-reporting and incomplete 
reporting in the data set, in particular how many respondents 
stated that they did not know whether a particular sibling 
remains alive or simply failed to answer the question. It is 
also important to assess the extent to which the siblings’ 
dates of birth and ages, and their ages at and dates of death, 
are missing or have been imputed. If a lot of respondents 
failed to respond to these questions, the data supplied 
by those respondents who did answer them may not be 
representative of the population as a whole. Moreover, 
a high level of non-response may indicate that either the 
field staff or the respondents were having difficulty with the 
questions and it can be illuminating to determine whether 
the problem is concentrated among a minority of field staff 
or certain type of respondent. Heaping of reported dates 
and ages on particular ages and years also indicates that 
reporting is not very accurate. If the quality of the age and 
date data seems particularly poor, one might obtain better 
results from analysing the data set using the indirect adult 
sibling method.

If both women and men have been asked the relevant 
questions, one useful check on the completeness of the data 
is to assess how many siblings of each sex are reported, on 
average, by respondents of the other sex and whether the 
reported sex ratio at birth changes markedly as either the age 
of the respondent or the time since the birth of the siblings 
increases. It is fairly common to find that one sex (usually 
men) reports fewer siblings, and in particular fewer dead 
siblings, than the other. In other surveys, men and women 
may report similar numbers of siblings of each sex (after 
adjusting for the fact that respondents do not report on 
themselves) but that different numbers of them remain alive. 
The first type of discrepancy might result from differential 
age misreporting, but the second cannot.

Any bias due to clustering of mortality within families 
results in underestimates. Moreover, it seems unlikely 
that respondents invent siblings or report that their living 
siblings have died. Thus, the analysis should probably focus 

on the data supplied by respondents of the sex that reports 
most siblings and most siblings that have died.

Caveats and warnings
•	 The only sibling methods that can be recommended 

produce probabilities of surviving from age 15 to ages 
later in adulthood conditional on being alive at exact age 
15. In theory, it is possible to collect and analyse data 
on the deaths of siblings as children. Unfortunately, such 
reports are often very incomplete, particularly for siblings 
who died before or soon after the birth of the respondent. 
Thus, most applications of the method only attempt to 
measure siblings’ mortality at age 15 or more. To produce 
a complete life table, one has to estimate survivorship 
from birth to age 15 using another source of data.

•	 Even in a large survey, the number of siblings that die 
each year in each age group is small. In most applications 
of the method, deaths and exposure need to be aggregated 
over several years in order to estimate death rates that are 
precise enough to be useful. Thus, the method is unlikely 
to be useful for detecting abrupt changes or fluctuations 
in adult mortality.

•	 As one works backward from the time of the survey, the 
number of siblings exposed to risk diminishes rapidly, 
particularly at older ages. Moreover, respondents tend to 
omit some dead siblings from their reports, particularly 
deaths that occurred quite a long time ago. Thus, the 
histories tend to underestimate mortality and this bias 
often gets worse for estimates that are more distant from 
the time of the survey. Thus, the direct sibling method 
should not be used to estimate death rates for more than 
10 years before the data were collected. Often only the 
data on the last seven years are analysed.

•	 Given that the likelihood that dead siblings are omitted 
from the reports rises as the time since their death increases, 
the purpose of calculating rates for two periods before the 
survey is largely diagnostic. It enables the analyst to check 
whether the data indicate an implausible rise in mortality. 
One should be cautious about inferring trends in adult 
mortality from the internal evidence provided by a single 
set of sibling histories.

•	 The direct procedure for estimating adult mortality from 
information on siblings does not involve the assumption 
that the population is closed to migration. Nevertheless, 
it can be difficult to interpret sibling-based estimates of 
adult mortality for sub-national geographic units, such as 
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urban and rural areas or districts, or for respondents with 
particular socio-economic characteristics. This is because, 
although siblings usually share the same ethnic identity, 
many of the respondents’ siblings will live in different 
places from the respondents themselves and their socio-
economic characteristics may differ from those of the 
respondents. Estimates for sub-national populations are 
also likely to have very large sampling errors.

Application of method
The procedure for estimating death rates from sibling history 
data is identical no matter whether one is analysing data on 
brothers, sisters, or siblings of both sexes and irrespective 
of whether the respondents are men, women, or both the 
sexes. The workbook (see website) is set up to calculate death 
rates for both brothers and sisters for two periods of time 
preceding an inquiry and for the entire period covered by 
them combined. Separate worksheets are provided for the 
analysis of data provided by male and female respondents. 
The workbook can produce estimates for periods of any 
length and for data tabulated by ‘years before survey’ or for 
calendar-year periods corresponding broadly to them.

Two tables are required in order to calculate the death 
rates for siblings of each sex reported on by respondents of 
a particular sex, which amounts to potentially four pairs 
of tables. One table should contain counts of deaths of 
siblings by year and age and the other table should contain 
person-years of observation of siblings exposed to the risk of 
death by year and age. The data can be tabulated for the age 
groups and periods that are going to be used in the analysis. 
Alternatively, one could produce the tables for single years 
of age and time so that the counts can be can be aggregated 
over either dimension into any set of wider intervals that is 
subsequently found to be of interest.

Assuming that data set lacks exact dates of birth for some 
siblings and exact dates of death for some siblings that have 
died, the most satisfactory way of addressing this limitation 
of the data is to impute exact dates using random numbers 
to place respondents within the range of dates at which the 
event could have occurred (Stanton, Abderrahim and Hill 
1997). Survey organizations such as MeasureDHS may have 
done this before distributing the data from surveys that they 
conducted.

For imputation and analysis of the data on particular 
siblings to be possible, one needs to know either their year 
of birth or their current age, if they are alive, together with 

a year of death, age at death or time in years since death, if 
they are dead. If both the date of birth and date of death 
are incomplete, one would generally randomly assign 
the person an exact date of birth before assigning them a 
consistent date of death. Care should be taken to record 
the seed for the random number generator used for this, 
so that the imputed dates can be reproduced exactly if the 
need arises to recreate the data files being used to estimate 
mortality from the original data.

The details of the procedure that should be used to impute 
exact dates depends on precisely what questions were asked 
in the sibling histories about ages and times of death. A few 
examples will suffice to illustrate the principles involved 
in the calculations. If the respondent was interviewed on 
23/11/2011 and reported that one of their siblings was 
33 years old, that person’s date of birth must fall on or 
between 24/11/1977 and 23/11/1978. If a sibling is reported 
to have been born in October 1972 and to have died at age 
17, one would first randomly assign them an exact date of 
birth, perhaps 14/10/1972, and then assign them an exact 
date of death on or between 14/10/1989 and 13/10/1990. If 
the respondent also reported a year of death for the sibling, 
the range of dates within which one randomly chooses a 
date of death should be restricted to the correct year.

A little care is needed to ensure that no siblings whose 
age at death equals the number of years since their birth are 
assigned a date of death later than the respondent’s date of 
interview. For example, if the respondent was interviewed 
on 28/2/2003 and reported that their sibling was born in 
1980 and died at age 23, then that person must have been 
born in the first two months of 1980 and have died on or 
after that date in 2003, but before the end of February. The 
imputation procedure should also ensure that the imputed 
dates of birth occur in the correct temporal order of birth.

Once every sibling has been assigned an exact date of 
birth and, if they have died, of death, it is straightforward 
to identify the age groups in which deaths occurred and 
to divide the person’s life up between the age groups and 
periods (Stanton, Abderrahim and Hill 1997). Modern 
survey analysis software often contains commands that 
semi-automate this process.

Graphically, mortality is measured for the age group and 
period of time defined by the heavy lines in Figure 27.1. An 
individual’s life course by age and period is represented by 
the diagonal lines (as with a conventional Lexis diagram). 
The age group for which mortality is to be calculated is 
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defined to have a lower bound of xl , and an upper bound of 
xh. The period of time for which mortality is to be calculated 
is defined as (t2 – t1), where t2 is its end date and t1 its start 
date. Thus, any person aged x at t1 who does not die before 
t2 will be aged xt2 = xt1 + (t2 – t1) at time t2. For statistics on 
adult mortality, both age and calendar time are almost 
always measured in years.

Note that each sibling’s exposure in any year is almost 
always divided between two adjacent ages. Five possible 
scenarios are portrayed on Figure 27.1, labelled (a) through 
(e). Denoting the age at death of individuals dying in this age 
group and period as xd, the contribution that each scenario 
makes to the person-years of exposure of the respondents’ 
siblings in this age group and period can be determined by 
the calculations shown in Table 27.1. Using these rules, one 
can calculate the exposure in the age group and period of 
each sibling reported on in the sibling histories. Summing 
exposure across all siblings gives total years of exposure to 
risk in the age group during the period, the denominator for 
the death rate. Summing the deaths occurring in the same 
age range and period provides the numerator for the rate.

Once the tables of deaths and exposure have been 
produced, various measures of mortality can be produced 

using standard life table calculations. These calculations are 
carried out for data on five-year age groups in the workbook 
(see website). The age-specific death rate, 5Mx, is calculated 
by dividing the deaths in a five-year age group in a specific 
year or period of years by the person-years spent exposed to 
the risk of dying in that age group during that period:
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The probability of dying in a five-year age group, 5qx, in the 
years concerned can be calculated from the corresponding 
death rate using the standard formula, which assumes that 
the deaths are evenly distributed across the age group:
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The probability of surviving a five-year age group, 5px, is 
1 – 5qx.

From the series of estimates of 5px, one can calculate 
the cumulative probability of dying between age 15 and 
age 50 for the period, 35q15, by multiplying together the 
intermediate five-year probabilities of surviving to obtain the 

Figure 27.1  Lexis diagram showing calculation of exposure to risk
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probability of surviving from 15 to 50, 35q15, and subtracting 
this probability from 1 to obtain its complement:

35 15 5 15 5 20 5 25 5 451q p p p p= − × × × .

The 95 per cent confidence intervals of these summary 
measures of adult mortality provided in the workbook (see 
website) are calculated using Greenwood’s formula. This 
formula assumes that the data are generated from a simple 
random sample and so will overstate the precision of indices 
based on data from cluster surveys.

The workbook (see website) produces plots of the logits of 
the conditional probabilities of surviving from age 15 to each 
higher age against the equivalent values of logit survivorship 
in a standard life table. Such plots are useful for evaluation 
of the quality of the estimates. Data errors usually show up 
as irregularities in the series or in the form of downward 
curvature of the series in the oldest age groups. The latter 
pattern is indicative of underestimation of mortality due to 
exaggeration of ages and ages at death.

Finally, the workbook (see website) fits a 2-parameter 
relational model life table to the series of np15 values by 
means of a simple linear regression across the entire age 
range 15 to 55 years. This smoothes out some of the errors 
in the series. Fitted values of 35q15 and 45q15 are extracted 
from this life table. The workbook can fit the model life table 
and calculate these mortality indices using either a standard 
from the General family of United Nations model life tables 
(UN Population Division 1982) or one from any of the four 
families of Princeton model life tables (Coale, Demeny and 
Vaughan 1983). The standard life table should be chosen 

to have an age pattern of mortality within adulthood that 
resembles that of the population being studied. Another life 
table can be used as a standard if there is reason to believe 
that it resembles more closely the pattern of adult mortality 
in the population being studied. The most suitable life table 
may not be from the family of models that best captures the 
relationship between child and adult mortality. If nothing is 
known about the age pattern of mortality in adulthood, use 
of the United Nations General or Princeton West models is 
recommended.

Worked example
These calculations are illustrated in Table 27.2 using data 
collected from female respondents about their sisters in the 
2001 Maternal Mortality Survey of Bangladesh (available on 
the MeasureDHS website). Note that this is an unusually 
large survey. The deaths and exposure of the respondents’ 
sisters in each five-year age group have been cumulated 
across the seven-year period preceding the survey. After 
the calculation of the death rates and estimates of life table 
survivorship, the latter have been smoothed by fitting a 
2-parameter relational model life table using a Princeton 
South model life table as the standard.

Plots of the estimates against the standard are shown for 
the sisters, distinguishing between the periods 0 to 2 years 
and 3 to 6 years before the survey, in Figure 27.2. The 
equivalent plots for the respondents’ brothers are shown 
in Figure 27.3. For these particular data, the smoothed 
estimates of 35q15 and 45q15 are almost identical to the 
estimates calculated directly from the data at 90 per 1000 
and 167 per thousand respectively.

Scenario Description Defining rule(s) Exposure of survivors 
during the period

Exposure of decedents 
(if death occurs during 

the period)

(a) Aged older than xh at t1 xt1 > xh 0 0

(b) Aged between xl and xh at t1. 
Attains xh in the period 

xl < xt1 < xh
xt1+(t2–t1) > xh

xh–xt1 xd –xt1

(c) Attains xl and xh in the period xl > xt1
xt1+(t2–t1)  > xh

xh–xl xd –xl

(d) Attains xl in the period. Period 
ends before xh

xl > xt1
xl < xt1+(t2–t1) < xh

xt1+(t2–t1) > xl xd –xl

(e) Does not attain xl in the period xt1+(t2–t1) < xl 0 0

Table 27.1  Algorithm for determining exposure to risk
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Table 27.2  Direct calculation of age-specific death rates and the 
probabilities of dying between age 15 and ages 50 and 60, women, 
Bangladesh, 1994–2001

 Age
group

x to x + 4

Deaths of 
sisters

Person-years 
of exposure

Age-specific 
death rate 

5Mx

Five-year 
survivorship 

5px

Cumulative 
survivorship 

x – 10p15

Logits 
x – 10Y15

Smoothed 
logits 

x – 10Y15

15–19 350.3 211,840.6 0.00165 0.9918 0.9918 –2.3956 –2.4318
20–24 436.8 241,208.5 0.00181 0.9910 0.9828 –2.0235 –2.0109
25–29 488.0 241,111.4 0.00202 0.9899 0.9729 –1.7909 –1.7758
30–34 455.0 210,963.3 0.00216 0.9893 0.9625 –1.6225 –1.5978
35–39 417.5 160,378.1 0.00260 0.9871 0.9500 –1.4727 –1.4472
40–44 377.5 97,268.6 0.00388 0.9808 0.9318 –1.3072 –1.3020
45–49 242.0 50,456.1 0.00480 0.9763 0.9097 –1.1550 –1.1581
50–54 169.4 19,621.2 0.00863 0.9577 0.8713 –0.9561 –1.0002
55–59 56.7 6,276.6 0.00904 0.9558 0.8328 –0.8027 –0.8286

35q15 (95% CI) 0.090 (0.086–0.094) ( =–0.191) 0.090

45q15 (95% CI) 0.167 (0.155–0.179) ( = 0.949) 0.160

Figure 27.2  Logit survivorship from age 15 plotted against a 
Princeton South model life table, women, Bangladesh, 1994–2001
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Diagnostics, analysis and 
interpretation
Checks and validation
If sibling histories have been collected from both men and 
women in a census or a large survey, analysing them separately 
for male and female respondents can be recommended 
in order to compare the consistency of their reports. The 
mortality of individuals of a particular sex, as reported by 
their brothers, should be the same as the mortality of the 
same individuals as reported by their sisters. If it is not, this 
may indicate significant bias in the estimates for one or both 
sexes. While consistency of reporting does not guarantee 
accuracy, statistically significant differences between the 
estimates obtained from male or female respondents do 
imply that at least one sex, and possibly both of them, are 
answering the questions inaccurately. This check on the 
results cannot be carried out on the data from the 2001 
Bangladesh Maternal Mortality Survey as sibling histories 
were collected only from women in this study.

Interpretation
The results of the illustrative application of direct 
calculation of death rates from sibling histories using data 
from the 2001 Maternal Mortality Survey of Bangladesh 
are shown in Figures 27.2 and 27.3. They are encouraging. 
The plotted points are not at all erratic and do not curve 
away at older ages. There is some curvature in the series for 
men, particularly for the earlier period, but this spans the 
entire series of points from age 20 up to age 60, rather than 
affecting just the older ages. It probably indicates that the 
age pattern of mortality in this population differs from that 
in the standard life table.

The estimates for the two periods are consistent with 
each other for both sexes, in each case suggesting that adult 
mortality declined substantially during the 1990s. Thus, the 
probability of dying between ages 15 and 50 of men is esti-
mated to have dropped from the 104 per thousand to 76 per 
thousand between the period 3 to 6 years before the survey 
and 0 to 2 years before the survey. The probability of dying 
between ages 15 and 50 of women dropped from 107 per 
thousand to 73 per thousand between the same two periods.

Figure 27.3  Logit survivorship from age 15 plotted against a 
Princeton South model life table, men, Bangladesh, 1994–2001
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Although the overall probability of dying between ages 
15 and 50 in Bangladesh is very similar for men and women 
and has declined at a similar rate for both sexes, Figures 
27.2 and 27.3 reveal that Bangladeshi men and women have 
very different age patterns of mortality within adulthood. 
Mortality rises much more steeply with age for the men 
than the women. The  parameter of the model life table 
fitted to the 1994 to 2001 data for women is 0.95 while, 
in the equivalent model life table for men, it is 1.14. Thus, 
if one examines the death rates for the five-year age groups, 
they show that women have higher mortality than men in 
Bangladesh at ages 15 to 40, but that men in their 40s and 
50s have higher mortality than women.

The internal regularity of each of the four series of 
estimates from this survey in Bangladesh, the consistency of 
the estimates for the two periods before the survey, and the 
plausibility of the age pattern of mortality as assessed against 
external standards, all represent evidence that the method 
worked well in this survey. The most surprising feature of 
the results is the very large drop in adult mortality that they 
suggest occurred in Bangladesh in the second half of the 
1990s.

Performance in populations with generalized HIV 
epidemics
The HIV epidemic poses two problems for methods of 
estimating mortality based on the survival of relatives (UN 
Population Division 1982). First, both the sexual and 
vertical routes of transmission produce significant selection 
biases in data collected in surveys on the survival of relatives. 
Second, the incidence of HIV infection is concentrated 
among young adults. Thus, populations with significant 
AIDS mortality have very different age patterns of mortality 
from both other populations and existing systems of model 
life tables.

A major advantage of sibling methods of measuring adult 
mortality over questions about other relatives is that they 
are free of selection biases arising from direct transmission 
of the virus. Some residual bias due to clustering of AIDS 
mortality within sibships will remain. All the children born 
to a woman after she becomes infected are at risk of infection 
by vertical transmission. Moreover, the risk of HIV infection 
tends to vary markedly between localities and siblings often 
live close to each other. The impact of this, however, will 
be relatively small compared with the biases that affect data 
that parents have supplied about their children or vice versa. 
Moreover, direct estimates of mortality from sibling histories 
have an advantage over the indirect adult sibling method in 
populations with substantial AIDS mortality in that they 
measure the age pattern of mortality directly – nothing has 
to be assumed about it.

Extensions and variants of the method
In order to extract the maximum useful information from 
sibling histories in the presence of both reporting and 
sampling errors, analysts have resorted to multi-country 
analyses of sibling-level data files using regression models 
to impose some discipline on the results (for example, 
Obermeyer, Rajaratnam, Park et al. 2010; Timæus and 
Jasseh 2004). For instance, Timæus and Jasseh incorporate a 
2-parameter standard mortality schedule in their regression 
model of the log mortality rates in order to smooth the 
data. They allow the regression coefficient for the standard 
(which determines the age pattern of mortality) to vary 
between countries but not to change over time. Moreover, 
they assume that, while the speed of decline in mortality 
from causes other than AIDS varies between countries, it 
follows a log-linear trend in them all. Other analysts have 
constrained their estimates in different ways.
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Further reading and references
The direct method of calculating adult mortality directly 
from sibling history data is not discussed in the classic 
manuals on indirect estimation. Although their report 
is focused primarily on measuring maternal mortality, 
Stanton, Abderrahim and Hill (1997) discuss a number 
of important issues relating to the estimation of all-cause 
mortality from full sibling histories in some detail, including 
the imputation of exact dates of birth and death and the 
calculation of exposure time. Biases related to differential 
mortality by family size and multiple reporting of siblings 
are discussed by Gakidou and King (2006), Masquelier 
(2013), and others.
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Chapter 28  Introduction to maternal mortality analysis
Kenneth Hill

Maternal mortality has long been a focus of national health 
services, but its salience has increased over the last two 
decades with the establishment of quantitative goals. During 
that time, the international community has periodically 
established targets for the reduction of maternal mortality, 
measured as the Maternal Mortality Ratio (MMR), 
maternal deaths per 100,000 live births. The World Summit 
for Children in 1990 set the goal of reducing MMR by half 
between 1990 and 2000. The 1994 International Conference 
on Population and Development (ICPD) reiterated this 
goal, but set the additional longer-term target of reducing 
the rate by a further half by 2015. The Millennium Summit 
in 2000 adopted the ICPD target for the fifth MDG (the 
improvement of maternal health). The target was thus to 
reduce the MMR by three-quarters between 1990 and 
2015. The 2011 report of the Commission on Information 
and Accountability for Women’s and Children’s Health, 
established by the Secretary-General of the United Nations, 
reaffirmed the importance of timely reporting on MMR as 
one of 11 indicators of maternal, newborn, and child health. 
It is thus clear that the measurement of maternal mortality 
has a very high priority. This chapter discusses broad options 
for such measurement.

Definition
The International Classification of Diseases Revision 10 
(ICD-10) defines a maternal death as follows. “A maternal 
death is defined as the death of a woman while pregnant 
or within 42 days of termination of pregnancy, irrespective 
of the duration and site of the pregnancy, from any cause 
related to or aggravated by the pregnancy or its management 
but not from accidental or incidental causes.” Measuring 
maternal deaths thus involves the determination of cause 
of death, an issue not addressed elsewhere in this manual. 
Maternal deaths are divided into direct obstetric deaths (of 
which the major specific causes are haemorrhage, obstructed 

labour, eclampsia, sepsis and consequences of abortion) and 
indirect obstetric deaths (pregnancy-related deaths among 
women with a pre-existing or newly developed health 
problem exacerbated by the pregnancy or delivery).

The measurement of maternal mortality represents a major 
problem for countries lacking largely complete birth and 
death registration (Graham, Ahmed, Stanton et al. 2008) 
not only because deaths are not recorded but also because 
of the need to ascertain cause of death (see for example 
Mathers, Fat, Inoue et al. (2005)). Cause of death is best 
determined by a physician present close to the time of death, 
but many deaths occur without the presence of a doctor. 
Further, even when a doctor does certify the death, deaths 
that occur outside of the labour ward may be incorrectly 
ascribed to a non-maternal cause. Some progress has been 
made in recent years with the development and application 
of verbal autopsy methods, whereby family members are 
asked to report signs and symptoms surrounding the death, 
but there is still considerable controversy about how well 
such methods work (Chandramohan, Rodrigues, Maude 
et al. 1998). The description of verbal autopsy instruments 
and analysis is beyond the scope of this manual.

In part because of the difficulty of identifying true 
maternal deaths, ICD-10 also defines a pregnancy-related 
death as one that occurs during pregnancy, delivery or the 
42 days after the end of the pregnancy, regardless of cause of 
death. The category pregnancy-related death thus includes 
all maternal deaths plus the accidental or incidental deaths 
excluded from the category “maternal”. The advantage of 
the pregnancy-related category is that it appears to be easier 
to implement; it only requires information on the timing of 
death relative to a pregnancy, without specific knowledge 
of true cause of death. The disadvantages are that measures 
of pregnancy-related mortality are frequently misinterpreted 
as measures of maternal mortality, and that any trend in 
pregnancy-related mortality not due to maternal causes 
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will limit the value of the measure for tracking impact 
of maternal health interventions. Demographic surveys 
generally measure pregnancy-related deaths and avoid the 
necessity for cause ascertainment.

There is active debate, and no consensus, as to the 
relationship that exists in practice between a reported 
number of pregnancy-related deaths and some unknown 
true number of maternal deaths. Clearly by definition 
the true number of pregnancy-related deaths has to be 
the same as, or larger than, the true number of maternal 
deaths, since all maternal deaths are pregnancy-related, but 
not all pregnancy-related deaths are maternal. In practice, 
however, the situation is less clear-cut because of possible 
reporting errors. There are those who argue that reported 
pregnancy-related deaths exceed true maternal deaths 
(Garenne, McCaa and Nacro 2008; Stecklov 1995) whereas 
others argue that pregnancy-related deaths are likely to be 
under-reported because, for example, a respondent may not 
have known that the deceased was pregnant at the time of 
death (Shahidullah 1995; Wilmoth 2009). The relationship 
could, therefore, go either way. This manual does not come 
down firmly in support of either of these views, but instead 
emphasizes that good practice requires that measures be 
labelled correctly. Thus a measure based on reported 
pregnancy-related deaths should be reported as a measure 
of pregnancy-related mortality, whereas a measure based on 
what are thought to be true maternal deaths (identified by a 
verbal autopsy for example) should be reported as a measure 
of maternal mortality.

Basic measures of maternal mortality
There are two common measures of maternal mortality (and 
corresponding measures for pregnancy-related mortality). 
They are the Maternal Mortality Ratio (MMR), the target for 
MDG-5, and the Maternal Mortality Rate (here abbreviated 
as MMRate). There are two other measures that will often 
be encountered: the proportion of deaths of women of 
reproductive age that are maternal (often abbreviated as 
PMDF), and the lifetime risk of dying a maternal death 
(LTR). The latter measure is used primarily for advocacy 
purposes.

Maternal Mortality Ratio
The MMR is the number of maternal deaths in a period 
per 100,000 live births in the same period. Note the use of 
live births rather than pregnancies in the denominator. The 

MMR is primarily a measure of obstetric risk, roughly the 
risk of dying per 100,000 risky events.

Maternal Mortality Rate
The MMRate is a cause-specific mortality rate. It is the 
number of maternal deaths in a period per 1,000 person-
years lived by the female population of reproductive age 
(usually ages 15–49).

The MMR and MMRate share a numerator, and have a 
simple relationship to one another:

100,000

1,000 100

100,000

MDMMR
LB
MD FPRA

FPRA LB

MMRate
GFR

= ×

= × × ×

= ×

where, for a given time period, MD is maternal deaths, LB 
is live births, FPRA is the person-years lived by the female 
population of reproductive age, and GFR is the General 
Fertility Rate expressed per 1,000 women of reproductive 
age.

Proportion Maternal of Deaths of Women of 
Reproductive Age
The PMDF is MD/FDRA, where FDRA is the number of 
deaths of women of reproductive age. It is used primarily in 
modelling exercises (for example, Hill, Thomas, AbouZahr 
et al. (2007), Hogan, Foreman, Naghavi et al. (2010), 
Wilmoth, Zureick, Mizoguchi et al. (2010) and Wilmoth, 
Mizoguchi, Oestergaard et al. (2012)) but is also of some 
value for data quality assessment (see below).

Lifetime Risk
The LTR is usually implemented as the risk of dying from 
a maternal cause from age 15 onwards. Wilmoth (2009) 
suggests calculating the measure per 1,000 women reaching 
age 15; i.e., as

15 50

15

( )T T
LTR MMRate

−
= ×

l

where T15 and T50 are the person-years lived above ages 15 
and 50 respectively, and l15 is the survivors to age 15, in an 
appropriate life table for the population in question.
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Each of the four measures above has a pregnancy-related 
corollary, calculated by replacing maternal deaths by 
pregnancy-related deaths.

Data sources
Other than civil registration, there are two widely used 
approaches to the collection of data needed to measure 
pregnancy-related mortality: the full sibling history (FSH); 
and a large household survey or census that collects data 
on recent household deaths (HSHD). The summary sibling 
history (Graham, Brass and Snow 1989) is now rarely used, 
partly because it produces estimates that represent averages 
over very long time frames.

The full sibling history
A full sibling history (FSH) involves complex and 
detailed data collection, requiring very careful training 
and supervision of field staff to be executed correctly. It is 
therefore not an appropriate methodology to include in a 
census. The FSH has been widely included as the “Maternal 
Mortality Module” in DHSs since 1991, and has also been 
included in some other household surveys. The FSH collects 
information from eligible respondents. In most DHSs, 
women eligible for the birth history are also those eligible 
for the FSH, but some surveys have also collected FSHs 
from eligible male respondents. Information is collected 
about all brothers and sisters born to the same mother. The 
FSH can thus be thought of as the respondent’s mother’s full 
birth history, excluding the respondent herself (or himself ). 
In the DHS, the information collected about each sibling 
is: name; sex; whether still alive; if still alive, age in years; if 
dead, how many years ago did the sibling die and how old 
was he or she at death. For deaths of women of reproductive 
age, additional questions enquire whether the sister died 
(i) while pregnant; (ii) during childbirth; or (iii) within 42 
days or 2 months of the end of a pregnancy.

It will be clear from the above that measures calculated 
from an FSH are of pregnancy-related mortality, not 
maternal mortality. The sibling history does not lend itself 
to the application of a verbal autopsy (which would be 
necessary for calculating maternal mortality), because a 
sister of reproductive age reported to have died may well 
have died in a different household than the respondent, 
who thus may have little direct knowledge of signs and 
symptoms preceding the death. It is generally not feasible 
to try to identify the household where the death occurred 

and conduct a verbal autopsy with a member of that house
hold.

The FSH provides information on pregnancy-related 
deaths and female exposure, and thus a basis for estimating 
pregnancy-related mortality rates. If pregnancy-related 
mortality ratios (PRMRs) are to be calculated, information 
must also be available on live births. A typical DHS collects 
a full birth history (FBH) as well as an FSH, so this is usually 
not a problem.

The summary sibling history
The use of information on sibling survival to estimate 
maternal mortality was first proposed by Graham, Brass 
and Snow (1989). They proposed using a summary sibling 
history. Such a summary history collects information by sex 
on the aggregate number of siblings the respondent had, the 
number who survived to age 15 (or first marriage), and – for 
sisters who died after age 15 – whether they were pregnant, 
in childbirth, or in the 42 days post-partum when they died. 
This method is not recommended for use. The sisters of a 
respondent can differ in age from the respondent herself by 
plus or minus 30 years, with the result that the deaths of 
sisters can be spread over a very long time period prior to 
a survey. Reference dates of maternal mortality estimates 
derived from summary sibling histories are thus located 
well in the past (on average as much as 12 years before 
the survey), making them of limited practical value. As a 
consequence the method will not be described further.

The census or large household survey collecting data on 
recent household deaths
Censuses in the 1970s and 1980s in countries lacking 
complete civil registration often collected information on 
recent household deaths, usually those that occurred in the 
last 12 months. Concerns about data quality limited the use 
of such questions in the 1990 and 2000 rounds of censuses, 
but renewed interest in adult mortality and specifically in 
maternal mortality led to a sharp increase in their use in the 
2010 round. A common format for such questions is to ask 
whether any usual household member died in the preceding 
12 months (sometimes the question refers to a different period 
such as the time since a fixed date or memorable event). If the 
answer is yes, the deceased’s name, sex and age at death are 
recorded. If the death is of a woman of reproductive age, an 
additional question or questions about the timing of death 
relative to pregnancy are asked, namely did the deceased die 
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while pregnant, during delivery, or in the 6 weeks (sometimes 
2 months) after the end of the pregnancy? The methodology 
is reviewed by Stanton, Hobcraft, Hill et al. (2001), and 
experience with it is reviewed by Hill, Queiroz, Stanton et al. 
(2007) and Hill, Queiroz, Wong et al. (2009).

As generally used, these questions on recent deaths 
identify pregnancy-related deaths. However, some attempts 
have been made to follow up reported deaths of women of 
reproductive age (or a sample of such deaths) with a verbal 
autopsy to identify true maternal deaths. This has been 
done in a number of very large household sample surveys 
(e.g. in the Bangladesh Maternal Morbidity and Mortality 
Survey 2001 (Hill, El-Arifeen, Koenig et al. 2006), but also 
following at least two censuses (1986 in Iran and 2007 in 
Mozambique)).

A census or large household survey that collects informa-
tion on recent household deaths will always record a house-
hold roster by age and sex. This roster provides information 
on denominators for pregnancy-related mortality rates 
(PRMRates). Additional information on recent fertility will 
be needed to calculate PRMRatios. This will usually be col-
lected in the form of a question for women of reproductive 
age as to whether they had a live birth in the year before 
the survey or a question on the date of each woman’s most 
recent live birth. Information on life-time fertility should 
also be collected to permit the evaluation and possible ad-
justment of the data on fertility (see Chapter 7 on fertility 
estimation using a relational Gompertz model).

Data collected at health facilities
A major expense of household surveys is the cost of 
getting an interviewer to the (correct) household. Much 
of this expense can be eliminated by taking advantage of 
respondents coming to the interviewer, such as to give birth 
in a health facility. Health facilities are also likely to record 
births and deaths and cause of death that occur at the facility 
as part of a routine health management information system. 
However, the problem with such data is selection bias: we 
can never be sure that the women who give birth in a facility 
are representative of all mothers. To improve coverage, 
experiments are being conducted to find out whether health 
extension workers or the equivalent working in communities 
can collect adequate data on births and deaths. Such an 
approach is akin to a sample registration system.

An analysis strategy for facility data has been proposed 
but not implemented. Starting with the assumption that 
women who deliver in a health facility (or visit a health 
facility for some other pregnancy-related condition) are 
a biased sample of all mothers (it is not clear which way 
the bias will run, whether women having fewer pregnancy-
related health issues or those having more will predominate), 
if one could estimate the selection probabilities correctly, the 
statistics collected could be adjusted for bias. For example, 
women on visiting a health facility could be asked their age, 
children ever born and children still alive, plus a number of 
additional questions about their socio-economic condition. 
The children ever born and children still alive could then be 
modelled onto the socio-economic structure of the whole 
population, available for example from a population census. 
To our knowledge, this approach has never been tested.
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Chapter 29  Estimation of pregnancy-related mortality  
from survival of siblings

Kenneth Hill

Description of method
The use of full sibling history data to estimate overall adult 
mortality, and the evaluation of such data, is described 
elsewhere. A full sibling history is analogous to a full birth 
history: a respondent (usually a female of reproductive age) 
is asked about each of her siblings born of the same mother. 
For surviving siblings, sex and age in completed years are 
recorded; for dead siblings, sex, age at death in completed 
years and calendar year of death are recorded. The resulting 
history is, with the addition of the respondent herself, the 
full birth history of the mother. As with a full birth history, 
the sibling history allows events (deaths) and exposure time 
to be arranged in calendar time, and hence the calculation of 
age-period mortality rates. For pregnancy-related mortality, 
further information is collected concerning deaths of sisters 
of reproductive age as to whether the sister died during 
pregnancy, during delivery, or in the 42 days (or sometimes 
2 months) post-partum. This chapter focuses on analysing 
information on sisters of reproductive age.

One important issue discussed under full sibling histories 
will be touched on here. The DHS full sibling history asks 
respondents for the full birth history of their natural mother, 
excluding themselves. As a result, there is the potential for 
multiple responses about the same individual. For example, 
if two daughters of the same mother are interviewed in the 
same household, there will be multiple reports about other 
members of the sibship. The DHS bases events and exposure 
time entirely on reported siblings, not taking into account the 
exposure time of the (surviving) respondent herself. Further, 
the events and exposure time of siblings are weighted only 
by the respondent’s sample weight, not taking into account 
numbers of surviving potential respondents in the sibship. 
Trussell and Rodriguez (1990) show that if there is no corre-
lation between mortality risks within sibships, this calculation 

gives an unbiased estimate of overall mortality. Gakidou and 
King (2006) argue that sibships should include the surviving 
respondent and should in addition be weighted by the likeli-
hood that they will be reported – that is, by the inverse of 
the number of potential respondents in the sibship. They also 
argue that an adjustment should be made for sibships that 
go unreported because no member remains alive. In a multi-
survey analysis of DHS FSH’s, Obermeyer, Rajaratnam, Park 
et al. (2010) estimate that the effect of not adjusting for likeli-
hood of reporting can bias overall mortality estimates down-
wards by 20 percent or so. Masquelier (2012) however argues 
that the Obermeyer, Rajaratnam, Park et al. analysis took into 
account all surviving siblings, not just potential respondents, 
and as a result exaggerated the size of any bias. Masquelier 
recommends using the DHS calculation approach, for reasons 
outlined below (see also Chapter 27).

Data requirements and assumptions
Important assumptions
•	 No correlation exists between mortality risks of women 

and size of sibship.
•	 There are no selection effects resulting from migration.

Tabulations of data required
•	 Number of women, by five-year age group, from house

hold questionnaire.
•	 Number of sister deaths by time period (typically 0–6 

years) before the survey by five-year age group and by 
whether during pregnancy, delivery or 42 days/2 months 
post-partum.

•	 Number of sister-years of exposure by time period by five-
year age group of respondent.

•	 Age-specific fertility rates and General Fertility Rate for 
the time period.
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We will assume here that the DHS approach is followed. 
The extraction of summary data from the DHS is beyond 
the scope of this manual. A standard program exists in the 
free software CSPro to produce this tabulation from the 
basic data. A decision that has to be made at the outset of 
the analysis is the time frame to be used. Most DHSs create 
the basic table for events and exposure in the seven (0 to 
6) years prior to the survey, but sometimes the period used 
is five years, and sometimes ten years. One consideration 
in choosing one period rather than another is sampling 
errors; in a small sample with quite low adult mortality, 
the period may have to be ten years to avoid very large 
sampling uncertainty, whereas with a large sample and 
higher mortality, the period may be reduced to five years. 
This aspect of the method is discussed further in the section 
on interpretation of results.

Preparatory work and preliminary 
investigations
Data quality assessment for a full sibling history and for 
recent age-specific fertility rates are described elsewhere. 
The only data quality assessment specific to the estimation 
of Pregnancy-Related Mortality is of the information on 
the proportion of deaths of women of reproductive age 
that are pregnancy-related (PPRD), and the proportions 
of pregnancy-related deaths that occur during pregnancy, 
during delivery and in the 42 days (or two months) post-
partum.

No formal methods exist for carrying out such assess
ments. However, the age pattern of the proportion of 
deaths that are pregnancy-related should resemble the age 
distribution of age-specific fertility, since it is births that 
are the risky events. Risks of pregnancy-related death are 
generally thought to be rather higher at the extremes of 
the reproductive age period, so the tails of the proportions 
pregnancy-related may be somewhat “fatter” than for age-
specific fertility.

Caveats and warnings
It is widely believed that sibling histories tend to under-
report mortality, particularly deaths further in the past. 
One should thus not attempt to interpret trends over 
time in pregnancy-related mortality from a single data set. 
Such attempts across data sets would also need to take into 
account the wide confidence intervals surrounding estimates 
even for a seven-year window.

Application of method
Step 1: Extract tabulations of the data
As mentioned earlier, software is readily available to extract 
the tabulations required relating to reported deaths of sisters, 
their exposure and pregnancy-related deaths. In addition, 
estimates of age-specific fertility are required. (If the data on 
sisters are extracted from a DHS, the approach to estimating 
fertility rates directly from the data is described elsewhere in 
this manual). Finally, an estimate of the female population by 
age group enumerated in the household survey is required. 
We define the following terms:
•	 5

s
xD  – the reported number of sisters reported dying 

between ages x and x + 5
•	 5

s
xPY  – the number of person-years lived by sisters 

between ages x and x + 5
•	 5

s
xPRD  – the number of pregnancy-related deaths of 

sisters between ages x and x + 5
•	 5 xf  – age-specific fertility rates of women aged x to x+5

•	 5
f

xN  – the population of women aged between x and x + 5 
as enumerated in the survey

Tabulations of each of the above five quantities are required 
to implement the method.

Step 2: Derive measures of mortality
The age-specific mortality rate is derived by dividing the 
reported deaths of sisters by the number of person years 
lived by those sisters in each age group,
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The age-specific pregnancy-related mortality rate in each age 
group is given by
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Step 3: Estimate population-level measures
Estimates of the pregnancy-related mortality rate, and 
the proportion of deaths that are pregnancy-related in the 
population of women of reproductive age (taken here as 
those aged 15–49) are derived by weighting the age-specific 
rates derived above by the number of women aged 15–49 in 
the households surveyed. Thus
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Worked example
The application of the method is illustrated using data 
collected in the 2004 Malawi DHS. Women were asked 
about the survival, and – if dead – timing of death relative 
to pregnancy of sisters.

Step 1: Extract tabulations of the data
Tabulations of the required input data are presented in 
Table 29.1. The tabulations of reports of sisters’ deaths and 
exposure are for the seven years before the survey.

Step 2: Derive measures of mortality
Application of the method is shown in Table 29.2, using the 
data presented in Table 29.1. The first column of Table 29.2 
shows age-specific mortality rates, calculated by dividing 
female deaths by age (col. i of Table 29.1) by sisters’ exposure 
in years (col. ii of Table 29.1) as described by Equation 1. The 
second column shows age-specific pregnancy-related mortal-
ity rates, calculated as for the all-cause age-specific rates but 
using pregnancy-related deaths only (col. iii of Table 29.1) 
in the numerator (Equation 2). Column 3 shows the age-
specific proportions of female deaths that were reported 
to be pregnancy-related (col. iii of Table 29.1 divided by 
col. i of Table 29.1 – Equation 3). Column 4 shows age-spe-
cific pregnancy-related mortality ratios, calculated by dividing 
pregnancy-related mortality rates (col. ii) by age-specific fertil-
ity rates (col. iv of Table 29.1) and multiplying by 100,000 
(Equation 4).

It is important to note that the entries in the Total row 
in Table 29.2 are not calculated by summing events and 
exposure across age groups. The reason for this is that the age 
pattern of sister exposure is not the same as the age pattern 
of the female population of reproductive age. To obtain valid 
population-level estimates of totals, it is necessary to re-
weight the age-specific rates and ratios in Table 29.2 by the 
proportional female age distribution in col. v of Table 29.1, 

Age 
group

Sister
deaths

Sister
exposure

Pregnancy-
related deaths

Age-specific 
fertility

Household 
female 

population
(i) (ii) (iii) (iv) (v)

15–19 117 27,622 8 0.162 2,570
20–24 227 29,331 52 0.293 3,036
25–29 299 23,763 64 0.254 2,247
30–34 245 17,228 50 0.222 1,516
35–39 230 12,206 33 0.163 1,122
40–44 177 7,892 22 0.080 970
45–49 82 4,574 12 0.035 743

TOTAL 1376 122,616 240 0.204* 12,204
*�General Fertility Rate calculated as age-specific fertility rates weighted by age 
distribution of the female household population

Source: Malawi DHS 2004 Tables 13.2 (p.245) and 13.3 (p.247)

Table 29.1  Input data used to estimate 
pregnancy-related mortality, Malawi, 2004 
DHS
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as described by Equations 5, 6 and 7. The denominator in 
Equation 7 is also not the General Fertility Rate as normally 
calculated (births divided by female population aged 15 to 
49) but rather the age distribution-weighted sum of age-
specific fertility rates.

Step 3: Estimate population-level measures
Table 29.3 compares the proportion of births in each 5-year 
age group (calculated as the product of the household female 
population and the age-specific fertility) to the proportion 
of PRD (calculated as the product of the household female 
population and the age-specific PRMRate) in each age 
group.

Diagnostics, analysis and interpretation
Checks and validation
For checking and validating overall estimates of female mor-
tality, see the Chapters 23 and 27 on the analysis of sib-
ling histories. Checking and validating the extra informa-
tion provided about pregnancy-related mortality depends 
on plausibility checks. Is the overall proportion of deaths 
of sisters of reproductive age reported as pregnancy-related 
plausible, given the estimated pregnancy-related mortality 
ratio? Is the distribution of pregnancy-related deaths by age 
plausible given the age pattern of births (the risky events)?

No generally accepted way exists to assess the plausibility 
of the overall proportion of deaths pregnancy-related. 
In general, there is a positive association between the 

Age 
group

Age-specific 
Mortality Rate

Age-specific 
Pregnancy-

Related Mortality 
Rate

Proportion 
of Deaths 

Pregnancy-
Related

Age-specific 
Pregnancy-

Related Mortality 
Ratio

(Column references as from Table 29.1)

= 1000*(i)/(ii) = 1000*(iii)/(ii) = (iii)/(i) = 100000*
iii /(ii*iv)

15–19 4.24 0.29 0.0684 178.8
20–24 7.74 1.77 0.2291 605.1
25–29 12.58 2.69 0.2140 1060.3
30–34 14.22 2.90 0.2041 1307.3
35–39 18.84 2.70 0.1435 1658.6
40–44 22.43 2.79 0.1243 3484.5
45–49 17.93 2.62 0.1463 7495.8

TOTAL* 11.51 1.99 0.1681 970.7
*�Note: all the totals in this table are standardized onto the age distribution of the female 
household population (see text).

Age Household 
female 

population

Age- 
specific 
fertility

Pregnancy-
related 
deaths*

Births
Proportion of:

Pregnancy-
related deaths Births

15–19 2,570 162 0.74 416 0.031 0.167
20–24 3,036 293 5.38 890 0.222 0.356
25–29 2,247 254 6.05 571 0.249 0.228
30–34 1,516 222 4.40 337 0.181 0.135
35–39 1,122 163 3.03 183 0.125 0.073
40–44 970 80 2.70 78 0.111 0.031
45–49 743 35 1.95 26 0.080 0.010
TOTAL 12,204 24.27 2,500 1.000 1.000
*�Calculated as the product of col(i) of this table and col(ii), divided by 1000, of 
Table 29.2

Table 29.2  Adult female mortality rates 
and pregnancy-related mortality rates, 
Malawi, 2004 DHS

Table 29.3  Comparison of proportions of 
births and pregnancy-related deaths by age 
group, Malawi, DHS 2004
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proportion of deaths pregnancy-related and the PRMR, 
but the association hinges on the level of non-pregnancy-
related mortality and provides no useful basis for evaluation. 
The plausibility of the age distribution of pregnancy-related 
deaths is assessed in comparison to the distribution of 
births by age, as shown in Table 29.3. In the case of the 
2004 Malawi DHS, the proportions of pregnancy-related 
deaths contributed by the age groups 15–19 and 20–24 are 
much lower than the corresponding proportions of births, 
and the reverse is true over the age of 35. The latter can be 
plausibly explained by the increasing riskiness of pregnancy 
and childbirth for women over age 35, but no plausible 
explanation exists for the large differences under age 25. The 
suspicion is strong that deaths of sisters under the age of 25 
that were actually pregnancy-related have not been reported 
as such.

Interpretation
Interpretation of estimates of pregnancy-related mortality 
from sibling histories needs to pay close attention to 

sampling uncertainty and typical data errors. Sampling 
uncertainty is very large by comparison with DHS estimates 
of under-5 mortality. Figure 29.1 plots coefficients of 
variation (standard error divided by the estimate) for DHS 
estimates of PRMRs by number of siblings reported on. The 
coefficients of variation are above 0.08 even for very large 
samples, and above 0.10 for all but a handful of surveys.

Given the large sampling uncertainty, interpretation of 
sub-national differences or other sub-group differences such 
as by age is hazardous. Typical data errors, particularly the 
omission of deaths for time periods more distant from the 
survey, make any interpretation of trends within data sources 
questionable. Any conclusions about trends should be based 
on estimates from two or more surveys for comparable time 
periods before each survey and taking into account sampling 
uncertainty.

Figure 29.1  Coefficients of variation for PRMRatios by DHS 
sample size

Sources: Stanton, Abderrahim and Hill (2000) for estimates prior to the year 2000, and DHS country reports for years 2004 and later
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Chapter 30  Estimation of pregnancy-related mortality  
from deaths reported by households

Kenneth Hill

Description of method
If questions are asked in a census or large household survey 
about deaths in the household in a reference period, and 
further questions are asked about the timing relative to 
pregnancy of deaths of women of childbearing age, it is 
possible to derive estimates of pregnancy-related mortality. 
If additional information on cause of death is available, 
for instance from a verbal autopsy enquiry, it is possible to 
estimate maternal mortality, but this is quite unusual and 
will not be covered explicitly here.

The use of census or large survey data on recent household 
deaths to estimate overall adult mortality, and the evaluation 
of such data, are described elsewhere. Any error in reporting 
on deaths is likely to have a proportionately similar effect 
on estimates of pregnancy-related mortality, so evaluation 
of data quality, and adjustment if needed, are essential parts 
of the analysis.

Data requirements and assumptions
Tabulations of data required
•	 Number of women, by five-year age group from household 

questionnaire.
•	 Number of household deaths in the previous 12 months 

(or similar period) by age and sex.
•	 For deaths of women of reproductive age (usually 15 

to 49), whether the death occurred during pregnancy, 
delivery or 42 days/2 months post-partum.

•	 Age-specific fertility rates and General Fertility Rate for 
the time period.

•	 If sample or design weights have been provided with the 
data, they must be applied in the appropriate manner in 
producing input tables.

Important assumptions
•	 That any effect of household dissolution arising from 

death of a member is trivial.
•	 (If adjustment of deaths or births is to be made), that errors 

in reporting deaths and births are proportional by age.
•	 That any omission of deaths does not vary with whether 

or not the deaths are pregnancy-related.
•	 That reporting of deaths as pregnancy-related is approxi-

mately accurate.

Preparatory work and preliminary 
investigations
Data quality assessment for household deaths and for 
recent age-specific fertility rates are described elsewhere. 
The only data quality assessments specific to the estimation 
of Pregnancy-Related Mortality are of the information on 
the proportion of deaths of women of reproductive age 
that are pregnancy-related (PPRD), and the proportions 
of pregnancy-related deaths that occur during pregnancy, 
during delivery and in the 42 days (or two months) post-
partum.

Potential for data quality assessment for issues other than 
recording of overall numbers of births and deaths is limited 
to a plausibility check for reporting of deaths as pregnancy-
related. The age pattern of the proportion of deaths that are 
pregnancy-related should resemble the distribution of births  
by age of mother.

Caveats and warnings
It is widely believed that questions on household deaths 
and on births in the year before a census or survey often 
under-report true numbers of events. Careful evaluation 
of coverage of both types of event is essential. In the 
unlikely event that under-reporting of both types of event is 
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approximately equal, the pregnancy-related mortality ratio 
will not be seriously biased, although the pregnancy-related 
mortality rate will still be biased. However, if data evaluation 
indicates omission of deaths and births, the data will need 
to be corrected before a final estimate of pregnancy-related 
mortality is arrived at.

Application of method
The method is applied in the following stages:

Step 1: Extract tabulations of the data
Instructions as to how to extract the data are outside the 
scope of this manual. It is usually a simple matter to produce 
cross-tabulations of the number of women by age group, 
and the number of deaths of women by age group and 
timing of death relative to pregnancy (during pregnancy, 
during delivery, or during the 42 days/2 months post-
partum). Where appropriate, the tabulations should be 
weighted to compensate for under-enumeration (following 
a post-enumeration survey) and whether the data being 
analysed are a micro-sample or not. In addition, estimates of 
age-specific fertility are required. The process of estimating 
fertility is described elsewhere.

We define the following terms:
•	 5

s
xD  – the reported number of female household members 

reported dying between ages x and x + 5
•	 5

s
xPRD  – the number of pregnancy-related deaths of 

female household members between ages x and x + 5
•	 5 xf  – age-specific fertility rates of women aged between 

x and x + 5
•	 5

f
xN  – the population of women aged between x and x + 5 

as enumerated in the census or large survey
Tabulations of all four of the above variables are required.

Step 2: Derive measures of mortality
The age-specific mortality rate is derived by dividing the 
reported deaths of women in the household by the number 
of person years lived by the population in each age group,

	 5
5

5

x
x f

x

D
M

N
= .	 (1)

The age-specific pregnancy-related mortality rate in each age 
group is given by

	 5
5

5

x
x f

x

PRD
PRMRate

N
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and the age-specific pregnancy-related mortality ratio is
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The proportion of deaths that are pregnancy-related is

	 5
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D
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The proportionate distribution of the PRD over ages 15 to 
49 is given by

	
5

5 45

5
15,5

x
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x
x
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=

=
∑

.	 (5)

Worked example
We use as an example the data from the 2008 Malawi 
Census, specifically the data from questions concerning 
deaths in the 12 months before the survey/census.

Step 1: Extract tabulations of the data
Table 30.1 is tabulated from individual-level data from a 
10 per cent IPUMS sample from the Malawi Census. The 
table shows the female population of reproductive age by 
five-year age groups, female deaths reported as occurring in 
the 12 months before the census, and, for deaths of females 
aged 15 to 49, whether the death occurred during pregnancy, 
during delivery, or in the 42 days post-partum.

Step 2: Derive measures of mortality
Application of the method for data available in the form 
given in Table 30.1 is shown in Table 30.2. All cause age-
specific mortality is calculated (col. i) by dividing deaths 
(col. vi of Table 30.1) by female population (col. i of 
Table 30.1) as per Equation 1. Note that strictly speaking the 
deaths pertain to a population on average half a year earlier 
than that recorded, but the error involved in ignoring this 
complication is trivial and will be included in an adjustment 
if the deaths are corrected using one of the appropriate 
death distribution methods. Age-specific pregnancy-related 
mortality rates are then calculated by dividing pregnancy-
related deaths (col. v of Table 30.1) by female population 
(col. i of Table 30.1) as in Equation 2. Age-specific 
pregnancy-related mortality ratios in col. iv of Table 30.2 are 
then obtained by dividing the age-specific pregnancy-related 
mortality rates (col. ii) by age-specific fertility rates (col. iii, 
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obtained from other sources) – as in Equation 3. Age-specific 
proportions of deaths pregnancy-related are then calculated, 
dividing pregnancy-related deaths (col. v of Table 30.1) 
by all-cause deaths (col. vi of Table 30.1) (Equation 4). 
Finally, the proportional contribution of each age group to 
overall pregnancy-related deaths is calculated by dividing 
the number of pregnancy-related deaths in each age group 
by the total number of pregnancy-related deaths (col. v of 
Table 30.1) (Equation 5).

Diagnostics, analysis and interpretation
Checks and validation
The key checks for this methodology are the assessment of 
coverage of adult female deaths and of births (see Death 
Distribution Methods and Assessment of recent fertility 
data). The only checks specific to this method are of the 
distribution of pregnancy-related deaths by age and a very 
weak check, available in many instances, on the distribution 
of pregnancy-related deaths by whether they occurred during 

Female deaths

Age group Female 
population

During 
pregnancy During delivery Post-partum Total pregnancy-

related All deaths

(i) (ii) (iii) (iv) (v) (vi)
15–19 67,918 43 25 26 94 235
20–24 69,069 68 40 36 144 389
25–29 57,478 84 31 32 147 442
30–34 41,073 92 24 37 153 471
35–39 29,993 56 15 23 94 346
40–44 22,294 42 4 14 60 238
45–49 17,564 38 3 4 45 185

TOTAL 15–49 310,748 423 142 172 737 2,306

Source: Malawi 2008 Census, 10 per cent sample

Age group

Age-specific
Proportion 
of Deaths 

Pregnancy-
Related

Proportion of 
Pregnancy-

Related 
Deaths

Proportion 
of Births in 

Previous YearMortality rate

Pregnancy-
Related 

Mortality 
Rate

Fertility rate

Pregnancy-
related 

Mortality 
Ratio

Table 30.1 
(vi)/(i)

Table 30.1 
(v)/(i)

100000* 
(ii)/(iii)

Table 30.1 
(v)/(vi)

Table 30.1 
(v)/Sum(v)

15–19 0.00346 0.00138 0.1108 1249.12 0.40000 0.12754 0.14408
20–24 0.00563 0.00208 0.2464 846.13 0.37018 0.19534 0.32584
25–29 0.00769 0.00256 0.2296 1113.89 0.33258 0.19946 0.25267
30–34 0.01147 0.00373 0.1941 1919.15 0.32484 0.20760 0.15264
35–39 0.01154 0.00313 0.1457 2151.04 0.27168 0.12754 0.08367
40–44 0.01068 0.00269 0.0718 3748.34 0.25210 0.08141 0.03065
45–49 0.01053 0.00256 0.0311 8238.13 0.24324 0.06106 0.01046

Total 15–49 0.00755 0.00241 0.1713 1406.89 0.33804 1.00000 1.00000
Source: Table 30.1 and Malawi 2008 Census, 10 per cent sample

Table 30.1  Female population of reproductive age 15–49 and 
deaths by whether pregnancy-related, Malawi, 2008 Census

Table 30.2  Adult female mortality rates and pregnancy-related 
mortality rates: Malawi, 2008 Census
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pregnancy, during delivery, or in the 6 weeks/2 months 
post-partum. For the assessment of the distribution of 
pregnancy-related deaths by age, the key comparison is with 
the distribution of births by age. These two distributions are 
shown in the last two columns of Table 30.2. The proportions 
of pregnancy-related deaths through age group 25–29 are 
lower than the corresponding proportions of births, but 
above age 30 the reverse is true. This pattern is plausible 
given accumulating evidence that pregnancy-related 
mortality risks are broadly similar by age below age 30 but 
then rise steeply above age 30. It is instructive to compare 
the patterns with those based on the sibling histories of the 
2004 Malawi DHS (described in Table 29.3). In the sibling 
history example, the proportions of pregnancy-related 
deaths contributed by mothers under age 25 were much 
smaller than the corresponding proportions of births. Here, 
the proportions are smaller, but not so much smaller as to  
lead to concerns about data accuracy.

It is noted above that the distribution of pregnancy-
related deaths by whether they occurred during pregnancy, 
during delivery, or in the 6 weeks/2 months post-partum is 
a weak check. It is weak because there is no strong prior as 
to what this distribution should look like across different 
settings, and because in practice the distribution is found to 
vary wildly by data source.

Interpretation
The importance of evaluating coverage of adult female 
deaths and births cannot be over-emphasized. Household 

deaths in some settings seem to be under-reported by as 
much as 50 per cent, and such an error would translate into 
a bias in the pregnancy-related mortality ratio of a similar 
magnitude. Recent births may also be under-reported, an 
error that may partially compensate for omission of deaths 
in the PRMRatio. Death distribution methods suggest that 
female deaths were under-reported in the 2008 Malawi 
Census by somewhere between 40 and 50 per cent, whereas 
application of the relational Gompertz method to the same 
data indicates births in the year before the census were 
under-reported by about 18 per cent. The net effect of the 
two compensating errors would be an under-estimate of the 
pregnancy-related mortality ratio of about two-fifths.

In interpreting information on pregnancy-related 
mortality for Malawi, it is also essential to remember that 
Malawi was affected by a substantial HIV epidemic in the 
late 1990s and early 2000s. Associated HIV-related mortality 
will affect the results of death distribution methods, as 
described elsewhere, so the adjustment factor derived above 
should be used with caution.

One advantage of census data or large census samples is 
the lack of sampling uncertainty in the results. Thus whereas 
it is hazardous to draw conclusions from sibling histories 
about differentials, similar reservations do not apply to the 
same extent to estimates derived from census data (though 
even with a census numbers may be small for sub-groups, 
introducing stochastic error). Also, given the need to 
evaluate, and often adjust, data from census questions, any 
estimates will still be subject to considerable uncertainty.
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Chapter 31  Introduction to model life tables
Tom A Moultrie and Ian M Timæus

Model life tables are used for comparison in the assessment 
of empirical estimates of mortality, to smooth or otherwise 
adjust defective mortality estimates, and to complete the life 
table when estimates of mortality are available for only a 
limited range of ages.

The term “to smooth” in this context refers to any pro-
cedure for the elimination or minimization of irregularities 
present in reported data or in preliminary estimates obtained 
from them. Such smoothing techniques encompass a wide 
variety of procedures ranging from the fitting of models to 
simple averaging. Traditional techniques for the smoothing 
or graduation of age distributions and observed age-specific 
mortality rates such as the use of cubic splines are well 
described in the actuarial and demographic literature and 
are not discussed here. Instead, the focus is on model-based 
procedures that are suitable for use when the basic data are 
either defective or incomplete.

In classical demographic analysis, a life table is calculated by 
converting a complete series of age-specific death rates (nmx) 
into probabilities of dying (nqx). From these one can calculate 
survivorship, l(x), and all the other functions of the life table. 
In the analysis of census and survey data, however, one often 
only obtains mortality estimates for part of the age range. For 
example, mortality estimates made from birth history data 
(Chapter 15) and sibling history data (Chapter 27) provide 
no information on the mortality of older children or on adult 
mortality at age 50 and more. With estimates of this sort, 
model life tables can be used both to smooth the estimated 
death rates and to complete the life table by making plausible 
assumptions about the death rates that prevail at ages at 
which mortality has not been measured directly.

Furthermore, if one has estimated survivorship indirectly 
from information on children ever born and surviving 
(Chapter 16) and on the survival of parents (Chapter 22) 
or other adult relatives, the results indicate only the level of 
mortality in each broad age range. In particular, for adults 

these methods yield conditional survivorship probabilities 
i.e. probabilities of surviving from age A to age B, l(B)/l(A). 
In this situation, model life tables can be used both to 
estimate death rates for five-year age groups and to complete 
the life table by making a plausible assumption about 
mortality in old age.

The following two chapters describe two approaches to 
deriving complete life tables from information on mortality 
in a limited range of ages. Chapter 32 focuses on methods 
for combining a single estimate of child mortality (5q0) and 
a conditional estimate of adult mortality referring to the 
same year or period of years to derive a full life table. Several 
variants of the method are described. Chapter 33 describes 
a method for combining a series of time-located estimates 
of child mortality (such as those produced indirectly from 
data on children ever-born and surviving) and a series of 
time-located estimates of conditional adult survival (such as 
those produced by the indirect orphanhood or siblinghood 
methods) to produce a life table for a specific point in time.

This manual makes extensive use of relational logit model 
life tables, firstly, for the evaluation and smoothing of series 
of estimates of child and adult mortality and, secondly, to 
combine independent estimates of child and adult mortality 
and produce full life tables. The system and its properties are 
described in the next section.

Overview of the relational logit 
system of model life tables
Brass and colleagues (Brass 1964, 1971; Brass and Coale 
1968) developed a flexible 2-parameter system of model 
life tables usually referred to as the logit model life table 
system. Broadly speaking, the first parameter of this system 
of models, , captures differences in the level of mortality 
between populations and the second parameter, , variation 
between populations in the relationship between mortality 
in childhood and adulthood.
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The system of models is a relational one. In other words, 
it is based on a mathematical transformation of the age-
specific survivorship function, l(x), which makes it possible 
to relate two different life tables to each other by means of a 
simple equation. In particular, Brass discovered that a logit 
transformation of the probabilities of survival to age x, l(x), 
rendered the relationship between transformed probabilities 
for different life tables approximately linear.

Thus, if one defines the logit of l(x) as

	 ( ) 1 ( )( )  logit ( ) ln
2 1 ( )

l xY x l x
l x

 = = −  − 
,	 (1)

the following linear relationship is approximately true for 
all ages x:

	 *( ) ( )Y x Y xα β= + 	 (2)

where Y(x) and Y *(x) are the logits of survivorship by age, 
l(x) and l *(x), in two different life tables, and  and  are 
constants.

Those familiar with logistic regression will recognize Y(x) 
as being half the log odds of dying between birth and age x 
since
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If Equation 2 held for any pair of life tables, this would imply 
that all life tables could be generated from a single baseline 
or standard life table, l s(x), using an appropriate pair of 
values of  and . In fact, Equation 2 is only approximately 
satisfied by pairs of actual life tables, but the approximation 
is close enough to warrant use of the relationship to study 
and model observed mortality schedules.

Before describing how to use Equation 2 to generate model 
life tables, a word about the meaning of the parameters  
and  is in order. Consider the set of life tables that can 
be generated starting with some baseline life table l s(x) and 
calculating Y(x) for different values of  and . If  is held 
constant and equal to 1, changing  will either increase or 
decrease survivorship at every age. Thus changing  will 
produce life tables whose shapes are essentially the same as 
that of the l s(x) life table used to generate them, but whose 
overall levels differ. If, on the other hand,  is fixed at 0 and 

 is allowed to vary, the resulting life tables will no longer 
display the same shape as l s(x). All of the derived tables will 
intersect at a single point located somewhere in the central 
portion of the age range, where l s(x) = 0.5 and Y s(x) = 0. 
Therefore, their probabilities of survival will be either lower 
at younger ages and higher at older ages or lower at younger 
ages and higher at the older than the standard survivorship 
probabilities l s(x) from which they are generated. Hence, 
 modifies the shape of the generated mortality schedule 
rather than its level. Simultaneous changes of  and  will 
bring about changes in both the level and shape of the 
survivorship function being generated.

From Equation 1,

( )
1( )

1 exp 2 ( )
l x

Y x
=

+ −

and combining this with Equation 2:

	
( )( )
1( )

1 exp 2 ( )s
l x

Y xα β
=

+ − +
.	 (3)

Thus, for any series of l s(x) values defining a standard life 
table, another series l (x) can be obtained for each pair of  
and  values. (Note that, at the endpoints of the age range, 
Equation 3 cannot be used to calculate l (x); l (0) and l () 
should be set to 1 and to 0, respectively).

Equation 3 can be used to generate families of model 
life tables from an appropriate standard life table, l s(x). 
Potentially, any life table can be used as a standard. 
For example, one might use a reliable life table for the 
population concerned at some other date or a life table from 
a neighbouring country. When no appropriate or reliable 
such life table exists, however, a model life table taken 
from the Princeton regional series (Coale, Demeny and 
Vaughan 1983), or the UN Model Life Tables for Developing 
Countries (UN Population Division 1982) is frequently used 
as a standard. The derivation of the standards used in this 
manual are described in the next section of this chapter.

Because of the mathematical simplicity of Equations 2 
and 3, logit model life tables based on any standard can be 
readily calculated in a spreadsheet, doing away with the need 
for volumes of published tables. The simple mathematical 
form of Equation 3 also simplifies the use of relational logit 
model life tables for simulation purposes and for projecting 
mortality. If the past and current mortality schedules of a 
population are known, trends in the  and  parameters 
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can be determined by using the logit model life table system 
to fit each mortality schedule, and with some caution the 
trends in these two parameters can be projected to generate 
estimates of future mortality.

Description of the model life tables 
used in the manual
All the logit life tables used in this manual are based on 
a common set of standard life tables. These standard life 
tables are taken from the Princeton regional model life 
tables (North, South, East and West) and the UN model life 
tables for developing countries (General, Latin American, 
Chilean, South Asian, Far Eastern), by sex. They all have an 
expectation of life at birth of 60 years. The original life tables 
have been modified, extended and enhanced over time to 
extend them to older ages. We make use of these updated 
tables, which were developed by the UN Population Division 
(2010) and used by them in their population projections. 
These life tables provide values of l (x) and Lx (amongst other 
quantities) for ages 0, 1, 5, 10, ..., 130.

For the standards based on the Princeton regional model 
life tables, values for l (2), l (3) and l (4) were generated by 
applying the proportionality factors presented by Coale, 
Demeny and Vaughan (1983: 21) to l (1) and l (5). For the 
standards based on the UN model life tables for developing 
countries, deaths between the ages of 1 and 5 were distributed 
by single years of age in the same proportion as those deaths 
in the original sex- and region-specific life tables.

Some methods of child and adult mortality estimation 
require joint-sex life tables (that is, life tables for males 
and females combined). As these life tables (or their 
implementation) are not particularly sensitive to the sex 
ratio at birth, a sex ratio at birth of 105 (boys per 100 girls) 
is used. Joint-sex life tables were then derived by appropriate 
weighting of the sex-specific life tables:

(1.05) ( ) ( )
( )

2.05

m f
c l x l x

l x
+

=

where l c(x) represents the number of survivors at age x in the 
joint-sex life table and l m(x) and l f(x) are the equivalent life 
table values for men and women respectively.

As these life tables are used almost exclusively in a 
relational context (as originally set out by Brass (1971), 
standard logits of the l s(x) values were calculated for all ages 
above zero by means of the formula

1 ( )( ) 0.5ln
( )

s
s

s

l xY x
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 −
=  

 
.

Values of these logits can be downloaded from the Tools for 
Demographic Estimation website.

Choosing an appropriate standard
A crucial decision to be made when implementing methods 
based on model life tables, or when combining estimates 
from different methods into a single life table based on the 
relational model life table system is the choice of standard 
life table to be used in the calculations.

The nine standard life tables (four Princeton regional 
model life tables; five UN developing country life tables) 
used in this manual exhibit markedly different mortality 
patterns. Figure 31.1 shows the relative balance of child and 
adult mortality for the combined sex standard life tables – 
all of which have a life expectancy at birth of 60 years. The 
index of child mortality is 5q0, the probability of dying 
before exact age 5; the index of adult mortality is 45q15, the 
conditional probability of dying between exact ages 15 and 
60.

Thus, for example, the UN Far Eastern table is revealed 
to have very high adult mortality and very low child 
mortality relative to the other tables used, while – at the 
other extreme – the Princeton South and UN South Asian 
tables have relatively low adult mortality but very high child 
mortality.

A second important dimension on which the tables 
differ is in the balance between infant mortality (before 
the first birthday) and child mortality (between exact ages 
1 and 5). Comparing these rates (Figure 31.2), it can be 
seen that while the UN Far Eastern and UN Chilean tables 
have roughly equivalent levels of child mortality, the level of 
infant mortality in the two standards is very different.

Ideally, a standard life table should be selected for any 
application that describes well the relative balance between 
infant and child mortality, on the one hand, and between 
under five mortality and adult mortality on the other. Thus, 
if there are reasonable estimates of the mortality pattern for 
a given country, the best standard life table can be selected 
by comparing the observed pattern to those embodied by 
the model tables. But in populations on which little or no 
reliable information on mortality by age is available, the 
analyst can do little more than guess which pattern would 
be most appropriate.
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In situations where nothing is known about the age 
pattern of mortality, use of either the Princeton West or 
the UN General standard is recommended because of the 
relatively wider data base from which these tables were 
derived. Moreover, the UN General pattern, in particular, 
appears to represent something close to an average pattern 
in terms of characteristics plotted in Figures 31.1 and 31.2.

As for the “extra information” that might permit a more 
enlightened selection, it can vary considerably in type and 
quality. It might range, for example, from estimates of age-
specific mortality rates derived from vital registration data to 
knowledge of some fairly general facts, such as the prevalence 
and typical duration of breast-feeding in the population, or 
an estimate of tuberculosis prevalence.

When a set of observed age-specific mortality rates is 
available (preferably a set adjusted according to a death dis-
tribution method such as those described in Chapters 24 
and 25), a model mortality pattern may be chosen by com-
paring the logits of the observed l (x) values to those in the 
different standard model life tables. This comparison may be 

carried out by plotting the observed values of Y (x) against 
those derived from the different standards, and choosing as 
the preferred standard that model life table that exhibits the 
most linear relationship between the two sets of values.

According to the description given above of the mortal-
ity patterns contained in the different standard life tables, 
it is evident that they differ most markedly in their values 
at early ages and in the relation between infant (1q0) and 
child (4q1) mortality. It follows that quite different child 
mortality estimates may be obtained from the same infor-
mation according to which family is selected as representa-
tive. Furthermore, in this case, sound external evidence to 
inform the selection of a standard can be hard to obtain, 
mainly because infant deaths are very often grossly under-
reported. In the absence of adequate empirical data for se-
lecting a suitable standard life table, a few general guidelines 
can be proposed to help narrow the possibilities and lead to 
a reasonable choice:
a) �In a population where breast-feeding is common prac-

tice and where weaning occurs at a relatively late age 

Figure 31.1  Relationship between adult and under five mortality 
for different standard life tables with a life expectancy at birth of 
60 years
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(12 months or over), one may reasonably expect child 
mortality (4q1) to be relatively high compared with infant 
mortality (1q0) since breast-feeding may successfully 
prevent deaths due to malnutrition and infectious dis-
eases among young infants. When weaning takes place, 
however, the child is less protected from these perils and 
is more likely to die. In these cases, mortality in child-
hood is likely to be well represented by the Princeton 
North or UN General standard. Yet, it cannot be inferred 
from these observations that these tables will provide an 
appropriate mortality model for other sections of the age 
range. Only independent information on mortality in 
adulthood is able to establish this fact.

b) �In some populations today, breast-feeding has been 
abandoned by a high proportion of the female population; 
and, from a very early age, infants are fed unsterilized 
and often inadequate rations of “milk formula”. When 
this practice is adopted by women living in relatively 
unhealthy conditions and exacerbated by poor care at 
delivery and immediately after birth (perhaps leading to a 

high incidence of neonatal tetanus), infant mortality can 
be high relative to mortality later in childhood. In such 
conditions, the Princeton East or UN Chilean tables may 
be a good representation of mortality in childhood. The 
caution in the previous paragraph about whether these 
tables may adequately describe the balance between adult 
and child mortality applies.

c) �Early weaning may not be the only cause of malnutrition 
which results in a high infant and child mortality. In some 
populations, breast-feeding is nearly universal but both 
levels of hygiene and children’s nutritional status are poor 
and both infant and child mortality are high. For such 
least developed countries, either the Princeton South 
or UN South Asian model life tables may be the most 
appropriate.

d) �In the absence of data adequate to determine the most 
suitable family of model life tables to use for a particular 
country, one may select the same family as that employed 
for a neighbouring country with similar cultural and 
socio-economic characteristics.

Figure 31.2  Relationship between infant and child mortality 
for different standard life tables with a life expectancy at birth of 
60 years
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e) �For the reasons given earlier, if little is known about 
the population under study, the Princeton West or UN 
General standard is recommended.
From these remarks, it is clear that the knowledge about 

mortality patterns is still fairly limited and that, certainly, 
better information concerning the mortality experience of 
populations in developing countries is needed to assess the 
adequacy of the models now available.

Alternative systems of model life tables
Two of the methods of fitting life tables to observed data 
presented in the next chapter make use of two somewhat 
different approaches to the modelling of mortality patterns 
to that pioneered by Brass. These two alternative systems of 
model life tables are described briefly below. The interested 
reader is referred back to the source texts for further 
information.

The modified logit system
Murray and colleagues (Murray, Ferguson, Lopez et al. 
2003) proposed a modified system of relational logit model 
life tables based on a single global standard life table and 
additional two sets of age-specific coefficients γ(x) and θ(x):

( )

(5) (60)( ) ( ) 1 ( ) 1
(5) (60)

s
s s

Y x

l lY x x x
l l

α β γ θ

=

      + + − + −      
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.

As before, Y (x) denotes the logit transform of l (x), so the first 
two elements are those of the Brass system of logit model life 
tables. The first of the two additional sets of coefficients, 
γ(x), adjusts for the level of under-five survivorship relative 
to the standard, while θ(x) does the same for the level of 
adult survivorship relative to the standard.

Despite superficially appearing to be a 4-parameter 

model, this modification of the logit system of models 
actually remains a 2-parameter one. Because γ(5), θ(5), 
γ(60) and θ(60) are all set to zero by definition,  and  fully 
define l (5) and l (60) in the fitted model and, thereby, the 
two sets of age-specific deviations from the standard pattern 
of mortality, γ(x) and θ(x). In effect, these deviations serve 
to reduce the impact on mortality in infancy and old-age 
of using a value of  other than 1 to model the relationship 
between mortality in childhood and adulthood as a whole.

Users of this system of models should be alert to the fact 
that the values of γ(x) and θ(x) published in the 2003 paper 
are reversed with respect to sign. Therefore, the parameters 
tabulated in Table 3 of that paper should be multiplied by 
–1 before using them.

The log-quadratic system
An alternative 2-parameter system of model life tables has 
been published recently by Wilmoth, Zureick, Canudas-
Romo et al. (2012). It uses age-specific scalar constants a(x), 
b(x), c(x) and v(x) and parameters h and k in the following 
relationship:

( ) 2ln ( ) ( ) ( ) ( )n xm a x b x h c x h v x k= + + + .

Values of a(x), b(x), c(x) and v(x) were derived from the 
mortality data contained in the Human Mortality Database, 
leaving two parameters (h and k) with which to fit the model 
to empirical estimates of mortality.

The first parameter, h, measures the overall level of 
mortality and is defined as the log of the observed 5q0. The 
second parameter k (in combination with v(x)) captures the 
deviation of the observed age pattern of mortality from that 
of a standard population. In practice, it is chosen to fit one 
index or a series of observed indices of adult mortality (e.g. 
45q15 or 30q30).
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Chapter 32  Fitting model life tables to a pair of estimates 
of childhood and adult mortality

Ian M Timæus and Tom A Moultrie

Description of the method
It is often impossible in the analysis of mortality in countries 
with limited and defective data to derive complete series 
of age-specific death rates from the available data. Most 
countries, however, have collected data that can be used 
to estimate child mortality. In particular, it is usually 
possible to estimate the under-five mortality rate, 5q0. In 
many countries, moreover, it is possible to use either death 
registration statistics or census or survey data to estimate 
adult mortality. Usually, the resulting estimates for adults 
measure conditional survivorship in adulthood over some 
broad range of ages (for example, 45p15, the probability of 
surviving from exact age 15 to exact age 60). This chapter 
sets out how to fit a relational model life table to pairs of 
such estimates of child and adult mortality that refer to the 
same year or period of time.

When one can estimate both child and adult mortality in a 
population, it is possible to fit a 2-parameter model life table 
to any pair of such estimates that takes on their observed 
values. Thus, 2-parameter models make full use of the 
available data in this situation and, because they reproduce 
the observed relationship between the level of mortality in 
childhood and adulthood, are likely to represent the age-
specific mortality schedule of the population in question far 
better than a 1-parameter model fitted to data on mortality 
in childhood alone.

The approaches set out below can be applied to any two 
estimates of child and adult mortality, provided that the 
estimate of child mortality is expressed as the probability 
of survival from birth. In most situations, however, the 
observed measure of child mortality will be the under-
five mortality rate, 5q0. By contrast, the estimate of adult 
mortality is usually a conditional probability, that is, the 
probability of survival to some age x + n, conditional on 

having survived to age x, i.e. npx. In most cases this base 
age in adulthood is greater than the upper age limit to 
which child survival is measured. This makes it impossible 
to straightforwardly convert the conditional measures of 
survivorship in adulthood into unconditional ones. Thus, 
the methods for fitting relational model life tables explained 
by the introductory descriptions of the models in a number 
of textbooks cannot be applied and more complicated fitting 
methods are required.

The chapter describes methods than can be used to fit 
two different types of 2-parameter model life table to a pair 
of estimates of childhood and adult mortality. The first set 
of methods is based on the relational logit system of model 
life tables, presented in Chapter 31. Three variants to this 
approach are presented. The ‘Splicing method’ uses separate 
1-parameter logit model life tables to represent child and 
adult mortality (assuming that , the shape parameter in the 
system, equals 1 in each model) and grafts the model life 
table for adults onto the childhood model at age 15. Second, 
the ‘Brass logit’ method uses both the level () and shape () 
parameters of the system of models to determine a life table 
relative to a chosen standard. Third, the ‘Modified logit’ 
method,’ proposed by Murray, Ferguson, Lopez et al. (2003 
again fits a relational logit model life table with parameters 
 and , but uses its own standard life table and further 
adjusts the estimates to reduce the impact that varying  has 
on infant mortality and mortality in old age.

The second set of 2-parameter model life tables is the ‘log-
quadratic’ system proposed recently by Wilmoth, Zureick, 
Canudas-Romo et al. (2012. This is a regression-based 
system of models of ln(5mx). It is not explicitly relational 
in its formulation, although the model is parameterized 
using the large corpus of mortality data contained in the 
Human Mortality Database and one could easily re-express 



CHAPTER 32 FITTING MODEL LIFE TABLES TO A PAIR OF ESTIMATES  |  349

the system as a relational one using one of the models as a 
standard.

Because iterative methods are required to fit a model life 
table to data on conditional survivorship in adulthood, de-
tailed worked examples are not provided in the text. The 
reader is directed to the associated workbook on the manual’s 
website. The final section of the chapter, however, provides a 
summary of results of the application of all four methods to 
a set of estimates of mortality for Kenya in the mid-1980s.

Data requirements and assumptions
The methods described in this chapter require as inputs an 
estimate of infant and child mortality (5q0) and an estimate 
of adult mortality conditional on survival to adulthood 
(e.g., 45q15 or 35q15). The two estimates should both refer to 
the same year or other period of time. In principle, measures 
of adult mortality conditional on survival to ages in early 
adulthood other than 15 could also be used.

All the methods described in this chapter draw, either 
implicitly or explicitly, on a standard mortality schedule, 
which is then modified to fit the observed values. Two of 
the three methods based on the relational logit system of 
model life tables system require the analyst to choose which 
standard life table to use in the derivation of the fitted model 
life table. Thus, an important assumption made by these 
methods is that this selection is appropriate. Chapter 31 
offers guidance on how to select a suitable standard life table.

Caveats and warnings
The four approaches usually produce broadly similar 
estimates of summary measures such as life expectancy at 
birth. However, important differences exist between the 
fitted estimates of age-specific mortality produced by the 
different approaches. These tend to be largest in populations 
in which the relationship between adult and child mortality 
differs greatly from the global average. At present, there is 
no certainty as to whether one of the approaches described 
below is generally or universally superior to the others. 
Further research is required in this regard. However, Murray, 
Ferguson, Lopez et al. (2003) provide evidence that the 
modified logit system tends to produce better results that 
the use of the original system of 2-parameter model life 
tables and Wilmoth, Zureick, Canudas-Romo et al. (2012) 
conclude that the log-quadratic and modified logit models 
perform equally well.

Since all the methods either implicitly or explicitly draw 

on the mortality experience of a standard population. The 
methods should not be used to model age-specific mortality in 
populations with age-specific mortality schedules that differ 
radically from that of the selected standard. This warning 
applies especially to populations severely affected by HIV/
AIDS as the observed age pattern of mortality in countries 
with generalized HIV epidemics differs greatly from those in 
the Princeton and United Nations model life tables and those 
in the sets of life tables used to derive the modified logit and 
log-quadratic 2-parameter systems of models.

Using Solver in Microsoft Excel
The methods described in this chapter are designed to be 
applied when the only measures of adult mortality available 
are conditional on survivorship to some base age in early 
adulthood. With such estimates, one cannot determine 
analytically what estimates of the model parameters will 
produce the best fitting model life tables. Iterative trial-and-
error methods or optimization routines (such as Solver in 
Microsoft Excel) have to be used to apply all the methods 
described here other than the ‘Splicing method’.

Solver is not routinely loaded by standard installations of 
Microsoft Excel. To enable its use, proceed by selecting “File 
→ Options → Add-ins → Manage Excel Add-ins → Go 
…” and then ensuring that the “Solver Add-in” is ticked.

The specifications of the Solver function, and the condi-
tions and constraints that should be adhered to, have been 
set up in the workbook associated with the methods pre-
sented in this chapter. To run the routine on a given work-
sheet, select “Data → Solver → Solve”. Small changes to 
the specification (in the “Set objective”; the “By Changing 
Variable Cells”; and the “Subject to the Constraints” text-
boxes) are required to solve for first the model for men and 
then the model for women. The appropriate cells for fitting 
the model life table for women can be identified readily by 
examining the cells specified for the men.

Method 1: The Splicing method
The Splicing method is the simplest of the four methods. 
It fits a single life table to the estimates of child and adult 
mortality provided as inputs using an appropriately-selected 
standard life table. The method combines two different 
1-parameter model life tables, one for children that exactly 
fits the observed measure of under-five mortality (5q0) 
and one for adults that exactly fits the observed index of 
conditional survivorship in adulthood (e.g., 45q15 or 35q15).
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The model life tables for adults and children are spliced 
together at a boundary age of 15 years. This age is close to 
the age at which mortality reaches its minimum in most 
life tables. Thus, each of the two models represents one arm 
of the age-specific mortality schedule. Moreover, exact age 
15 is conventionally taken to represent the dividing point 
between child and adult mortality.

Step 1.1: Derive an estimate of  for the child segment of 
the life table
From the estimate of 5q0, the value of  for the child segment 
of the life table (that is, up to age 15) is derived using the 
relationship

(5) (5)child sY Yα = − ,

where Y(5) is the logit of the observed 5q0,
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,

and Y s(5) is the equivalent logit from the selected standard 
life table, denoted with a superscript s.

Step 1.2: Derive an estimate of  for the adult segment of 
the life table
The estimate of  for adults is derived using the relationship
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where the first term is calculated from the observed measure 
of adult mortality conditional on survival to age 15, nq15, 
and the second term is calculated using the identity
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Note that, because adult is calculated for a life table with its 
radix at age 15, it cannot be directly compared with child.

Step 1.3: Splice the two segments of the life table together
In order to splice together a life table using age 15 as the 
knot, it is necessary to derive the logits of the standard life 

table’s conditional probabilities of survival from age 15, 
15
s

a p , for a = 5, 10, 15… Using the formula for 15
s

a p  derived 
in the previous section to obtain 15

s
a p , these are calculated as
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The final life table, with a radix of 1, is then derived as 
follows:

For ages less than or equal to 15

( )( )
1( )

1 exp 2 ( )child s
l x

Y xα
=

+ +
.

At age 15 or more (that is, ages 15+a where a = 5, 10, 15, …), 
the estimated life table survivors at age 15 (l (15), calculated 
using the  values for children) are multiplied by the fitted 
conditional probabilities of survivorship from age 15 to give 
unconditional estimates of survivorship as follows:
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1 exp 2 logit(
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.

Once one has calculated l (x), the other life table functions 
(e.g. nmx, nLx and ex) can be calculated using appropriate 
separation factors, nax.

Method 2: The Brass logit method
Chapter 31 introduced the Brass relational logit model life 
table system in which, with two parameters,  and ,

( )( )
1( )

1 exp 2 ( )s
l x

Y xα β
=

+ +
.

The method for fitting Brass logit models estimates the 
parameters  and  in a relational model life table relative 
to an appropriately-selected standard that reproduce exactly 
the observed values of under-five mortality (5q0) and the 
observed index of adult mortality (e.g., 45q15 or 35q15). The 
two observed measures are assumed to apply to the same 
point in time.

Step 2.1: Estimate  and 
Because this is a 2-parameter model, it is possible to express 
either parameter as a function of the other parameter and 
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one of the two observed measures of mortality. In order 
to simplify the process of fitting the model, it is useful to 
express  as a function of  and 5q0. In the relational logit 
system of models,
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(5) (5)sY Yα β= +

and, therefore,
	 (5) (5)sY Yα β= − .	 (1)

Assuming the index of adult mortality is a conditional 
probability that a 15-year old dies before exact age 15+n, 
nq15, then
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Substituting Equation 1 for , one obtains

( )( )( )
( )( )( )15

1 exp 2 (5) (15) (5)
1

1 exp 2 (5) (15 ) (5)

s s

n s s

Y Y Y
q

Y Y n Y

β

β

+ + −
= −

+ + + −
.

As Y (5) is known, with a tabulated standard it is possible to 
solve this equation by trial-and-error or by using Solver in 
Excel for the value of  that reproduces the observed value 
of nq15. Ideally, the fitted  should remain fairly close to its 
central value of 1. If  differs greatly from 1 (e.g. outside 
the range 0.8<<1.25), it is advisable to repeat the analysis 
with an alternative standard life table that has an age pattern 
of mortality which more closely resembles that of the 
population in question.

Step 2.2: Derive a complete life table
The solution for  defines the value of  (through substitu-
tion into Equation 1). Using these two parameters and the 
selected standard, it is possible to generate an entire life table 
with a radix of 1 using the usual logit relationship

( )( )
1( )

1 exp 2 ( )s
l x

Y xα β
=

+ +
.

Once one has calculated l (x), the other life table functions 
(e.g. nmx, nLx and ex) can be calculated using appropriate 
separation factors, nax.

Method 3: The modified logit method
The modified logit method, described by Murray, Ferguson, 
Lopez et al. (2003), is a relatively simple extension of the 
Brass logit system. They proposed a means of deriving a life 
table using a global standard life table and additional age-
specific coefficients γ(x) and θ(x) in a modified logit system

	

(5)( ) ( ) ( ) 1
(5)

(60)( ) 1 .
(60)

s
s

s

YY x Y x x
Y

Yx
Y

α β γ

θ

 = + + − 
 

 + − 
  	 (2)

As before, Y(x) denotes the logit transform of l (x), so the first 
two elements are those of the Brass system of logit model life 
tables. The first of the two additional sets of coefficients, 
γ(x) is parameterized by the level of under-five survivorship 
relative to the standard, while the θ(x) coefficients are 
parameterized by survivorship to age 60 relative to the 
standard. The values of γ(x), θ(x) and the global standard life 
tables, for males and females, are presented in Table 32.1.

Users of this system of models should be alert to the fact 
that the values of γ(x) and θ(x) published in the 2003 paper 
are reversed with respect to sign. Therefore, the coefficients 
tabulated in Table 3 of that paper should be multiplied by 
–1 before using them. This correction has been made to the 
coefficients in Table 32.1.

Despite superficially appearing to be a 4-parameter model, 
this modification of the logit system of models actually 
remains a 2-parameter one. Because γ(5), θ(5), γ(60) and 
θ(60) are all zero,  and  fully define l (5) and l (60) in 
the fitted model and, thereby, the two sets of age-specific 
deviations from the standard pattern of mortality, γ(x) and 
θ(x). Thus, the model can be fitted iteratively to any pair 
of estimates of child mortality and conditional survivorship 
in adulthood. In particular, the value of Y(60) that defines 
Y(x) for x ≠ 5,60 is that in the final fitted life table. It is not 
necessary, therefore, to know l (60) in advance of fitting the 
model and a modified logit model can be fitted using any 
suitable index of adult mortality.

Step 3.1: Estimate  and 
The estimate of  produced by this method can be expressed 
in terms of  and the observed estimate of child mortality, 
5q0:

(5) (5)sY Yα β= −
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where Y(5) is the logit of the observed 5q0 and Y s(5) is 
the logit of l (5) from the standard life table presented in 
Table 32.1. Moreover, in the fitted life table

( )(60) (60) (5) (60) (5)s s sY Y Y Y Yα β β= + = + − .

Thus, the model can be rewritten in terms of , Y(5) and 
values taken from the standard
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Using this equation,  can be estimated iteratively, with 
the aim of identifying the value of it that produces a fitted 
life table that has an index of adult mortality (e.g., 45q15 or 
35q15) equal to that originally observed.

Step 3.2: Derive a complete life table
The fitted value of  and Y(5) can be used to calculate  
by means of Equation 1. As γ(60) = θ(60) = 0, one can then 
calculate logit survivorship at age 60

(60) (60)sY Yα β= + .

With these four items of information (, , Y(5) and Y(60)), 
it is possible to calculate the entire series of Y(x) values using 
Equation 2 and the coefficients and standards in Table 32.1.

Having obtained Y(x), the associated life table is derived 
using the usual logit relationship,

( )
1( )

1 exp 2 ( )
l x

Y x
=

+
.

Once one has calculated l (x), the other life table functions 
(e.g. nmx, nLx and ex) can be calculated using appropriate 
separation factors, nax.

 Males Females
Age (x) γ(x) θ(x) l s(x) γ(x) θ(x) l s(x)

0 0.0000 0.0000 100,000 0.0000 –0.0000 100,000
1 –0.1607 0.0097 96,870 –0.0855 –0.0734 97,455
5 0 0 96,010 0 0 96,651

10 0.0325 –0.0025 95,666 0.0026 0.0229 96,370
15 0.0297 –0.0047 95,385 –0.0291 0.0485 96,153
20 –0.0427 –0.0018 94,782 –0.1199 0.1090 95,795
25 –0.1262 0.0210 93,915 –0.1931 0.1702 95,340
30 –0.1877 0.0518 93,007 –0.2352 0.2117 94,824
35 –0.2430 0.0883 91,949 –0.2686 0.2408 94,197
40 –0.2899 0.1248 90,575 –0.3003 0.2601 93,370
45 –0.3148 0.1482 88,645 –0.3203 0.2594 92,220
50 –0.2888 0.1402 85,834 –0.2935 0.2183 90,569
55 –0.1915 0.0910 81,713 –0.1967 0.1338 88,159
60 0 0 75,792 0 0 84,679
65 0.2304 –0.1170 67,493 0.2794 –0.1859 79,481
70 0.5523 –0.2579 56,546 0.7066 –0.4377 71,763
75 0.9669 –0.4150 42,989 1.2835 –0.7534 60,358
80 1.5013 –0.5936 28,117 2.0296 –1.1360 44,958
85 2.2126 –0.8051 14,364 2.9576 –1.5774 27,123

Source: Murray, Ferguson, Lopez et al. (2003, Table 3, with the signs of γ and θ 
reversed (see text for an explanation))

Table 32.1  Coefficients, γ(x) and θ(x), 
and the global standard life table, of the 
modified logit system of model life tables
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Method 4: The log-quadratic method
An alternative approach to deriving life tables from limited 
data was recently published by Wilmoth, Zureick, Canudas-
Romo et al. (2012). It models the age-specific death rates 
(nmx) in a population as a function of age-specific scalar 
constants a(x), b(x), c(x) and v(x) and parameters h and k in 
the following relationship

( ) 2ln ( ) ( ) ( ) ( )n xm a x b x h c x h v x k= + + + .

Values of the four scalar constants were derived from the 
mortality data contained in the Human Mortality Database, 
leaving the system with two parameters (h and k) used to fit 
the model. The values of a(x), b(x), c(x) and v(x), for males 
and females, are presented in Table 32.2.

The parameter h is defined to be the log of the observed 
5q0, while k is a parameter that (in combination with v(x)) 
describes the deviation of the observed age pattern of 
mortality from that of a standard population. In practice, 
it is set to reproduce the observed index of adult mortality 
conditional on the observed 5q0.

Step 4.1: Estimate h and k
The estimate of h in this method is derived from the observed 
estimate of child mortality, 5q0

h = ln(5q0).

The value of k is derived by iteratively changing its value 
to raise or lower the age-specific death rates until the 

 Males Females
x n a(x) b(x) c(x) v(x) a(x) b(x) c(x) v(x)
0 1 –0.5101 0.8164 –0.0245 0 –0.6619 0.7684 –0.0277 0
1 4         
5 5 –3.0435 1.5270 0.0817 0.1720 –2.5608 1.7937 0.1082 0.2788
10 5 –3.9554 1.2390 0.0638 0.1683 –3.2435 1.6653 0.1088 0.3423
15 5 –3.9374 1.0425 0.0750 0.2161 –3.1099 1.5797 0.1147 0.4007
20 5 –3.4165 1.1651 0.0945 0.3022 –2.9789 1.5053 0.1011 0.4133
25 5 –3.4237 1.1444 0.0905 0.3624 –3.0185 1.3729 0.0815 0.3884
30 5 –3.4438 1.0682 0.0814 0.3848 –3.0201 1.2879 0.0778 0.3391
35 5 –3.4198 0.9620 0.0714 0.3779 –3.1487 1.1071 0.0637 0.2829
40 5 –3.3829 0.8337 0.0609 0.3530 –3.2690 0.9339 0.0533 0.2246
45 5 –3.4456 0.6039 0.0362 0.3060 –3.5202 0.6642 0.0289 0.1774
50 5 –3.4217 0.4001 0.0138 0.2564 –3.4076 0.5556 0.0208 0.1429
55 5 –3.4144 0.1760 –0.0128 0.2017 –3.2587 0.4461 0.0101 0.1190
60 5 –3.1402 0.0921 –0.0216 0.1616 –2.8907 0.3988 0.0042 0.0807
65 5 –2.8565 0.0217 –0.0283 0.1216 –2.6608 0.2591 –0.0135 0.0571
70 5 –2.4114 0.0388 –0.0235 0.0864 –2.2949 0.1759 –0.0229 0.0295
75 5 –2.0411 0.0093 –0.0252 0.0537 –2.0414 0.0481 –0.0354 0.0114
80 5 –1.6456 0.0085 –0.0221 0.0316 –1.7308 –0.0064 –0.0347 0.0033
85 5 –1.3203 –0.0183 –0.0219 0.0061 –1.4473 –0.0531 –0.0327 0.0040
90 5 –1.0368 –0.0314 –0.0184 0 –1.1582 –0.0617 –0.0259 0
95 5 –0.7310 –0.0170 –0.0133 0 –0.8655 –0.0598 –0.0198 0
100 5 –0.5024 –0.0081 –0.0086 0 –0.6294 –0.0513 –0.0134 0
105 5 –0.3275 –0.0001 –0.0048 0 –0.4282 –0.0341 –0.0075 0
110 –0.2212 –0.0028 –0.0027 0 –0.2966 –0.0229 –0.0041 0

Source: Wilmoth, Zureick, Canudas-Romo et al. (2012, Table 3)

Table 32.2  Coefficients, a(x), b(x), c(x) and v(x) of the log-
quadratic system of model life tables
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conditional survivorship ratio in the fitted model life table 
(e.g., 45q15 or 35q15) matches the observed estimate of the 
same measure.

Step 4.2: Derive a complete life table
Once h and k have been estimated, it is straightforward 
to calculate a complete series of estimates of 5mx using the 
coefficients in Table 32.2. Note that, in order to ensure that 
the fitted estimate of 5q0 matches that observed, mortality 
at ages 1 to 4 is calculated as a residual from the original 
estimate of 5q0 and the fitted infant mortality rate, 1q0,

5 0
4 1

1 0

1
1

1
q

q
q

−
= −

−
.

As the log-quadratic models define nmx, the age-specific 
death rates between ages x and x + 5, separation factors 
(nax) measuring the average number of years lived in an 
age interval by those that die in it are required to convert 
the death rates into probabilities of dying and calculate 
measures such as 45q15 or 35q15. A simple assumption that 
usually gives reasonable results for the age range 5–59 years 
is that those who die in a five-year interval die on average, 
2.7 years through that interval. (This assumption is made in 
the Microsoft Excel workbook associated with this chapter,  
see website, and progressively smaller separation factors are 
used at older ages).

More care is needed when determining what separation 
factor to use to estimate 1q0 from 1m0 as the assumption 
made can make a material difference to the answer obtained. 
In the absence of empirical evidence as to what constitutes an 
appropriate value for 1a0 in the population concerned, one 
can estimate a plausible value using the equations presented 
by Preston, Heuveline and Guillot (2001: 48) based on the 
Princeton West series of model life tables. (These equations 
are used to estimate 1a0 in the associated Microsoft Excel 
workbook, see website).

Worked example
As mentioned in the introduction to this chapter, it would 
be laborious to present detailed step-by-step examples of 
the methods as an iterative series of calculations is required 
to derive the fitted life tables. The associated workbook 
provides an example of the application of each method to 
estimates derived from an analysis of mortality in Kenya 
in the mid-1980s. (Note that these estimates predate the 
onset of demographically significant mortality from AIDS 

in Kenya and therefore one can derive life tables for this 
population using models that fail to reflect the impact that 
a severe HIV epidemic has on the age pattern of mortality).

The pairs of estimates of child and adult mortality to 
which the four models were fitted are shown in Table 32.3.

Table 32.3  Estimates of under-five and adult mortality, by sex, in 
Kenya in the mid-1980s

Males Females

5q0 0.1180 0.1080

45q15 0.2352 0.1581

Figure 32.1 plots nmx (on a log scale) in the fitted model 
life tables based, in the case of the first two methods, on 
Princeton West standard life tables. Other measures that 
shed light on the differences between the models are 
presented in Table 32.4.

It can be seen from Figure 32.1 that the death rates in 
the spliced and log-quadratic models for men are almost 
identical. The modified logit model also has very similar 
death rates to these two models in adulthood, but much 
lower mortality at ages 5–24. The Brass logit model, on the 
other hand, agrees well with the spliced and log-quadratic 
models at young ages but has much lower mortality above 
about age 60 because of the low value of . The characteristics 
of the four fitted models for women are similar to those of 
the models for men except that the log-quadratic model has 
much lower mortality at ages 10–34 than any of the other 
models.

Table 32.4 illustrates the implications of these differences 
in the age-specific death rates. The fitted Brass logit models 
have markedly lower mortality in old age than the other 
models and appreciably higher life expectancies at birth. On 
the other hand, the two fitted log-quadratic models have the 
highest mortality in old age and the lowest life expectancies. 
The models all yield rather similar estimates of overall 
survivorship during childhood as a whole (i.e. to age 15). 
However, the estimates of infant mortality vary materially 
between the models. Those in the Brass logit models are 
highest, reflecting the same low values of  that led to low 
mortality in old age. The substantive implication of these 
differences between the fitted models is that one cannot 
hope to estimate either the infant mortality rate or mortality 
in old age accurately except by measuring them accurately 
using direct methods.
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It should be borne in mind that if the first two models 
were based on a different standard this would change the 
characteristics of the fitted life tables relative to the modified 
logit and log-quadratic models. For example, a Princeton 
South or UN South Asian standard would produce fitted 
models using the splicing method and Brass logit system 
of models that match those from the latter two approaches 
more closely.

While rather few grounds exist to choose one of the 
methods over the others, the modified logit and log-quadratic 
models are theoretically superior to the older approaches 
to fitting a model life table. Moreover, as outlined in the 
section on Caveats and Warnings, some empirical evidence 
exists that suggests that they perform better on average than 
the splicing method and fitting Brass logit models. Third, in 
contexts in which it is difficult to determine what standard 

Figure 32.1  Estimated values of nmx (on a log scale) in four 
model life tables fitted to the mortality estimates in Table 32.3  
(West standard life tables)

Males Females

Measure Splicing Brass logit Modified 
logit

Log-
quadratic Splicing Brass logit Modified 

logit
Log-

quadratic

e0 59.7 60.9 60.3 59.3 64.3 66.6 64.4 63.9

1q0 0.0891 0.0944 0.0923 0.0880 0.0815 0.0842 0.0823 0.0768
l(15) 0.8640 0.8679 0.8693 0.8662 0.8737 0.8796 0.8812 0.8836
20q60 0.6706 0.5793 0.6771 0.7054 0.5346 0.4050 0.5840 0.6416

Table 32.4  Indices of mortality in four model life tables fitted to 
the mortality estimates in Table 32.3 (West standard life tables)
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life table to adopt, this issue can be sidestepped by adopting 
one of these approaches. Thus, in general, the modified logit 
and log-quadratic models are to be preferred to the longer-

established methods unless evidence exists supporting use 
of a method based on standards from a particular family of 
Princeton or United Nations model life tables.
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Chapter 33  Combining indirect estimates of child and 
adult mortality to produce a life table

Ian M Timæus and Tom A Moultrie

Description of the method
The indirect methods described in this manual for deriving 
estimates of child and adult mortality produce series of 
estimates of child and adult mortality, which – using the 
time location approach pioneered by Feeney (1980, 1991) 
for children and Brass and Bamgboye (1981) and Brass 
(1985) for adults – apply to a variety of dates. In many 
demographic applications, however, it is useful if one can 
derive an abridged life table that reflects mortality over 
the entire age range at a specific date within the period 
covered by such series of indirect estimates of mortality. 
These applications include the production of population 
projections or the evaluation of changes in life expectancies 
at birth or mortality over time.

A general summary of the nature and range of estimates 
produced by the most important indirect methods is 
presented in Table 33.1.

An important feature of the estimates that these methods 
produce for adults is that they are all conditional estimates 
of survivorship, that measure survival from one age (e.g., 25 
in the case of the maternal orphanhood method) to another 
age (e.g., 35). One cannot straightforwardly convert these 
conditional measures of survivorship in adulthood into 
unconditional ones. Thus, the methods for fitting logit 
model life tables explained by the introductory descriptions 

of the models in a number of textbooks cannot be applied 
and more complicated fitting methods are required.

In order to combine estimates of child and adult mortality 
into a single life table applicable at a defined point in time, a 
method is needed which addresses the following list of issues:
•	 The adult mortality estimates need to be converted from 

their initial conditional form into measures of survivor-
ship from birth.

•	 The child and adult mortality estimates may imply differ-
ent patterns or levels of mortality, different time trends in 
mortality, or both.

•	 Some data points may be defective or suffer from ran-
dom fluctuations that distort the overall trend, which 
implies that the implied trend may require smoothing 
or adjustment.

•	 The estimates of child and adult mortality typically refer 
to different dates and may span different periods of time.

•	 Neither the methods for estimating child mortality 
nor those for estimating adult mortality produce any 
information on the mortality of some age groups, 
implying that the one can only produce a complete life 
table by using models.
The method described here seeks to find the parameters 

 and  of a relational logit model life table (described in 
Chapter 31) applicable to a specified point in time that 

Method Measure and 
typical age range Typical time reference

Child: Indirect l (1) … l (20) 1 to 15 years before the survey
Adult: Maternal orphanhood 10p25 … 40p25 3 to 15 years before the survey
Adult: Paternal orphanhood 15p35 … 35p35 5 to 15 years before the survey
Adult: Siblinghood method 10p15 … 35p15 3 to 15 years before the survey

Table 33.1  Indices of mortality and 
time references of the estimates produced by 
selected indirect methods for the estimation 
of child and adult mortality
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offers the best fit to the observed data points used as inputs. 
Fitting a 2-parameter model is only possible if independent 
estimates are available of child and adult mortality for 
the date in question. If such data are available, fitting a 
2-parameter model is recommended because no justification 
usually exists a priori for making the assumption that the 
age pattern of mortality in the population in question 
corresponds to that in any particular 1-parameter family of 
model life tables.

Starting with the observed quantities from the child 
and adult estimation, the method first derives and plots 
the implied values of  (the level parameter of a relational 
model life table) against the time location of each estimate, 
separately for child and adult mortality making the 
assumption that  (the shape parameter) is equal to 1. This 
‘alpha plot’ is used to identify which data points describe a 
coherent and consistent trend in the value of  over time. 
The selected points are then used to iteratively calculate final 
estimates of  and  at the date for which the life table is 
required. A fitted model life table can then be calculated 
from the standard using these values of  and . The method 
allows both the  and  parameters of the fitted models 
to change over time but constrains them to do so linearly 
(Timæus 1990).

The method can be used to derive abridged life tables 
from sex-specific estimates of child mortality produced by 
the indirect method for the analysis of data on women’s chil-
dren ever-born and still alive (Chapter 16), and sex-specific 
estimates of adult mortality produced by application of 
either the One Census Orphanhood (Chapter 22) or Indirect 
Siblinghood (Chapter 23) methods. Estimates of child and 
adult mortality made by direct methods, or from the applica-
tion of two-census methods, normally apply to a specific year 
or period of time. Model life tables can be fitted to pairs of 
estimates of adult and child mortality that refer to the same 
calendar time using the methods described in Chapter 32.

Data requirements and assumptions
Tabulations of data required
•	 A series of sex-specific indirect estimates of child mortality, 

with their time locations, derived from data on women’s 
children ever born and surviving

•	 A series of sex-specific estimates of adult mortality, with 
their time locations, derived using either the indirect 
method for analysing data on sibling survival or the one 
census orphanhood method.

In principle, the approach used to fit such data could 
be extended to estimate life tables for populations for 
which multiple overlapping sets of indirect estimates 
exist describing child and adult mortality. However, the 
workbook that accompanies this chapter has only been 
designed to handle two series of estimates: one for children 
and one for adults.

Assumptions
The method described here bases the fitted model life 
table on a standard life table. This standard is assumed 
to have an age pattern of mortality that resembles that of 
the population being studied. In particular, the relative 
severity of child and adult mortality in the standard should 
be similar to that indicated by the indirect estimates to 
which the model is being fitted. Guidelines for choosing an 
appropriate standard life table are provided in Chapter 31, 
which also describes the basic mechanics of the relational 
logit system of model life tables. The standard need not be 
taken from the family of model life tables that underlies the 
coefficients that were used to produce the indirect estimates 
of child mortality: the family of models that best represents 
the age pattern of mortality within childhood may not be 
the family that best represents the relative levels of child and 
adult mortality in the same population.

Caveats and warnings
The plausibility of the fitted model life table produced by this 
method of fitting depends on whether the chosen standard 
life table is appropriate for the population under study. In 
populations affected by HIV/AIDS, for example, both the 
balance between child and adult mortality and the detailed 
age pattern of mortality differ greatly from those that 
characterize the systems of model life tables in widespread 
use. Consequently, this method is not recommended for 
routine application in these circumstances or to other 
populations for which no standard life table can be identified 
that describes the balance between child and adult mortality.

Description of method
The method is implemented using the following steps.

Step 1: Identify the date to which the desired life table 
should apply
To avoid the risks associated with out-of-sample extrapolation 
in the determination of  and , the life table should be 
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fitted to a date within the period covered by the estimates 
of adult and child estimates that are being analysed. In the 
presentation of the method that follows, this target date is 
denoted by D.

The exact date for which the life table is required may 
be determined by the use to which it is going to be put. 
Ideally a date should be chosen, however, for which both 
the estimates of adult and child mortality seem reliable. For 
example, if either the more distant estimates for children 
appear to biased downward by underreporting of dead 
children or the more recent estimates for adults appear to be 
biased downward by the adoption effect, one should avoid 
producing a life table for the dates covered by the defective 
estimates. Unfortunately, such considerations sometimes 
lead the analyst to the conclusion that the data at hand fail 
to provide a sound basis for the construction of a life table!

If a life table is needed for a more recent, or possibly a 
more distant, date than the period of time covered by the 
estimates, a limited amount of extrapolation beyond this 
range of dates might be considered. The extent of this 
should be restricted to three years before the earliest time 
location of any adult or child mortality estimates, on the one 
hand, and to three years after the earlier of the most recent 
estimate of child mortality and the most recent estimate of 
adult mortality, on the other.

Step 2: Select a standard to be used to derive the fitted 
life table
The associated spreadsheet (see website) allows the analyst 
to choose between nine sex-specific standards: the five UN 
model life tables (General; South Asian; Far Asian; Latin 
American; Chilean) and the four Princeton regional model 
life tables (North; South; East; West). All the standard 
life tables have a life expectancy at birth of 60 years. The 
derivation of these logits is described in Chapter 31, and a 
spreadsheet containing their values can be downloaded from 
the Tools for Demographic Estimation website.

The primary objective in selecting a standard should be 
to identify one in which the relationship between child 
and adult mortality is approximately the same as that 
indicated by the estimates of child and adult mortality. 
As a practical rule of thumb, if the value of  of the final 
fitted model lies outside the range 0.75–1.25, one should at 
least consider adopting another standard. In more extreme 
circumstances, model life tables in which  falls outside the 
range 0.6–1.4 are unlikely to represent empirical mortality 

schedules adequately. A secondary objective in choosing a 
standard should be to identify one that shares other known 
characteristics of the population in question such as the 
relationship between infant mortality and mortality at ages 
1 to 4. The characteristics of the different Princeton and 
UN families of model life tables are described briefly in 
Chapter 31.

Step 3: Plot values of  (assuming  = 1) derived from the 
mortality estimates against time
When  (the shape parameter in a relational model life table 
system) equals 1, the relational model life table system can 
be expressed as

Y(x) =  + Y s(x)

where Y(x) is the logit transform,

( ) 1 1 ( ) 1 1 ( )( ) logit ( ) ln ln
2 ( ) 2 ( )

l x q xY x l x
l x q x

 − − = = = −   
   

.

For child mortality, calculating a series of values of  from 
the estimates is straightforward. The logits of the chosen 
standard life table for ages 1, 2, 3, 5, 10, 15 and 20 are 
subtracted from the logits of the derived estimates of child 
mortality (q(1), q(2), q(3), q(5), q(10), q(15) and q(20)):

child = Y(x) – Y s(x).

For adults, the calculation of  is more complicated as the 
survival probabilities produced by the estimation methods 
are conditional on survival to a given base age. The formula 
for  is

( ) ( ){ }1 ln(1 ) ln .exp 2 ( ) exp 2 ( )
2

adults

s s
n x n xp p Y x n Y x

α =

 − − + −  ,

where x is the base age of the conditional probability of 
survival (25 for the maternal orphanhood method) and n 
is the duration over which survivorship is measured, which 
is contingent on the age group of the respondent. (The 
derivation of this expression can be found at the end of this 
chapter).

The estimates of  (separately for children and adults) are 
then plotted against their respective time locations on the 
same set of axes.
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Step 4: Eliminate those points in the alpha plot that 
appear out of line with the general trend
In order to estimate  and  for a specific point in time, 
the method imposes a linear trend on both parameters. As 
the first step to achieving this goal, we would like the plots 
of each of the series of ’s (that is, for children and adults 
separately) against their time locations derived in Step 3 to 
lie on straight lines.

The ’s for individual data points in a series of child or 
adult mortality estimates derived using the two formulae 
above may deviate from a straight line for several reasons. 
First, the underlying pattern of change in mortality may 
have been strongly non-linear. This is somewhat unlikely 
given that the series of estimates cover fairly short periods 
of time and that indirect estimation methods tend to 
smooth out short term fluctuations in mortality. Even if the 
diagnostic plot derived above suggests that it is the case, it 
may still be possible to obtain an adequate fitted model life 
table by calculating it for a date at which the linear trends 
in the parameters imposed by the method intersect with 
the curve indicated by the plotted points. Second, the series 
may be rather erratic due to sampling errors and reporting 
errors such as age misstatement. If this is the only limitation 
of the estimates, one would normally include them all in 
the analysis and rely on the line fitting procedure to average 
across these fluctuations.

Third, indirect estimates are vulnerable to biases resulting 
from respondents failing to answer the key questions 
accurately or to breaches in the assumptions of the methods 
concerned. Likely errors in the estimates are discussed 
in the chapters on the various methods and the reader is 
referred to those chapters for advice on diagnostic signs that 
may suggest indicate certain points are biased and should 
be dropped from the fitting procedure. It is particularly 
common, however, for the point relating to respondents 
aged 15–19 in the child mortality method to be biased 
upward and for the points relating to children aged 5–14 
reporting on the survival of their parents in the one census 
orphanhood method to be biased downward. It will often 
be necessary to exclude these data points from the model 
fitting process.

A fourth possible explanation for the failure of the 
calculated ’s to lie on a straight line is that the standard 
selected for calculating the original estimates may not have 
been appropriate. If this is the case, it may be necessary 
to recalculate these estimates using a different standard. 

Alternately, it may be necessary to try using an alternative 
standard (as described in Step 2) to derive the fitted life 
table.

Once the child and adult ’s for inclusion in the fitting 
process have been selected, the rest of the fitting process 
proceeds mechanically.

Step 5: Determine the trend in  by iteration
The process of solving for  iteratively is not readily done 
manually, and the associated workbook has been designed 
to perform the calculations. In order to enable the iteration 
routine, ensure that Microsoft Excel has been configured 
appropriately. This is done by selecting “File → Options 
→ Formulas” and then checking the “Enable iterative 
calculation” checkbox. Setting a maximum of 1000 
iterations and a maximum change of 0.00001 is more than 
sufficient for a solution to be reached.

The process whereby  and  are adjusted iteratively 
to secure a good fit is described in the section on the 
Mathematical Exposition of the method. The key constraints 
placed on the fitting process are as follows:
•	 No matter what the original values of x and n in 

the estimates of q(x) and n pb for children and adults 
respectively at the date in question,  is calculated 
consistently from survivorship from age 15 to 60 relative 
to the standard.

•	 Both  and  are allowed to change over time but it is 
assumed that they do so linearly.
In combination, these assumptions reduce the distorting 

impact that errors in the estimates and minor differences in 
the age pattern of mortality between the population and the 
standard can have on the fitted model life table (Timæus 
1990). In contrast, if one uses the method described in 
Chapter 32 to fit a 2-parameter logit model life table to a 
pair of recent indirect estimates of child and adult mortality 
that refer to about the same date but only measure mortality 
over a limited range of ages (Brass 1975, 1985), for example 
q(2) and 10p25, one frequently obtains extreme values of  
that produce implausible fitted models.

Step 6: Examine the resulting fitted values of 
The penultimate step is to examine the alpha plot that results 
from the iterative fitting procedure, which is presented as 
the second plot of the alpha plots sheet of the associated 
workbook. It is this plot, which presents estimates of  that 
have been adjusted for the level and trend in , that provides 
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a check on the assumption that  has followed a linear trend. 
Moreover, if the standard to which the data have been fitted 
is appropriate, the series of estimates of childhood and adult 
mortality should lie close to each other in this plot.

Step 7: Production of a fitted life table
Once the best fitting linear time trends in  and  have been 
identified by the iterative fitting process, fitted values of  
and  for the date for which a fitted life table is required, D, 
are calculated as follows:

*

*

( ) . ( )

( ) . ( )

Z D S

Z D S

α α α

β β β

= +

= + .

The abridged fitted life table is derived from these values 
of * and * and the standard life table by means of the 
formula

( )( )
*

* *

1( )
1 exp 2 . ( )s

l x
Y xα β

=
+ +

.

Worked example
The worked example presented here uses data on the female 
population from the Dominican Republic. The indirect 
estimates for girls were made from the data on children 
ever-born and surviving obtained by a DHS conducted in 
2002. The indirect estimates for adult women were made 
from the reports on the survival of mothers from the census 
conducted in the same year. The input data are presented in 
Table 33.2.

Step 1: Identify the date to which the desired life table 
should apply
In the case of the data from the Dominican Republic, the 
associated spreadsheet permits a life table to be derived for 
dates lying between the earlier of 1987.99–3 and 1990.51–3 
and the earlier of 2001.71+3 and 1999.23+3, which is to say 
dates between 1984.99 and 2002.23.

In this example, we derive a life table for the Dominican 
Republic for mid-1997, i.e. 1997.5.

Step 2: Select a standard to be used to derive the fitted 
life table
Given the geographical source of the data, it is reasonable to 
assume (at least initially) that the mortality of women in the 
Dominican Republic follows the age pattern described by 
the UN Latin American female standard. The logits of the 
chosen standard life table are presented in Table 33.3.

Table 33.2  Input data for combining child and adult mortality 
estimates, Dominican Republic

Child mortality 
(2002 DHS)

Adult mortality 
(2002 Census)

x q(x) Date n n p25 Date

1 0.0338 2001.71 10 0.9858 1999.23

2 0.0429 2000.24 15 0.9801 1997.07

3 0.0355 1998.48 20 0.9680 1995.13

5 0.0467 1996.43 25 0.9479 1993.43

10 0.0619 1994.16 30 0.9214 1992.02

15 0.0710 1991.52 35 0.8872 1991.00

20 0.0799 1987.99 40 0.8373 1990.51

Table 33.3  Logits of the UN Latin American female life table 
with a life expectancy of 60 years

Age (x) Y s(x) = logit(l(x))
0
1 –1.2375
2 –1.1006
3 –1.0398
4 –1.0046
5 –0.9815
10 –0.9304
15 –0.9054
20 –0.8735
25 –0.8313
30 –0.7828
35 –0.7285
40 –0.6670
45 –0.6005
50 –0.5248
55 –0.4356
60 –0.3230
65 –0.1795

Note that, if you change the family of life tables from “UN” 
to “Princeton” or vice versa in the associated workbook, 
you must force the workbook to recalculate the output by 
changing the “Recalculate” cell (B3 on the Method sheet) 
from “True” to “False” and back to “True”. Failure to do this 
will produce an error.
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Step 3: Plot values of  (assuming  = 1) derived from the 
mortality estimates against their time locations
Using the data from the Dominican Republic in Table 33.2 
and a UN Latin American life table for a standard, the value 
of  for child mortality when x = 3 is derived as follows:

( )1 1 (3)ln logit (3)
2 (3)

1 1 0.0355ln 1.0398
2 0.0355
0.6112.

child sq l
q

α
 −

= − − 
 

− = − + 
 

= −

This value of  has a time location of 1998.48, as indicated 
in Table 33.1. The values of  for the other estimates of 
child mortality, together with their time locations are 
derived similarly.

Using the data on adult mortality in Table 33.2 and the 
same standard, the estimate of the adult  when n is 25 is 
given by

( )
( )

( )( )
( )( )

25 25
25 25

.exp 2 (50)1 ln(1 ) ln
2 exp 2 (25)

0.9479exp 2 0.52481 ln(1 0.9479) ln
2 exp 2 0.8313

0.5021.

s
adults

s

p Y
p

Y
α

    = − − 
 −   

  − = − −   
− −    

= −

This value of  has a time location of 1993.43. The values 
of  for the other estimates of adult mortality, together with 
their time locations are derived similarly.

A summary of these estimates of  and their time locations 
are presented in Table 33.4.

When all the estimates of  based on data on both 
children and adults are plotted against their time locations, 
the alpha plot shown in Figure 33.1 results.

Step 4: Eliminate those points in the alpha plot that are 
out of line with the general trend
Chapter 16 explains that the most recent indirect estimate 
of child mortality, which is based on the reports of women 
aged 15–19 tends to be biased upward as teenage mothers 
are a select group with high mortality because, among other 
reasons, they tend to come from socially disadvantaged 
backgrounds. This data point is nearly always ignored when 
inferences are made about the trend in child mortality from 
indirect estimates and this was done in this application.

The most recent estimate of adult mortality based on 
children aged 5–9 reporting on the survival of their mothers 
in the one census orphanhood method also underestimates 
mortality in many applications. In the Dominican 
Republic, however it indicates much higher mortality 
than one would expect given the trend indicated by the 
other estimates for adult women. This might be the result 
of severe underreporting of the ages of children or might 
indicate that the models involved in the estimation process 
are inappropriate for this population. Either way it was 
decided to ignore this anomalous estimate. Therefore, the 
most recent estimate in each series was omitted from the 
fitting of a trend line to the ’s by clearing its respective cell 
in the alpha plots sheet of the associated workbook.

The remaining estimates from the orphanhood method 
are internally consistent and suggest that adult women’s 
mortality fell rapidly in the Dominican Republic during 
the 1990s. The child mortality estimates also suggest that 
mortality was falling, but the more recent estimates are 

Female children Female adults

Original 
index 

Time 
location

Original 
index 

Time 
location

q(1) –0.4389 2001.71 10p25 –0.5176 1999.23
q(2) –0.4519 2000.24 15p25 –0.6183 1997.07
q(3) –0.6112 1998.48 20p25 –0.5779 1995.13
q(5) –0.5266 1996.43 25p25 –0.5021 1993.43
q(10) –0.4288 1994.16 30p25 –0.4567 1992.02
q(15) –0.3803 1991.52 35p25 –0.4463 1991.00
q(20) –0.3483 1987.99 40p25 –0.4436 1990.51

Table 33.4  Estimates of  and the time 
location of the estimates, females, Dominican 
Republic, 2002
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somewhat inconsistent with each other. The 3rd and 4th 
points, which are based on the reports of mothers aged 25–
34 years, indicate that the rate of decline in child mortality 
accelerated in the second half of the 1990s. However, the 
2nd estimate, which is based on the reports of women 
aged 20–24, suggests that it decelerated. In the absence of 
evidence as to the nature of the errors in the data that have 
led to these inconsistencies, it was decided to leave all three 
data points in the analysis.

The final selection of points produces the alpha plot in 
Figure 33.2. This plot emphasizes the consistency of the 
2nd to 7th points for adults and shows that a regression line 
fitted to the 2nd to 7th points for children not only passes 
through the middle of the more recent estimates, but fits the 
three more distant points well.

Note that, in Figure 33.2, the values of  derived from 
the estimates of the mortality of adults lie below those 
derived from the estimates of child mortality and diverge 
from them over time. This means that, relative to the UN 
Latin American standard, adult mortality in the Dominican 
Republic in the 1990s was low and was falling more rapidly 

than child mortality. Thus, the  parameter of fitted model 
life tables for this population will lie below 1 and will 
decrease over time.

Step 5: Determine the trend in  by iteration
The spreadsheet iteratively solves for fitted values of both  
and  for the desired time point (1997.5). The estimates of 
* and * are –0.658 and 0.849 respectively. These estimates 
implies that the level of mortality in the Dominican Republic 
is somewhat lighter than in the UN Latin American standard 
( < 0), and that mortality is somewhat heavier at younger 
ages and lighter at older ages ( < 1) than in this standard. 
The estimate of * is close enough to 1 not to raise any 
concerns about the choice of standard made in Step 2.

Step 6: Examine the resulting fitted values of 
The penultimate step is to examine the alpha plot that results 
from the iterative fitting procedure, which is presented as 
the second plot of the “alpha plots” sheet of the associated 
workbook.

Figure 33.3 shows that there is now a close correspondence 

Figure 33.1  Initial plot of child and adult ’s against their time 
location, Dominican Republic



364  |  USING MODELS TO DERIVE LIFE TABLES FROM INCOMPLETE DATA

Figure 33.3  Alpha plot, after fitting  iteratively, Dominican 
Republic

Figure 33.2  Final plot of child and adult ’s against time 
location, Dominican Republic
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between the ’s for children and adults for most of the 
1990s. Mortality was falling across the age range, though  
dropped from about 0.95 to 0.85 between the early 1990s 
and mid-1997. This is what one would expect given that we 
have already observed that adult mortality in the Dominican 
Republic was falling rapidly at this time in comparison with 
the pattern in the family of logit model life tables based on 
the UN Latin American standard.

The lines for adults and children remain fairly close to 
each other in 1997, reflecting the fact that the value of  at 
that time (i.e., 0.85) remained fairly close to its central value 
of 1. The two estimates of  for 1997 would only differ 
greatly if  at this time was very different from 1. If they did 
differ markedly, it would be advisable to seek out a standard 
life table that was more appropriate for the population being 
studied.

If the two series of estimates followed very different 
trends and failed to cross over each other, or did so and 
then diverged rapidly, or if one or both series were highly 
non-linear, this would again suggest that the standard being 
used was inappropriate or, more probably, that one or both 
series was severely biased by errors in the data, making it 
impossible to reconcile them with each other.

Step 7: Production of a fitted life table
The abridged fitted life table is derived from the fitted values 
of * = –0.658 and * = 0.849 for the selected date, and the 
standard life table (presented in Table 33.3) by means of the 
formula

( )( )
*

* *

1( )
1 exp 2 . ( )s

l x
Y xα β

=
+ +

.

The final fitted life table is presented in Table 33.5. Life 
expectancy at birth is 76.6 years compared with the United 
Nations’ estimate for the same quinquennium of 73.1 years 
(UN Population Division 2013).

Detailed description of the method
The associated spreadsheet (see website) implements the 
method by following the steps outlined above. This section 
provides a detailed description of how the iterative procedure 
used to derive the final values of  and  is implemented.

The premise underlying the fitting procedure is that 
the derived life table should fit the observed data well at 
ages 15 and 60. The former constraint ensures that child 
and adolescent mortality is well matched; the combination 

of the two ensures that adult mortality over an extended 
age range (15 to 60) is close to that implied by the adult 
mortality estimates used to fit the life table.

Fitting procedure
After selecting the data points that will be used (as described 
in Step 4), the method seeks to find the best fitting linear 
regression model of the time trend in the estimates of  for 
children, conditional on the estimated trend in , and the 
best fitting linear regression model of the time trend in the 
estimates of  for adults, conditional on the estimated trend 
in  for children.

Starting with the assumption that  = 1, one can calculate 
an child corresponding to each estimate of child mortality 
using the equation provided in Step 3 of the worked 
example. Since each estimate of child is associated with its 
time location (T ), one can regress the estimates included in 

Table 33.5  Fitted life table for females, Dominican Republic, 
mid-1997

Age (x) l(x)
0 1.0000
1 0.9683
2 0.9603
3 0.9561
4 0.9536
5 0.9518
10 0.9476
15 0.9455
20 0.9426
25 0.9386
30 0.9337
35 0.9278
40 0.9204
45 0.9118
50 0.9008
55 0.8865
60 0.8657
65 0.8348
70 0.7863
75 0.7120
80 0.6029
85 0.4452
90 0.2587
95 0.1024
100 0.0242
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the fitting procedure on time to obtain the slope S() and 
intercept Z() of the linear regression model.

The fitted regression model can then be used to predict 
a fitted  (*) for the times to which the adult mortality 
estimates refer

* = Z() + T.S().

Using these fitted values of child, one can estimate Y(15) at 
these dates

Y(15) = * +  *Y s(15)

where, in this first iteration,  * = 1.
Still assuming that  = 1, one can also estimate adult from 

the conditional estimates of adult survivorship that have 
been included in the fitting procedure using the equation 
given in Step 3 of the worked example and use these values 
of adult to calculate corresponding estimates of 45q15. 
Multiplying the value of l (15) estimated from the data on 
children by an estimate of 45p15 for the same date estimated 
from the data on adults gives an unconditional estimate of 
l (60) and therefore of Y(60):

45 15

45 15

(15).1 (60) 1(60) ln ln
2 1 (60) 2 1 (15).

l plY
l l p

  = − = −   − −   
.

The estimate of l (15) is calculated from Y(15) as

( )
1(15)

1 exp 2 (15)
l

Y
=

+
,

while that of 45p15 is derived from the ’s and ’s fitted to 
the adult estimates:
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where Y s(x) represents the logit of l(x) in the standard life 
table (i.e., with  = 1 and  = 0) and, in this first iteration, 
 * = 1.

Having estimated a series of values for Y(60) for the 
dates to which the adult mortality estimates refer, it is now 
possible to calculate revised estimates of  for these dates

(60) (15)
(60) (15)s s

Y Y
Y Y

β −
=

−
.

As these revised ’s each refer to a specific date, they can then 
be regressed on time (T ) to calculate the slope S( ) and 
intercept Z( ) of a linear regression line that can then be 
used to predict a fitted  ( *) for each data point, whether it 
is for children or adults, from that point’s time location (T )

 * = Z() + T.S().

At this point, the first iterative cycle has been completed. 
One can now calculate revised estimates of child, that allow 
for the fact that  has been allowed to differ from 1, with 
the formula

*logit( ) . ( )child s
xq Y xα β= − .

The revised estimates of child are then regressed on time and 
used in combination the fitted estimates of  for the dates to 
which the adult mortality estimates refer to calculate revised 
estimates of Y(15), 45q15 and Y(60) and then to recalculate 
a second round of revised estimates of  itself. Thus, we now 
have in place a mechanism that will iteratively calculate the 
best fitting regressions of  and  on time, each adjusted for 
the other.

Derivation of the formula for calculating  for adults
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Chapter 34  Introduction to migration analysis
Rob Dorrington and Kenneth Hill

Overview
Migration is the third process (with fertility and mortality) 
that governs population change. For most national popula-
tions, its contribution to population change is small relative 
to those of births and deaths, but as the civil division of 
interest becomes smaller, the salience of migration typically 
becomes larger. Migration differs from fertility and mortal-
ity not only in magnitude, but more fundamentally in the 
nature of the process. Migration involves moving across 
some geographically-defined boundary, with the intent or 
result of changing place of normal residence. Thus whereas 
a birth and a death are largely unambiguous, a migration 
depends upon geographically-defined spatial units (civil 
divisions) and on intent or subsequent behaviour. A person 
can be a migrant to the analyst looking at change in provin-
cial population but not a migrant to another analyst focus-
ing on national population change. The first task, therefore, 
in any analysis of migration is to establish the geographic 
focus of the study. A second task is to define what counts 
as a migration, as opposed to broader mobility. The issue is 
further confused by the existence of several different types 
of migration. In addition to “ordinary” change of usual resi-
dence, there are circular migration flows, daily or weekly 
commuter flows, seasonal flows and refugee flows, all with 
specific characteristics. Given these definitional issues, and 
the fact that migrations can effectively be reversed in terms 
of population stocks (unlike births and deaths), it is no sur-
prise that measurement is also complicated.

Apart from this, capturing data on migration is also more 
problematic. Although developing countries often lack 
complete systems of birth and death registration, completeness 
is improving and some methods have been devised to make 
use of the less than complete data. However, registration 
data on migrants/migrations in most countries cannot be 
relied on to produce reliable estimates of immigrants, let 

alone of internal migrants/migrations. In addition, for 
various reasons (illegal status, temporary residence of recent 
migrants, fear of xenophobia, etc.) migrants (especially 
immigrants) are usually underrepresented in censuses and 
surveys.

Methods for measuring migration are broadly similar for 
both internal migration (in- or out-migration) and inter
national migration (immigration or emigration), except in 
one very important respect. A census or survey can measure 
international immigration by identifying persons born 
abroad, but it is much harder to identify emigrants because 
it is not possible to carry out a census/survey in all recipient 
countries. Approaches to estimating emigration include: 
(i) systematic identification of nationals in censuses of other 
countries (UN Population Division 2011); (ii) including 
census/survey questions about usual household members 
living abroad (e.g. in the Swaziland Censuses of 1986 and 
1996); (iii) asking about the residence abroad of close 
relatives, especially a woman’s children or a respondent’s 
siblings (Zaba 1985); and (iv) using intercensal residual 
methods to estimate numbers of missing residents at the 
time of a second census. The first approach is dependent 
on receiving countries having, and being willing to share, 
relevant data and only captures migration of the native-born 
population; the second approach depends on the, perhaps 
vague, concept of household membership, and will also fail 
to cover entire households that have moved away; the third 
also fails to capture entire missing families, does not provide 
estimates of recent emigration, and in small experimental 
surveys has not proven convincing. Only the fourth can 
be expected to give plausible estimates of recent outflows, 
provided both censuses count the population reasonably 
accurately, but gives no potentially useful information about 
destination.

With these limitations and problems of accurate data 
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collection, the field of migration analysis has developed 
largely independently from mainstream demography, 
leading to it concentrating primarily on developed countries 
where the quality of data available to measure migration 
is typically much better than it is in developing countries, 
and possibly because migration in these countries is often 
a matter of greater political and public policy concern. A 
further consequence of these factors is that the field has 
developed its own terminology and techniques, which are 
often quite far removed from the demography discussed 
elsewhere in this manual.

Definitions
As noted above, a migration is defined as a move across a 
geographically-defined (usually administrative) boundary of 
interest to the analyst with the effect of changing a person’s 
place of usual residence. Assuming that the boundary can 
be clearly defined, this immediately raises two questions: 
how does one define usual place of residence, and how does 
one determine whether it has changed? Unfortunately, no 
very precise answers can be given to these two questions, 
giving rise to inevitable uncertainty in measurement. The 
preferred definition of usual residence is in terms of length 
of residence: that if one intends to live, or after one has lived, 
in a place for a period of time (e.g. one year) one becomes 
a usual resident. Note that usual residence is not the same 
thing as legal residence. The Principles and Recommendations 
for Population and Housing Censuses (UN Statistics Division 
2008: 102, para. 1.463) defines usual residence as follows:

“It is recommended that countries apply a threshold of 
12 months when considering place of usual residence 
according to one of the following two criteria:
(a) �The place at which the person has lived continuously 

for most of the last 12 months (that is, for at least six 
months and one day), not including temporary absences 
for holidays or work assignments, or intends to live for at 
least six months;

(b) �The place at which the person has lived continuously 
for at least the last 12 months, not including temporary 
absences for holidays or work assignments, or intends to 
live for at least 12 months.”

However, this definition does not deal with the situation 
of a person with two homes who regularly spends about six 
months in each. In general, we have to rely on people to 
self-define as residents or not, although some tests could be 
implemented (such as asking where their car is registered, 

where taxes are paid, where they voted, where the person 
sleeps at night on a regular basis, etc.). For most purposes, a 
person can distinguish between whether he or she is a usual 
resident and visitor, and this simple distinction suffices.

Data sources
Migration has been the Cinderella of demography, kept in 
the background as far as possible, and dedicated migration 
surveys are few, far between, and specialized (an excellent 
example is the description of the Mexican Migration Project 
by Massey, Alarcon, Durand et al. (1987)). Dedicated 
migration surveys typically include full migration histories, 
which, though raising complex analytical issues, tend not 
to be focussed on the estimation of numbers of migrants/
migrations. In this section we do not cover the analysis of 
such full histories (there are very few general principles that 
would apply to a useful number), but rather deal with the 
sorts of data collected by population censuses and general 
household surveys and sometimes, developed countries, by 
some form of registration.

Birthplace
The most widely collected data relevant to migration is place 
of birth. In comparison with place of residence at the time 
of a survey, this information describes lifetime migration. 
The information provides limited information about timing 
of migration, and is ‘net’ migration in the sense that it 
misses, entirely, migrations that have been reversed (back to 
the place of birth) and all intermediate migrations. At the 
time of data collection, decisions have to be taken about 
the granularity of the data: i.e., for those born abroad, 
how many countries should be explicitly recorded and for 
those born in the country, what level of geography should 
be recorded. For the analyst, of course, these decisions were 
made at the questionnaire design stage, but some degree of 
greater aggregation may be required. The analysis of data on 
birthplace is described below, but it is useful to make two 
points here. First, if data on birthplace by age and sex are 
available for two points in time, it is possible to estimate 
net migration (by age and sex) during the interval. Second, 
although birthplace reflects lifetime migration, the length 
of “lifetime” varies by age, and (provided the census data on 
children is reasonably accurate, which it often isn’t in many 
developing countries) the migration of 0-4 year olds may 
be used as an indicator for recent migration of their parents 
(Raymer and Rogers 2007).
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Residence at some specified time in the past
This information is very often collected in addition to that 
on birthplace, with the express objective of providing data 
on recent migration. The time point specified is generally 
five years earlier, but sometimes a one year period is used. 
However, it tends to work better if the time point is 
associated with a memorable event, such as the previous 
census, on the assumption that the coverage of that previous 
census was largely complete (so that people remember being 
counted). The longer time period identifies more migrants, 
but misses intermediate moves, whereas the shorter time 
period is more susceptible to reference period error (I moved 
“about a year ago”).

Place of previous residence
This information is almost always collected as an alternative 
to residence at some specified time in the past, and is 
generally combined with an additional question about 
duration of current residence (or date of last move). The 
objective again is to provide data on recent migration. 

Duration of current residence
The question refers to duration of residence in the civil 
division (such as a town or province), not in an individual 
dwelling unit. This question is of limited use on its own 
and tends to be paired with the one above to provide a time 
frame for estimates. 

Intercensal population change
Though not involving a direct question about migration, 
intercensal population change by age and sex can, provided 
both censuses are reasonably accurate counts of the 
population, provide residual estimates of net migration 
between the two censuses (Hill 1987; Hill and Wong 2005; 
UN Population Division 1967). Intercensal population 
change (for cohorts or age groups) by age and sex is adjusted 
for the effects of intercensal fertility and mortality to 
provide a residual estimate of intercensal net migration (i.e., 
treating migration as the balancing item in the fundamental 
demographic balance equation). Migration is generally 
concentrated in the age range 20 to 40, ages at which 
mortality rates are, at least in the absence of HIV/AIDS, 
relatively low and fertility irrelevant, so residual migration 
estimates are insensitive to assumptions about fertility and 
mortality (except in populations severely affected by HIV/
AIDS where using these data to estimate migration is not 

recommended). Such estimates are extremely sensitive, 
however, to even small changes in census coverage; such 
errors may be manifest in high age-specific migration rates 
over age 50, where migration is usually low.

Migration measures
It is not the purpose of this introduction to provide a 
comprehensive summary of all the measures and definitions – 
the interested reader is referred to the UN manual on internal 
migration (UN Population Division 1970) – but two are of 
particular importance for the chapters that follow.

Migration stocks
Stocks of migrants are typically thought of as numbers of 
persons (by age group and sex) not born in the civil division 
of enumeration. The proportions born elsewhere (in the 
country or in other countries) give a good general sense 
of the magnitude of in-migration and immigration, but 
no sense of any dynamic changes that may have occurred 
recently. However, changes in stocks can be used to estimate 
immigration (net of any onward or return migration of the 
foreign-born).

Migration rates 
Assuming that migration events can be fully and accurately 
identified, occurrence/exposure rates can be calculated for 
out-migration or emigration in exactly the same way as for 
mortality, dividing events in a period by exposure time; such 
rates can be crude (both sexes, all ages) or age-sex specific. 
The same is not the case (or at least not usefully) for in-
migration or immigration, since the population exposed 
to the risk of migrating into a civil division is the entire 
population of the world living elsewhere. In-migration 
and immigration rates are always calculated by dividing 
events by the exposure time of the one population group 
not exposed to risk, the current residents; such rates can 
be crude (both sexes, all ages) or age-sex specific. Defining 
rates in this way has the advantage of satisfying the needs 
of the demographic balancing equation, since rates of gain 
and loss are measured relative to the same population. This 
confers a further advantage in that net migration rates can 
be estimated from the demographic balancing equation as 
population change between two time points (e.g. censuses) 
minus gains due to births in the interval plus losses due to 
deaths in the interval. However, this approach does have 
the disadvantage of removing the scale limits on “normal” 
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occurrence/exposure rates; for example, at the extreme, a 
person moving into a previously unoccupied civil division 
creates an in-migration rate of infinity.

Description of methods covered
The chapters in this section focus on the estimation and 
quantitative description of immigration and internal in- and 
out-migration. They are not meant to provide comprehensive 
coverage of all measures of migration, and specifically they 
do not cover the important, but problematic, issue of 
measuring emigration (other than by mentioning that the 
method of estimating immigration (net of return/onward 
migration) of foreigners, can be applied to the data of the 
main countries of destination of emigrants to get some sense 
of the age profile and magnitude of emigration.

Chapter 35 concentrates on the basic methods of using 
data from censuses to estimate the numbers (net of return/
onward migration) of immigrants from the change in stock 

of foreigners, and of internal in- and out-migration from 
the change in stock by place of birth and from the place of 
residence at some date prior to the census.

Chapter 36 describes the selection and fitting of a Rogers-
Castro multi-exponential model to estimates of migration 
probabilities (or rates) derived from estimates of the number 
of migrants/migrations using non-linear optimization 
procedures.

Chapter 37 describes the multiplicative and log-linear 
models for capturing, comparing and analysing the mass of 
inter-regional migration flows from places of origin to places 
of destination. The chapter also provides an introduction 
to the method of offsets for extending the use of these 
models to estimate inter-regional flows from marginal flows 
(i.e. total flows out of, or into, regions). The intention is 
to expand the material on the method of offsets into an 
additional chapter at a later date, which will be placed on 
the Tools for Demographic Estimation website. 

Further reading and references
As mentioned above, UN Manual VI (UN Population 
Division 1970) provides a comprehensive, if dated, 
introduction to the description and measurement of 
internal migration. Those looking for an overview of 
indirect methods of estimating migration are referred to 
the useful, if also somewhat dated, review by Zaba (1987). 
More specifically, Hill (1987) attempted to apply the logic 
underlying the Generalized Growth Balance method of 
adult mortality estimation (described in Chapter 24) to 
estimate undocumented migration, while Hill and Queiroz 

(2010) sought to estimate net migration in parallel with 
the estimation of mortality, with the focus on improving 
the mortality estimates. Unfortunately neither method has 
proved to be particularly successful.

Those interested in reading more about the models of 
migration (multi-exponential, multiplicative and log-linear) 
or the method of offsets are referred to work by Rogers, 
Willekens and colleagues (e.g. Little and Rogers (2007), 
Raymer and Rogers (2007), Rogers (1980, 1986), Rogers, 
Little and Raymer (2010) and Willekens (1999)).
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Chapter 35  Estimation of migration from census data
Rob Dorrington

Description of the methods
Estimating migration from census data is not technically 
complicated. Provided that the census(es) gather the 
appropriate information and are reasonably accurate it 
is possible to produce estimates of net immigration (i.e. 
immigration less emigration) of the foreign-born population 
(people born outside a particular country) and internal 
migration between (to and from) sub-national regions of a 
country, over the period between two censuses.

To estimate net immigration of foreigners one essentially 
subtracts from the number of foreign-born people enumer-
ated in a census, the number of foreigners expected to have 
survived since being enumerated in the previous census.

In a similar way, if the censuses record the sub-national 
region of birth one can estimate net in-migration (i.e. net 
in-migration of those born outside the region less net out-
migration of those born in the region) between sub-national 
regions of a country. However, if the census asks of people 
where they were living at some prior point in time, say at the 
time of the previous census, one is able to estimate directly 
the number of surviving migrants (i.e. migrants still alive 
at the time of the latest census) into and out of each sub-
national region of the country since that prior point in time.

In order to estimate the number of migrants from the 
number of surviving migrants at the time of the second 
census one needs to add to these figures an estimate of the 
number of migrants who are expected to have died between 
moving and the time of the latest census.

If the latest census records other information such as year 
in which the migrant moved to the place at which the person 
was counted in the census, it is possible also to establish a 
trend of migration over time.

Migration is different from fertility and mortality both in 
that migrating is not final in the sense of a birth or death, 
but also that we are concerned not only with the popula-
tion of origin, from which the migrant moved (which 

corresponds to a population exposed to the risk from which 
rates of migration akin to those of fertility and mortality can 
be calculated) but we also have a population to which the 
migrant moves, the destination population. Apart from this, 
in order to understand migration one is often interested in 
distinguishing between different types of migration (whether 
temporary or more permanent, whether circulatory or 
unidirectional, etc.). For these reasons there is a much wider 
range of measures and terminology associated with migra-
tion than there is with either fertility or mortality. It is not 
the purpose of this chapter to cover these issues and the in-
terested reader is referred to the standard texts on the subject 
such as the UN Manual VI (UN Population Division 1970), 
Shryock and Siegel (1976), Siegel and Swanson (2004).

Data requirements and assumptions
Tabulations of data required
•	 To estimate net immigration of foreigners:
•	 The number of foreign-born females (males), in five-

year age groups, and for an open age interval A+, at two 
points in time, typically two censuses.

•	 For the deaths: either a suitable model life table or the 
numbers of native-born females (males), in five-year 
age groups, and for an open age interval A+, at two 
points in time, typically two censuses. Failing these, 
the central crude death rate for the population.

•	 To estimate sub-national regional net in-migration from 
place of birth data:
•	 The number of females (males) by sub-national region 

and by sub-national region of birth, in five-year age 
groups, and for an open age interval A+, at two points 
in time, typically two censuses.

•	 For the deaths: either a suitable model life table, the 
numbers of native-born females (males), in five-year 
age groups, and for an open age interval A+, at two 
points in time, typically two censuses or numbers of 
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deaths by region from the vital registration. Failing 
these, the central crude death rate for the population.

•	 To estimate internal migration between sub-national 
regions from place of residence at previous census data:
•	 The numbers of females (males) by sub-national region 

and by sub-national region at some prior date, typically 
that of the preceding census, in five-year age groups, 
and for an open age interval A+.

•	 If age-specific numbers are not available, aggregated data 
is still useful for estimating all-age migration.

Important assumptions
•	 Estimating net immigration of foreigners:
•	 Censuses identify all foreign-born people accurately.
•	 One is able to estimate the mortality of the foreign-

born population accurately (either that the life table 
used is appropriate, or that the mortality is the same 
as that implied by the censuses for the native-born 
(locally-born) national population).

•	 No return migration of locally born emigrants.
•	 Estimating sub-national regional net in-migration from 

place of birth data:
•	 Censuses count the population by sub-national region 

accurately and identify the region of birth accurately.
•	 One is able to estimate the mortality of people moving 

between two regions accurately (either that the life 
table used is appropriate, or that the mortality is the 
same as that implied by the censuses for the native-
born national population).

•	 Estimating internal migration between sub-national 
regions from data on place of residence at previous census:
•	 Latest census identifies correctly all people who have 

moved from one region to another since the prior date 
(e.g. previous census).

•	 One is able to estimate the mortality of people moving 
between two regions accurately (either that the life 
table used is appropriate, or that the mortality is the 
same as that implied by the censuses for the native-
born national population). Since one is estimating 
in- and out-migration separately (as opposed to net 
migration) this assumption is of less importance.

Preparatory work and preliminary 
investigations
Before applying this method, one should investigate the 
quality of the data in at least the following dimensions

•	 age structure of the population (by sub-national region as 
appropriate); and

•	 relative completeness of the census counts (by sub-
national region as appropriate).

Caveats and warnings
Estimating migration using place of birth data from two 
censuses not only requires that the censuses count the 
population reasonably completely, but that the place of birth 
be accurately recorded. Often this is not the case, particularly 
when estimating immigration, where immigrants wish to 
hide the fact that they are foreign, but also in the case of 
internal migration where there may have been boundary 
changes or the respondent is ignorant about the place of 
birth of the person.

Estimating migration by asking questions of migrants is 
quite dependent on the census identifying completely all 
those who have migrated, as well as identifying the place 
from which moved correctly. To the extent that recent 
migrants are not yet established as residents of the region to 
which they have moved at the time of the census, they could 
be missed in the count.

Net migration, by definition, underestimates the flows 
of migrants into and out of a region or country. Thus, for 
example, people who moved into a region and then returned 
within the period being considered will result in zero net in-
migration and yet moved twice.

Application of the method
A) �Estimating net immigration of foreigners using place 

of birth data
This method produces estimates of the net immigration of 
foreigners using place of birth data. It is important to stress 
that this method does not take into account or measure the 
immigration of returning native-born people who left the 
country prior to the previous census and returned before the 
second census. Thus this method is not recommended for 
the measurement of immigration where significant return 
migration of native-born people (for example, after exile or 
forced migration of refugees) is in progress.

Step 1: Decide on survival factors
If data on the number of foreign-born people in the 
population are available by age group for each census then 
one needs to estimate the survival factors to be applied to the 
numbers of foreign-born in the first census to estimate the 
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numbers surviving to the time of the second census. The user 
can choose between years of life lived factors in five-yearly 
age groups (5Lx) based on the standard from the General 
family of United Nations model life tables or one of any of 
the four families of Princeton model life tables or a model 
life table of a population experiencing an AIDS epidemic 
(Timæus 2004) which appear in the Models spreadsheet 
of the associated workbook (see website). This spreadsheet 
also allows the user to input years of life lived factors in 
five-yearly age groups of an alternative life table if there is 
reason to assume that the life table has a similar pattern of 
mortality to that of the population in question, or failing 
this, the survival factors can be derived from the proportion 
of each five-year age group of the native-born population 
surviving from the first to the second census (assumed to be 
n years apart, where n is a multiple of 5). Thus 5Ss,n, ∞SA – n,n 
and SB,n, the n-year survival factor for a group of people 
aged x to x + 5 at the previous census, A – n and older at the 
previous census, and born between censuses, respectively, 
are estimated as follows:
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represents the native-born population in the census at time 
t and Bnb represents the number of native-born births 
between time t and t + n.

If the data are not available in five-year age groups, the 
net number of immigrants can still be estimated in total, 
provided we have an estimate of the crude death rate for the 
population (which might, in the absence of any evidence 
to the contrary, be assumed to be that of the native-born 
population).

Step 2: Estimate the number of deaths of the immigrants
If data on the number of foreign-born people in the popu-
lation are available by age group for two censuses (n years 
apart) then one needs to estimate the number of deaths of 
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where 5 ( )F
xN t  represents the number of foreign-born people 

according to the census at time t who were aged between x 
and x + 5.

If data and/or survival factors are not available by age 
group then one can estimate the total number of deaths of 
the foreign-born people as follows:
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where ∞m0 is an estimate of the crude mortality rate of the 
population in the

 

country of the census. However, if the 
age distribution of the foreign-born population is markedly 
different from that of the population in the country of the 
census, then this can produce a poor approximation to the 
true number of deaths.

Step 3: Estimate the net number of immigrants (of 
foreigners)
If data are available by age group for each census then age-
specific net immigration can be estimated as follows:

5 5 5Net ( ) ( )F F F F
x x n x xM N t n N t D+ ∞= + − +

for 0, 5, , 5x A n= − −

where 5Net F
xM  represents the net number of immigrants 

between times t and t + n who were aged between x and x + 5 
at time t. For x > A – 5 – n

Net ( ) ( )F F F F
A n A A n A nM N t n N t D∞ − ∞ ∞ − ∞ −= + − + .

The net number of immigrants of those born between times 
t and t + n is estimated as follows:

0Net ( )F F F
B n BM N t n D= + + .
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If data and/or survival factors are not available by age group 
then one would estimate of the total net number of immi-
grants as follows:

0 0 0 0Net ( ) ( )F F F FM N t n N t D∞ ∞ ∞ ∞= + − + .

B) �Estimating net internal migration between sub-
national regions from place of birth data

Net in-migration into a particular sub-national region from 
other regions in the country can be estimated in exactly 
the same way as the international immigration, described 
above, by replacing the foreign-born population with the 
population born outside the region.

In addition, applying the same method to data on the 
change in the numbers of population born in (rather than 
outside) and living outside the region of interest allows us to 
estimate the net out-migration of those born in the region to 
other regions in the country. Subtracting this from the net in-
migration of those born outside the region gives an estimate 
of the overall net in-migration into the region of interest.

If there is reason to suspect that there is a material 
difference in the mortality experienced by those born outside 
who moved into the region and those born in the region 
who moved out, and one has appropriate survival factors 
then one could apply different survival factors to each when 
estimating the net number of migrants. However, in practice 
it is likely that inaccuracies in the census data on place 
of residence at previous census are likely to outweigh any 
increase in accuracy achieved by using differential mortality.

C) �Estimating internal migration between sub-national 
regions from place of residence at previous survey

Net sub-national inter-regional migration is estimated 
directly from the numbers of people in each region at the 
time of the census who moved since the previous census by 
place (e.g. region) they were in at a given prior date (e.g. at 
the time of the previous census). Confining the estimates to 
inter-regional flows the sum of the numbers of inter-regional 
in-migrants should be equal to the sum of inter-regional 
out-migrants; however, if the data include immigration to 
the sub-national regions from outside the country one can 
extend the estimates of in-migration to include international 
immigration into each region.

Since one of the major areas of interest is the magnitude 
of inter-regional flows of the population, one is as interested 
in the total numbers of migrants between regions as one is 
in the age distributions of particular flows.

The number of migrants is derived from the number of 
surviving in- and out-migrants as follows:

( )( )5 5 5 5 5 5 2x x x x x xx
M I O I O S′ ′ ′ ′= − + −

where the superscript (' ) designates numbers surviving and 
5I'x and 5O'x respectively represent the number of surviving 
in-migrants into, and the number of surviving out-migrants 
from, a particular region at the time of the second census 
who were aged between x and x + 5 at the second census.

Worked example
This example uses data on the numbers of males in the 
population from the South African Census in 2001 and 
a ‘census replacement survey’, the Community Survey in 
2007. (Although the survey was conducted approximately 
5.35 years after the night of the census in 2001, it is assumed 
for the purposes of presentation here to have been exactly 
five years after the census in 2001.) The examples appear 
in the Migration_South Africa_males.xlsx workbook (see 
website).

A) �Estimating net immigration of foreigners using place 
of birth

Step 1: Decide on survival factors
The survival factors are shown in the fifth column of 
Table 35.1. The values are derived from (the years of life 
lived in each age group of ) the alternative life table entered 
in the Models spreadsheet, for those aged 20 to 24 last 
birthday and those aged 80 and over at the time of the first 
census, and those born between the two censuses, as follows:

5 25
5 20,5

5 20

4.3382 0.96458
4.4975

L
S

L
= = =

85
80,5

80

0.75180 0.40912
1.19603

T
S

T∞ = = =

and 5 0
,5

0

4.707549 0.94151
5 5B
L

S
l

= = = .

Step 2: Estimate the number of deaths
Since we have data on the number of foreign-born people in 
the population by age group for each census we can estimate 
the number of deaths of foreign-born people which occurred 
in the period between the two censuses by age group using 
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the numbers of foreigners in each census given in the second 
and third columns of Table 35.1. For those aged 20 to 24 
last birthday and those aged 80 and over at the time of the 
first census, and those born between the two censuses, the 
calculations are as follows:

 

( )

( )

5 20 5 20 5 20,5 5 25
5 20,5

1 1(2001) (2006) 1
2

1 169787 0.96458 95763 1
2 0.96458
2994

F F FD N S N
S

 
= ⋅ + − 

 
 = ⋅ + − 
 

=

 

( )

( )( )

80 80 80,5 85
80,5

1 1(2001) (2006) 1
2

1 17658 4455 0.40912 5305 1
2 0.40912
7410

F F FD N S N
S∞ ∞ ∞ ∞

∞

 
= ⋅ + − 

 
 = + + − 
 

=
and

 
( )5 0

,5

1 1 1 1(2006) 1 12577 1
2 2 0.94151
391.

F F
B

B

D N
S

   = − = −       
=

If data and/or survival factors were not available by age 
group then one could estimate the total number of deaths 
of the foreign born people as follows, given an estimate of 
the crude mortality rate in the population of 14 per 1,000:

( )

( )

0 0 0 0
5 (2001) (2006)
2
5 14611423 754608 47811.
2 1000

F F FD N N m∞ ∞ ∞ ∞= +

= + =

Step 3: Estimate the net number of immigrants (of 
foreigners)
Since data are available by age group for each census, age-
specific net immigration of those born outside the country 
can be estimated as follows:

Age 2001 2006 x 5Sx
Age at 2nd 

census DF Net M

B 0.94151
0–4 8,963 12,577 0 0.97896 0–4 391 12,968
5–9 10,390 13,724 5 0.99547 5–9 242 5,003

10–14 13,508 13,998 10 0.99427 10–14 55 3,664
15–19 27,835 27,943 15 0.98602 15–19 119 14,555
20–24 69,787 59,493 20 0.96458 20–24 616 32,275
25–29 87,381 95,763 25 0.93161 25–29 2,994 28,970
30–34 73,338 100,450 30 0.90960 30–34 6,675 19,743
35–39 66,663 85,490 35 0.89780 35–39 7,563 19,715
40–44 59,152 75,684 40 0.89092 40–44 7,701 16,721
45–49 45,184 66,113 45 0.88633 45–49 7,274 14,234
50–54 40,398 55,913 50 0.87224 50–54 6,154 16,883
55–59 30,640 42,833 55 0.84731 55–59 5,717 8,153
60–64 24,376 34,433 60 0.80885 60–64 5,442 9,234
65–69 17,895 25,588 65 0.75468 65–69 5,353 6,564
70–74 13,561 18,989 70 0.66991 70–74 5,281 6,375
75–79 10,238 12,850 75 0.56388 75–79 5,404 4,693
80–84 7,658 7,461 80+ 0.40912 80–84 5,118 2,341
85+ 4,455 5,305 85+ 7,410 602

TOTAL 611,423 754,608 TOTAL 79,509 222,693

Table 35.1  Estimation of deaths of foreign-born and the net 
number of immigrants by age group, South Africa, 2001–2006



CHAPTER 35 ESTIMATION OF MIGRATION FROM CENSUS DATA  |  381

5 20 5 25 20 5 20Net (2006) (2001)
95763 69787 2994 28970

F F F FM N N D∞= − +
= − + =

( )
80 85 80 80Net (2006) (2001)

5305 7658 4455 7410 602

F F F FM N N D∞ ∞ ∞ ∞= − +

= − + + =

5 0Net (2006) 12577 391 12968F F F
B BM N D= + = + = .

If data and/or survival factors were not available by age 
group then one could estimate the total net number of 
immigrants as follows:

0 0 0 0Net (2006) (2001)
754608 611423 47811 190996

F F F FM N N D∞ ∞ ∞ ∞= − +
= − + = .

B) �Estimating sub-national regional net in-migration 
using place of birth

The second and third column of Table 35.2 show the 
numbers of people living in the Western Cape province 
of South Africa who were born outside the province, as 
counted by the 2001 Census and the 2007 Community 
Survey, respectively. Although the same survival factors 
(column 5) have been used as were used in the example of 
Method A, this should not be the case if it was thought that 
the mortality experience of native-born and immigrants 
were very different. The final column of Table 35.2 gives 
the net numbers of migrants into the Western Cape who 
were born in provinces other than the Western Cape for 
the different age groups. Thus in total 213,911 people born 
outside the Western Cape moved to the Western Cape (after 
excluding those who moved out).

The second and third columns of Table 35.3 present 
the numbers of people living in provinces other than the 
Western Cape who were born in the Western Cape, as 

Age 2001 2006 x 5Sx
Age at 

2nd census DO
Net M 

(born out)
B 0.94151

0–4 16,443 19,012 0 0.97896 0–4 591 19,602
5–9 24,406 28,743 5 0.99547 5–9 482 12,782

10–14 31,134 30,792 10 0.99427 10–14 125 6,511
15–19 44,478 53,933 15 0.98602 15–19 245 23,043
20–24 74,011 82,526 20 0.96458 20–24 896 38,944
25–29 80,187 89,522 25 0.93161 25–29 2,954 18,466
30–34 65,833 90,783 30 0.90960 30–34 6,074 16,670
35–39 56,393 76,475 35 0.89780 35–39 6,776 17,417
40–44 44,420 59,692 40 0.89092 40–44 6,268 9,567
45–49 32,862 47,612 45 0.88633 45–49 5,338 8,529
50–54 28,178 37,969 50 0.87224 50–54 4,303 9,409
55–59 1  9,983 30,205 55 0.84731 55–59 4,012 6,039
60–64 17,569 25,593 60 0.80885 60–64 3,832 9,442
65–69 11,216 20,802 65 0.75468 65–69 4,137 7,371
70–74 8,365 12,612 70 0.66991 70–74 3,426 4,822
75–79 5,919 8,434 75 0.56388 75–79 3,458 3,528
80–84 4,063 5,061 80+ 0.40912 80–84 3,248 2,390
85+ 2,152 2,183 85+ 3,413 –620

TOTAL 567,613 721,949 TOTAL 59,576 213,911

Table 35.2  Estimation of the net number of in-migrants of those 
born outside by age group, Western Cape, South Africa, 2001–2006
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counted by the 2001 Census and the 2007 Community 
Survey, respectively. The net number of out-migrants of 
those born in the Western Cape (i.e. the number of people 
born in the Western Cape who moved out, less those who 
have returned) is given in column 8. The negative numbers 
mean that there was negative net out-migration (i.e. the 
number of those born in the Western Cape who moved to 
other provinces in the period was less than the number born 
in the Western Cape who were living outside who returned 
during the period). Thus the total of –19,017 means that the 
number of people born in the Western Cape, who returned 
to the Western Cape during the period having lived in 
another province until 2001 exceed those who were born 
in the Western Cape and moved to another province in the 
period by 19,017.

These estimates were derived using the same survival fac-
tors as were used for those born outside the Western Cape 
who moved into the province, but if there was reason to sup-
pose that the mortality differed for those born in the Western 

Cape who moved out, then a different set of survival factors 
would be used to estimate the Net M (born in) numbers.

The overall net in-migration for the province is thus given 
in the final column of Table 35.3. Thus in total 232,928 
more people moved into the Western Cape than left the 
Western Cape to live in another province.

In this example those born outside the province include 
those born outside the country and thus the overall net 
migration includes immigrants who settle in the province. 
Excluding the foreign-born from Table 35.2 would produce 
numbers of internal in-migrants net of internal out-
migrants, and the sum of these numbers for all the provinces 
together would be zero.

C) �Estimating internal migration between sub-national 
regions from data on place of residence at previous 
census

Table 35.4 presents the results of the answers to the question 
about place (province in this example) of residence at the 

Table 35.3  Estimation of the net number of out-migrants of those 
born inside by age group, Western Cape, South Africa, 2001–2006

Age 2001 2006 x 5Sx
Age at 

2nd census DI
Net M 

(born in)
Overall
Net M

B 0.94151
0–4 22,055 11,747 0 0.97896 0–4 365 12,112 7,490
5–9 21,895 12,509 5 0.99547 5–9 367 –9,180 21,962

10–14 21,382 11,593 10 0.99427 10–14 76 –10,226 16,737
15–19 18,265 13,455 15 0.98602 15–19 100 –7,827 30,870
20–24 14,645 10,477 20 0.96458 20–24 202 –7,587 46,531
25–29 13,501 9,534 25 0.93161 25–29 434 –4,676 23,142
30–34 13,118 11,047 30 0.90960 30–34 867 –1,587 18,257
35–39 12,121 14,614 35 0.89780 35–39 1,319 2,815 14,602
40–44 11,725 12,195 40 0.89092 40–44 1,311 1,384 8,183
45–49 10,335 10,538 45 0.88633 45–49 1,285 98 8,431
50–54 9,211 9,881 50 0.87224 50–54 1,221 768 8,642
55–59 7,264 10,568 55 0.84731 55–59 1,362 2,720 3,319
60–64 6,691 7,723 60 0.80885 60–64 1,250 1,710 7,732
65–69 4,643 5,297 65 0.75468 65–69 1,265 –128 7,499
70–74 3,954 3,766 70 0.66991 70–74 1,182 304 4,517
75–79 2,331 2,384 75 0.56388 75–79 1,240 –330 3,858
80–84 1,402 2,140 80+ 0.40912 80–84 1,336 1,145 1,244
85+ 707 555 85+ 1,024 –531 –89

TOTAL 195,246 160,023 TOTAL 16,206 –19,017 232,928
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time of the 2001 Census given by those counted in each of 
the provinces in the 2007 Community Survey. (In actual fact 
the question asked whether the person was staying at the same 
place at the time of the prior census and if not, where they 
were staying at the time they moved to the place at which they 
were counted in the Community Survey. However, work by 
Dorrington and Moultrie (2009) shows that using these data 
and the year of movement to back-project the population in 
order to estimate the numbers by province of residence at the 
time of the previous survey suggests that the assumption that 
there was only one move in the five years since the previous 
census was reasonably accurate.)

By far the largest numbers of migrants are those that 
moved within each of the provinces, however, these have 
been excluded from Table 35.4 because one is usually more 
interested in interprovincial migration than migration 
within a province.

In addition to the all-age numbers in Table 35.4 (in actual 
fact these numbers exclude, as is often the case, migration 
of those born between the census and survey) one can also 
produce numbers of in- and out-migration by age groups 
as shown in Table 35.5. For completeness these numbers 
include estimates of the number of migrants who were born 

since the previous census. However, relative to the number 
of migrants at other ages, these numbers look implausibly 
high, and the reason for this is discussed below.

The net number of migrants is estimated for those aged 
25–29 at the time of the Community Survey (i.e. were 
aged 20–24 at the time of the 2001 census), for example, 
as follows:

( )( )5 20675 5649 20675 5649 0.96458 2

15301.
xM = − + −

=

Diagnostics, analysis and interpretation
Checks and validation
Perhaps the simplest check, on the reasonableness of 
the ‘shape’ (i.e. distribution of the numbers by age) of 
the estimates but not the level, is to see if it conforms to 
the standard shape (or a variation thereof ). Rogers and 
Castro (1981a; 1981b) point out that the distribution 
of the number (or rate) of in- and out-migrants tends to 
conform to standard patterns, with a peak in the young 
adult ages (usually associated with seeking employment), a 
second, usually less pronounced peak amongst very young 

Province where counted (destination)

Previous 
residence 
(origin)

WC EC NC FS KZ NW GT MP LM Total

WC 12,173 4,060 1,745 3,221 2,113 16,400 1,405 874 41,992
EC 52,239 1,120 7,187 25,209 14,430 28,633 4,693 2,116 135,626
NC 4,813 1,942 3,480 908 3,728 4,956 1,062 357 21,246
FS 2,943 3,145 2,546 2,352 12,733 19,920 4,293 1,963 49,896
KZ 6,762 7,015 631 2,358 3,573 50,980 8,886 1,194 81,399
NW 1,478 907 9,811 5,555 2,329 47,633 3,090 4,337 75,140
GT 24,891 12,948 3,962 11,437 18,145 32,433 18,598 15,133 137,547
MP 2,134 1,317 280 1,724 4,546 5,767 42,941 8,628 67,338
LM 2,754 1,583 255 1,709 2,209 9,773 81,394 24,211 123,889
OSA 21,221 5,467 1,209 9,584 10,933 11,437 51,873 8,335 9,286 129,346
DNK 500 3 15 124 132 78 228 89 0 1,170
UNS 1,058 1,029 107 208 875 508 3,558 408 633 8,384

TOTAL 120,794 47,528 23,996 45,111 70,860 96,573 348,516 75,070 44,524 872,973

WC = Western Cape, EC = Eastern Cape, NC = Northern Cape, FS = Free State, KZN = KwaZulu-Natal, NW = North West, 
GT = Gauteng, MP = Mpumalanga, LM = Limpopo, OSA = Outside SA, DNT = Do not know, UNS = Unspecified

Table 35.4  Interprovincial migration, South Africa, 2001–2006
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children falling to a trough amongst young teenagers (the 
size depending on the extent to which it is families rather 
than individuals moving in the young to middle aged 
adults). Sometimes there is also a ‘hump’ (or trough) around 
retirement age if there is a strong flow of migrants moving 
to (or away from) the place to retire.

These patterns (not necessarily the same pattern) apply to 
in- and out-migration flows separately, but not necessarily 
to net migration (which is the difference between the two 
flows) unless one flow (either the in-migration or the out-
migration) is much greater than the other.

Figure 35.1 illustrates this using some of the estimates 
calculated above, expressed as proportions of the total 
number in each case (to allow them to be presented on a 
single figure). From this we can see that in broad terms 
(with the exception in some cases, where the proportion 
of migrants at the very young ages looks implausibly high) 
each conforms to the expected shape.

The net out-migrants of those born in the Western Cape 
(excluded from the figure for ease of illustration) does not 
conform to a standard model of migration, which could 
indicate these numbers are not very reliable, however, they 

are small relative to the in-migration of those born outside 
the province, and thus such a deviation may tolerated. In 
addition to this there are two other features to be noted from 
Figure 35.1. The first is that the out-migration from the 
Western Cape as estimated from data on place of residence 
at previous census, suggests that adult out-migrants peak at 
a somewhat older age (and possibly are likely to represent 
family rather than individual migration). The second is the 
fact that the net immigration into the country follows the 
standard shape which indicates that the flow into the country 
is much stronger than the return flow of those migrants.

If the census asked place of birth and place of residence at 
the previous census then one can compare the two estimates 
of net in-migration into a specific sub-national region. If 
they are similar this gives one some confidence in the results. 
In the case of the place of birth data for South Africa the net 
number of in-migrants into the Western Cape is 232,928 
(Table 35.3) while the estimate from the data on place of 
residence at the time of the previous census data produced 
an estimate of 92,194 (Table 35.4), which suggests that one 
or both of these sets of data are suspect.

The most basic check of the estimates of migration is to 

Age
Surviving 

in-migrants 
(I' )

Surviving 
out-migrants 

(O' )
x 5Sx

Net in-
migrants

0–4 20,846 11,747 B 0.94151 9,381
5–9 6586 3,554 0 0.97896 3,065

10–14 6685 2,882 5 0.99547 3,812
15–19 10402 3,967 10 0.99427 6,454
20–24 21266 4,488 15 0.98602 16,897
25–29 20675 5,649 20 0.96458 15,301
30–34 15584 6,008 25 0.93161 9,928
35–39 10584 5,098 30 0.90960 5,758
40–44 7264 3,045 35 0.89780 4,458
45–49 4648 2,714 40 0.89092 2,053
50–54 3095 1,500 45 0.88633 1,698
55–59 3940 935 50 0.87224 3,225
60–64 3776 527 55 0.84731 3,541
65–69 3127 818 60 0.80885 2,582
70–74 1540 437 65 0.75468 1,282
75–79 561 206 70 0.66991 442
80–84 797 116 75 0.56388 944
85+ 264 47 80+ 0.40912 374

TOTAL 141,640 53,739 91,194

Table 35.5  Estimation of the net number 
of in-migrants by age group, Western Cape, 
South Africa, 2001–2006
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project the population (of the country or the province) at 
the first census to the time of the second census making use 
of the estimates of the number of migrants and compare 
that with the census estimates from the second, more recent, 
census to see how well the two match, especially in the age 
range in which migration is concentrated. In the case of 
the net in-migration into the Western Cape, projecting the 
population forward from 2001 using the estimates derived 
from the change in the numbers by place of birth produced 
a much closer fit to the population in the 20–29 year age 
range, suggesting that the data on place of birth are probably 
more complete than those on the place of residence at the 
date of the previous census. To some extent this is supported 
by a comparison of the change in the number of foreign-
born in the country between the two censuses, 222,693 
(Table 35.1) with the sum of the numbers who reported 
that they had moved from outside South Africa to one of the 
provinces since the previous census, 129,346 (Table 35.4).

Ideally, if one had independent estimates of the num-
ber of migrants one might compare those numbers against 
estimates using the above methods. Unfortunately, reliable 

independent estimates are rare. Although most countries 
try to record people entering and leaving the country, these 
data are often not reliable, particularly in developing coun-
tries with relative porous borders. And unless the country 
is extremely well regulated and maintains a complete and 
accurate register of the population, the only other way to 
measure internal migration is through migration-specific 
surveys, which tend to be much more useful for understand-
ing the type of migration (whether permanent, temporary, 
cyclical, etc.) than for producing reliable estimates of the 
number of migrants, given the often less structured situation 
that (particularly recent) migrants find themselves living in 
and an understandable reluctance to identify themselves as 
being migrants.

Interpretation
Considering the numbers of migrants estimated from the 
data on place of residence at the previous census given in 
Table 35.4 (and taking into account the suspicion that these 
probably underestimate the true migration), some 2–4 per 
cent of the population changed province of residence in 

Figure 35.1  Age distribution of selected migrant flows, South 
African males, 2001–2006
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the 5 years between the 2001 Census and the Community 
Survey. Had we included the number who moved within, 
but did not change, province then between 7 and 15 per 
cent of the population moved in the 5-year period.

The main provinces of destination are Gauteng (by a big 
margin) and Western Cape, which are predominantly urban 
and the wealthiest provinces. The main provinces of origin 
are Gauteng (inspection of the age distribution would show 
that this is mainly return migration of ‘retiring’ workers) 
Eastern Cape and Limpopo, which are poor, mainly rural 
provinces, from which people seeking work migrate to the 
urban areas.

It appears that migration is predominantly of individuals 
(seeking work) rather than of families.

Method-specific issues with 
interpretation
Scanning errors
A particular feature of the data relying on province of birth 
is the apparently relatively high number of children born 
since the first census who have moved to another province. 
In all likelihood this is an artefact of the data capturing 
process. Scanning was used to capture the data from the 
questionnaires on which Western Cape was coded as a “1”, 
written in the appropriate space by hand. It appears that in a 
small percentage of cases the scanner might have had trouble 
distinguishing a handwritten “1” from a handwritten “7” 
(the code for Gauteng). The result of this is, for example, 
that some of the children coded as having been born outside 
the province in which they were counted, and thus appear 
to be migrants, but probably were not. Even though the 
percentage error in scanning is very small, the number of 
births can be large relative to the number migrants, and thus 
the error can produce noticeable errors. Since an increasing 
number of developing countries are using scanning to 
capture data, this sort of problem may be quite common.

Where scanning errors or other situations make it 
impossible to produce reliable estimates of the number of 
migrants of those born since the previous census one can use 
CWR from second census as follows:

5 0 0 30 15
1Net Net
4

fM CWR M= ⋅

for those born in the most recent five years, and

5 5 5 30 20
3Net Net
4

fM CWR M= ⋅

for those born in the five years before that if the censuses 
are 10 years apart, where CWRx represents the ratio of the 
number of children aged between x and x + 5 to the number 
of women in the population aged between 15 + x and 45 + x 
in the population (regional or national) at the time of the 
second census, and 30

f
xM  represents the number of women 

migrants aged between x and x + 30.
Applying this to the data for the Western Cape suggest 

that the number of migrants born since the previous census 
should be less than half the numbers being estimated from 
the data on place of birth.

Detailed description of method
Mathematical exposition
The indirect estimation of migration derives from the 
balance equation for two censuses n years apart, namely:

5 5 5 5 5( ) ( )x n x x x xN t n N t D I O+ ′ ′+ = − + −

5 5 5( )x x xN t D M ′= − +

where 5 5 5x x xM I O′ ′ ′= −  is the net (i.e. in less out) number 
of in-migrants, aged x to x + 5 at the time of the first census, 
surviving to the second census, and 5Dx, 5I'x and 5O'x, 
represent the number of deaths, surviving in-migrants and 
out-migrants, aged x to x + 5 at the time of the first census, 
who died or moved in the period between the censuses.

For those born after the first census the equation becomes:

0 ( )n B BN t n B D M ′+ = − +

and those in the open age interval:

( ) ( )A A n A n A nN t n N t D M∞ ∞ − ∞ − ∞ −′+ = − +

where B represents the number of births in the population 
between the two censuses, DB the number of deaths of those 
births in the period between the censuses and M'B the net 
number of surviving migrants, born outside the country in 
the period between the two censuses, ∞DA – n the number 
of deaths in the intercensal period aged A – n and older at 
the time of the first census, and ∞M'A – n the net number of 
migrants aged A – n and older at the time of the first census.
Thus,

5 5 5 5( ) ( )x x n x xM N t n N t D+′ = + − +
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0 ( )B n BM N t n B D′ = + − +

( ) ( )A n A A n A nM N t n N t D∞ − ∞ ∞ − ∞ −′ = + − +

or alternatively

5 5 5 5( ) ( )x x n x xM N t n N t S+′ = + −

0 ( )B n BM N t n BS′ = + −

( ) ( )A n A A n A nM N t n N t S∞ − ∞ ∞ − ∞ −′ = + −

where 5Sx, SB and ∞SA – n represent the proportion of the 
populations aged x to x + 5 at the time of the first census, 
born between the censuses, and aged A – n and older at the 
time of the first census, respectively, surviving to the second 
census.

The net number of migrants can thus be estimated from 
the net number surviving to the second census as follows:

( ) ( )5
5 5 5 5 5

5

1
2

2
x

x x x x x
x

S
M M M S M

S
+

′ ′ ′= + =

( )1
2
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B B
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S
M M

S
+

′=

( )1
2

A n
A n A n

A n

S
M M

S
∞ −

∞ − ∞ −
∞ −

+
′= .

Unfortunately, since the net number of migrants is usually 
small relative to the size of the population, age misstatement 
or errors in either or both census counts can lead to very 
poor estimates being produced. Better estimates of the net 
number of immigrants into a country can be produced by 
confining one’s attention to the population of foreigners 
(defined as those born outside the country) and assuming 
that return migration of emigrants from the country of 
interest is insignificant. Thus one replaces each of the 
symbols above by equivalents specific to the foreign-born 
population in the country. Since it is unlikely that one has 
an accurate record of the number of the foreign-born deaths 
these need to be estimated in one of the following ways:
•	 Option 1 (Life table survival ratios): Applying rates from a 

suitable model life table, then

5 0
5

5 0

,   and x n n A
x B A n

x A n

L L TS S S
L n l T
+

∞ −
−

= = =
⋅

•	 Option 2 (Census survival ratios): Assuming that emigra-
tion of the native-born population is insignificant and 
that the proportions surviving are the same as those in 
the native-born population, then

5 0
5

5

( )
,   and

( )
( )

( )

nb nb
x n n

x Bnb nb
x
nb
A

A n nb
A n

N t n NS S
N t B

N t nS
N t

+

∞
∞ −

∞ −

+
= =

+
=

	 where the superscript nb designates native-born.
•	 Option 3 (Vital registration): Where one has access to 

numbers of births and deaths from another source such as 
vital registration (which is only likely to be the case, if at 
all, with internal migration), one could work with deaths 
and births corresponding to the migrant population 
directly instead of survival ratios to estimate the net 
number of surviving in-migrants. Alternatively the net 
number of migrants can be derived as above by setting

5
5

5

1 ,   and 
( ) ( )
x B A n

x B A n
x A n

D D DS S S
N t B N t

−
∞ −

∞ −

= − = =

	 where the births and deaths are from the vital registration.
However, for most developing countries, particularly 

those in Africa, vital registration systems are too incomplete 
to be used in this way.

Internal migration
When it comes to internal migration one can estimate net 
in-migration (i.e. in-migration of those born outside the 
region less out-migration of those born outside the region 
who had previously moved into the region) into each sub-
national region of those born outside the region by making 
use of place of birth information to identify the change in 
numbers of those born outside the region, in the same way 
as described above. However, since one also has the place of 
residence of those born in the region who have moved out 
of the region since birth (but not emigrated) one can also 
estimate the net out-migration of those born in the region 
(i.e. out-migration of those born in the region less those 
born in the region who have returned after having previously 
moved out of the region) by applying the method described 
above to the population born in the region (as opposed to 
those born outside the region).

When estimating the survival of those born in the various 
regions the census survival ratios could have an advantage 
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over the life table survival ratios in that any under or over 
count of the population by region, may well be matched by 
a similar distortion in the national population and hence in 
the survival ratios, thus resulting in a more accurate estimate 
of the number of migrants than would be produced by using 
life table survival ratios.

Apart from place of birth, a census can ask of those who 
moved since the previous census (or some other suitable 
date) where they were at that census (or some other suitable 
date) which allows one to measure out-migration and hence 
(gross) in-migration separately for each sub-national region.

If the census asks for the year when the migrant moved 
(or how long the person has been living in the place where 
counted in the second census) one can get a sense of the 
timing of migration, and estimate yearly migration rates. 
This is a complicated process and is not covered here, but 
the interested reader is referred to the paper by Dorrington 
and Moultrie (2009).

Working with total numbers only
If age-specific numbers are not available or the allocation 
to age is considered to be unreliable one can still produce 
estimates by age by estimating the total number of migrants 
as described below, and then apportioning this total to the 
age groups using either an age distribution for the same 
population at a different time (since the age distribution 
of migration flows tend be consistent over time, or (more 
likely) an appropriate standard model, such as that described 
by Rogers and Castro (1981a; 1981b). Accordingly,

0 0 0 0Net ( ) ( )F F F FM N t n N t D∞ ∞ ∞ ∞= + − +

where ( )0 0 0 0( ) ( )
2

F F FnD N t N t n m∞ ∞ ∞ ∞= + +

and ∞m0 is an estimate of the crude mortality rate of the 
population in the country of the census.

Limitations
The primary limitation of using censuses to estimate 
immigration and net in-migration is the quality of the cen-
sus, in particular the extent of undercount of the censuses, 
in general but more significantly one relative to the other. 
However, even if the census undercount is low, the cen-
sus might not identify all the migrants. In general recent 
migrants are often difficult to include in a census because 
they have yet to settle. More specifically, immigrants may 

not be keen to identify themselves as immigrants and either 
avoid being counted or do not admit to being foreign-born.

Apart from this, place of birth and/or place of residence 
at previous census, in the case of internal migrants, might be 
misreported due to boundary changes or ignorance (or even 
bias) on the part of the respondent.

The third drawback of census data is that it cannot 
be used to measure emigration from the country of the 
census. Emigration is particularly difficult to estimate for 
most countries, but one option is to apply the method for 
identifying net immigration of the foreigners described 
above to the censuses of the main countries of destination 
to which the emigrants move to estimate the change in the 
numbers of emigrants to those countries. Of course, this 
is only useful if the censuses of these countries identify 
the numbers of foreign-born by their countries of birth 
reasonably accurately.

Generally, statistics on immigrants and particularly 
emigrants that are collected at border posts provide quite 
poor estimates of the true numbers, unless the borders of 
the country are quite impenetrable and there are a few well-
controlled ports of entry. Even then there may still be many 
‘visitors’ who end up living in the country.

A final drawback occurs when working with data 
aggregated over all ages. In these cases one usually has to 
make use of the crude death rate for the population of the 
country of the census in order to estimate the number of 
deaths of the migrant population. However, since the 
distribution of the migrant population by age can differ 
from that of the population of the country of the census 
quite markedly, the estimated number of deaths can be quite 
inaccurate.

Extensions of the method
Some censuses ask additional questions which can be of use 
in interpreting the patterns of migration, if not improving 
the estimate of the level of migration. Most common of 
these is probably a question asking about when the migrant 
moved. These data allow one to estimate annual rates of 
migration, however, it is possible that there could be a 
tendency for respondents to report moves as occurring more 
recently than is actually the case (Dorrington and Moultrie 
2009).

Where a census asks, such as the recent censuses in South 
Africa, of those who moved since the previous census, where 
they moved from most recently and when they moved, and 
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Further reading and references
For general background to the topic of migration, definition 
of terms and detail on the analysis and interpretation of the 
data on internal migration the interested reader is referred 
to the excellent UN manual on the topic, Manual VI (UN 
Population Division 1970). The textbook by Shryock and 
Siegel (1976) or its modern replacement by Siegel and 
Swanson (2004) also provides an introduction to the topic 
of migration and covers, in particular, the estimation of 
international migration.

Those interested in the estimation of annual migration 
rates and the back-projection of migration to estimate the 
numbers by place of residence at the time of the previous 
census from data on place of residence before the most 
recent move and year of move are referred to the paper by 
Dorrington and Moultrie (2009).

Dorrington RE and TA Moultrie. 2009. “Making use of the con-
sistency of patterns to estimate age-specific rates of interpro-
vincial migration in South Africa,” Paper presented at Annual 
conference of the Population Association of America. Detroit, 
US, 30 April–2 May.
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Institute for Applied Systems Analysis, pp. 125–159. http://
webarchive.iiasa.ac.at/Admin/PUB/Documents/RR-81-006.pdf

Rogers A and LJ Castro. 1981b. Model Migration Schedules 
(RR-81-030). Laxenburg, Austria: International Institute for 
Applied Systems Analysis. http://webarchive.iiasa.ac.at/Admin/
PUB/Documents/RR-81-030.pdf
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of Economic and Social Affairs, ST/SOA/Series A/47. http://
www.un.org/esa/population/techcoop/IntMig/manual6/
manual6.html

not where they were at the time of the previous census, it is 
possible to back-project the numbers of migrants by applying 
annual rates of migration between sub-national regions to 
estimate the number by place at the time of the previous 
census (Dorrington and Moultrie 2009). However, in the 
case of South Africa, at least, it appears that the assumption 
the most migrants moved only once in the past five years, 
and thus that the place of residence before the most recent 

move is the same as the place at the time of the previous 
census, is quite reasonable (Dorrington and Moultrie 2009).

Where one has data on both the sub-national region of 
birth and the place at the time of the previous census, one 
can cross-tabulate the place of residence data by the place 
of birth and thus be able to classify recent migrants into 
primary, secondary and return migrants.
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Chapter 36  The multi-exponential model  
migration schedule

Jani Little and Rob Dorrington

Description of method
This chapter describes how to fit a multi-exponential model 
migration schedule to observed migration data.

Over the last thirty years, these schedules, devised 
by Rogers and Castro (1981), have been remarkably 
successful in representing typical age patterns of migration. 
Essentially the same age patterns of migration have been 
observed whether national and interregional migrations 
are considered simultaneously, or migration from a specific 
region is considered in isolation. The multi-exponential 
function was designed to reflect the dependency between 
migration and age, and captures the relationship through 
an additive sequence of exponential curves, based on 7, 9, 
11 or 13 parameters, depending on the complexity of the 
migration patterns and the ability and robustness of the data 
to sustain increased parameterization.

When fitted to a schedule of single-year-of-age migration 
rates, the Rogers-Castro model provides a best-fit, graduated 
expression of the migration schedule that finds application in 
smoothing an observed series of migration rates, and which 
can be used directly to enhance understanding of migration 
dynamics. The results can also find application in a number of 
alternative uses, for example, in setting migration schedules 
to be used in multi-regional population projections. Ideally, 
the analyst will have estimates of migration by single year 
and single ages to which the Rogers-Castro model can 
be fitted. However, if – as is often the case in developing 
countries where the quality of the underlying data may 
not permit such finely grained calculations – the data are 
only available in five-year age groups, then single-year age 
rates need to be interpolated from the data using one of the 
methods described in this chapter before attempting to fit a 
Rogers-Castro model.

Data requirements and assumptions
Tabulations of data required
•	 Migration propensities or migration rates by single ages 

from age 0 to an age above 65 (or if not in single ages, 
then by five-year age groups).
Ideally the data should be in the form of rates by single 

ages. Where they are in five-year age groups then single 
year observations must be interpolated from these five-year 
estimates before attempting to fit a multi-exponential curve. 
The choice of the upper age is somewhat arbitrary, but the 
upper bound of the data used in fitting a model schedule 
should – at the minimum – be greater than the modal age 
of retirement.

Important assumptions
Latest census counts the population by sub-national region 
and place of birth accurately and identifies who have moved 
from one region to another since a prior date (e.g. previous 
census).

Preparatory work and preliminary 
investigations
Before applying this method, you should investigate the 
quality of the data in at least the following dimensions:
•	 age structure of the population (by sub-national region as 

appropriate); and
•	 relative completeness of the census counts (by sub-

national region as appropriate).

Caveats and warnings
Caution should be exercised in applying the method to net 
migration data, as the multi-exponential distribution of 
migration rates by age models gross migration flows (i.e. in- 
or out-migration) but not necessarily net migration, unless 
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the flow in one direction significantly dominates the flow in 
the other at all ages.

Overview of the multi-exponential 
model migration schedule
The multi-exponential function was designed by Rogers and 
Castro (1981) to reflect the dependency between migration 
and age. High levels usually found in the first year of life. It 
drops to a low point during the early teenage years. Then it 
increases sharply to its highest point during the young adult 
years. After that, it declines, except for a possible increase 
and subsequent decrease during the ages of retirement. In 
some circumstances there may be an upward slope at the 
oldest ages (Rogers and Castro 1981; Rogers and Watkins 
1987).

Over the last thirty years, the schedule (also known as 
the Rogers-Castro model migration schedule) has proven 
to be remarkably successful in representing age patterns 
of migration (Little and Rogers 2007; Raymer and 
Rogers 2008; Rogers and Castro 1981; 1986; Rogers and 
Little 1994; Rogers, Little and Raymer 2010; Rogers and 
Raymer 1999; Rogers and Watkins 1987). These same age 
patterns of migration have been documented for regions of 
different sizes and for ethnic and gender sub-populations 
(Rogers and Castro 1981). They appear whether national 
interregional migrations are considered simultaneously, or 
migration from a specific region is considered separately. 
Directional migration (i.e. from region i to region j) exhibit 
the same patterns as well. For example, the Rogers-Castro 
model migration schedule has been fitted successfully 
to migration flows between local authorities in England 
(Bates and Bracken 1982; 1987), Canada’s metropolitan 
and non-metropolitan areas (Liaw and Nagnur 1985), and 
the regions of Japan, Korea, and Thailand (Kawabe 1990), 
and South Africa’s and Poland’s national patterns (Hofmeyr 
1988; Potrykowska 1988).

When fitted to a schedule of single-year-of-age migration 
rates, the Rogers-Castro model provides a best-fit, graduated 
expression of the migration schedule that can be summarized 
by 7, 9, 11 or 13 parameters depending on the complexity 
of the schedule and strength of the data. In addition, the 
erratic fluctuations, often associated with unreliability in 
observed age-specific rates, are smoothed.

Rogers-Castro model migration schedules have been 
used in population projections in Canada (George 1994), 
and they have been imposed on time periods, regions, and 

subpopulations (Rogers, Little and Raymer 2010) when 
migration data were inadequate or unavailable.

The full model schedule has 13 parameters, which is the 
complete and most complex multi-exponential form of the 
model. If M(x) is defined as the migration rate for a single 
year of age x, the full model is defined as
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It comprises five additive components. The first component, 
a1 exp(– 1x), is a single negative exponential curve representing 
the migration pattern of the pre-labour force ages. The second 
component, ( ) ( ){ }2 2 2 2 2exp expa x xα µ λ µ− − − − −   , is 
a left-skewed unimodal curve describing the age pattern of 
migration of people of working age. The third component, 

( ) ( ){ }3 3 3 3 3exp expa x xα µ λ µ − − − − −  , is an almost 
bell-shaped curve representing the age pattern of migration 
post-retirement, where migration increases sharply following 
retirement before falling off again. Associated with this com-
ponent, the fourth component is a single positive exponential 
curve of the post-retirement ages, a4 exp( 4x), reflecting the 
(sometimes) observed generalized increase in migration post-
retirement. This can be seen, for example, in the migration of 
the elderly in the US from the North-East to the “sunbelt” 
states in the South East and South West. The final component 
is a constant term, c, that represents ‘background’ migration.

Four families of multi-exponential schedules have been 
identified in past studies (Rogers, Little and Raymer 2010), 
and only one, exhibiting both a retirement peak and a post-
retirement upslope, requires all 13 parameters and all five 
components. This family is documented in studies of elderly 
migration (Rogers and Watkins 1987), and is demonstrated 
in the bottom right panel of Figure 36.1.

The other families are reduced forms of the full model, 
which means that at least one component is omitted. For 
example, the most common schedule identified by Rogers, 
Little and Raymer (2010) requires seven parameters and 
consists of the first two components and the constant term. 
This is also called the standard schedule, and its shape is set 
out in the top left panel of Figure 36.1.

A number of schedules have exhibited a standard profile 
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plus a retirement peak (Rogers and Castro 1981; Rogers 
and Castro 1986), resulting in the 11-parameter model, 
including components 1, 2, 3 and 5, shown in the bottom 
left panel of Figure 36.1. In populations with significant 
migrant labour, particularly in the developing world, it is 
possible that the third component is a trough rather than a 
peak, as migrants return home to retire.

The 9-parameter model is used when the standard pattern 
is visible for the labour and pre-labour force ages, and there 
is an upslope to represent migration in the post-retirement 
years as displayed in the top right panel of Figure 36.1. This 
was found in several regions of the Netherlands in 1974 by 
Rogers and Castro (1981).

As should be evident from the discussion above, all 
parameters are interpretable and can be used to characterize 
the model schedule.

In their original 11-parameter specification of the multi-
exponential migration model, Rogers and Castro (1981) 

illustrated the model using data on male out-migration rates 
from Stockholm in 1974. Figure 36.2 shows the original 
data (the jagged lines) and the smoothed 11-parameter 
schedule fitted to the original data.

Five of the 11 parameters (1, 2, 3, 2 and 3) give rates 
of change for different pieces of the model schedule while 
the level parameters (a1, a2, a3 and c) correspond to the 
heights of the model schedule. a1 gives the peak in the first 
year of life, a2 is the peak of labour force migration, a3 is the 
peak of retirement migration, and c gives the background 
migration rate. μ2 and μ3 give the ages at the labour force 
peak and at the retirement peak, respectively.

Some measures can be used to describe either the observed 
or the model migration schedule. For example, xl is the pre-
labour force age when migration is at its low point. xh is 
the age when labour force migration peaks, and xr is the 
age of peak retirement migration. The difference between xl 
and xh is called the ‘labour force shift’, X, and the increase 

Figure 36.1  The four main families of the Rogers-Castro model 
migration schedules showing additive components

Source: Based on Raymer and Rogers (2008)
Note: The legend indexes, in order, (1) the pre-labour force migration schedule; (2) the working age migration schedule; 
(3) the post-retirement migratory increase and decrease; and (4) the generalized increase in post-retirement migration.
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in migration rate between xl and xh is called the ‘jump’, B. 
A, the ‘parental shift’, is used to describe the average age 
difference between parent migration and the corresponding 
migration of children. The gross ‘migraproduction’ rate 
(GMR) is the sum of all rates over all ages (i.e. the area under 
the curve), and it is used to gauge the total level of migration 
out of a region or the total directional migration, i.e., from 
region i to region j (Rogers and Castro 1981).

Application of method
The method is applied in the following steps.

Step 1: Prepare a schedule of observed rates
The initial step in estimating a model schedule is to prepare 
the data. Decisions about which measure of migration to use 
depend upon the data sources available (registry, census, or 
survey) and the purpose of the research. For example, in a 
comparative study of migration patterns, any of the measures 
would be appropriate as long as they are constructed similarly 
across contexts. If, on the other hand, the model schedules 

are to be used in single-year population projections, the fitted 
schedule should represent single-age, single-year migration 
rates. However, where one does not have single-year single-
age observations that produce progress relatively smoothly 
by age, then one must first convert the data one has into 
single-year single-age estimates. A number of commonly-
encountered situations are described below.

A) � Census data, annual migration rates, five-year 

migration interval

When the numbers of migrants who survived a five-year 
migration interval are available from census data which 
also give the year of most recent move, single-year, single-
age migration rates can be derived through a conceptually 
simple, yet algebraically complex, back-projecting procedure 
outlined by Dorrington and Moultrie (2009). Their method 
compensates for the effect of mortality by applying the 
mortality regime of the general population to the migrants 
and for the effect of interregional migration by applying the 
annual rates of migration for the most recent year to estimate 

Figure 36.2  The Rogers-Castro 11-parameter model migration 
schedule fitted to the out-migration rates of males leaving the 
Stockholm region, 1974

Source: Rogers and Castro (1981). Permission to reproduce this figure granted by the International Institute for Applied Systems 
Analysis (IIASA)

1	=	 rate of descent of pre-labour force component
2	=	 rate of ascent of labour force component
2	=	 rate of descent of labour force component
2	=	 rate of ascent of post-labour force component
3	=	 rate of descent of post-labour force component
xl	 =	 low point
xh	=	 high peak
xr	=	 retirement peak
X	 =	 labour force shift
A	 =	 parental shift
B	 =	 jump
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the population by region one year prior to the census and 
using that to estimate the migration rates two years before 
the census, and using that to estimate the population two 
years before the census, etc. It requires additional region-of-
birth information for those aged 0-4 at time of census, as 
well as single-age, yearly estimates of regional populations. 
Schedules derived in this manner can then be fitted and 
smoothed with a Rogers-Castro model schedule, and used 
in single-year population projections.

B) �I nterpolating one-year from five-year age 

propensities

Regardless of the migration time interval, whether using 
census data or population register data, five-year age group-
ings generally give more reliable estimates of migration pro-
pensities than one-year age categories (Rogers, Little and 
Raymer 2010). In addition, counts of migrants in one-year 
age categories are typically only available from sample data, 
since national population bureaus tend to publish counts of 
interregional migrants in five-year age categories.

To apply the multi-exponential model when the initial 
migration proportions are in five-year age categories requires 
some method of converting the five-year rates to one-year 
rates. Cubic-spline interpolation (McNeil, Trussell and 
Turner 1977) is one such method that produces a smooth 
schedule for all integer values of ages. Rogers and Castro 
(1981) used data from Sweden, which was available in one-
year and five-year age rates, to test the accuracy of the cubic-
spline method, and found generally satisfactory results.

To arrive at smooth one-year age migration profiles, the 
initial migration proportions for the five-year age categories 
are assigned values close to the middle age within the five-
year interval, i.e., ages 2, 7, 12, 15, … 72, 77 (or 2.5, 7.5, 
12.5, …, etc., if estimating rates rather than probabilities). 
From this set of points, a continuous age profile of state 
outmigration propensities is generated with cubic-spline 
interpolation, which constructs third-order polynomials 
that pass through the set of pre-defined control points (called 
nodes). Commercial or freeware add-ins for Microsoft Excel, 
such as XlXtrFun, can also be used to implement cubic spline 
interpolation.

An alternative approach is to adapt Beers’ 6-parameter 
interpolation procedure (Beers 1945) to interpolate rates 
between the rates for the youngest and oldest age groups, 
which also extrapolates the rates to ages 0 and 1 (or 0.5 and 
1.5 if working with rates). The extrapolation to the youngest 

ages is achieved by assuming that the difference between 
propensities for age 1 and 2 is the same as that between ages 
2 and 3, and that between ages 0 and 1 is the same as that 
between ages 3 and 4.

Thus, to apply either approach one needs a set of migration 
rates in five-year age intervals from 0-4, to at least 65-69.

Step 2: Decide on the form of the multi-exponential model
Once the observed schedule is prepared, a decision must 
be made about the form of the multi-exponential model 
to be adopted. The overview of the multi-exponential 
model migration schedule presented above described the 
characteristics of the 7-, 9-, 11-, and 13-parameter models. 
This decision should be informed by a visual inspection of 
the schedule, keeping in mind that the model is assumed to 
represent the true form of the population migration schedule. 
Sometimes, even after plotting the schedule, it is not apparent 
how best to model the retirement years and the oldest ages. 
For example, it may appear that either a standard 7-parameter 
model or a 9-parameter model (increasing migration in the 
oldest ages) would be appropriate. In this situation, the 
decision in favour of the 9-parameter model could be based 
on a theoretical expectation for increasing migration in the 
later years. On the other hand, the 9-parameter model form 
might be rejected, based on the goodness-of-fit measures, as 
being insufficiently parsimonious if it produces no better fit 
than the 7-parameter model. In deciding which form of the 
model to use, it is recommended that the goodness-of-fit 
of the simpler model be compared with the more complex 
model, (e.g. comparing the fit of a 7-parameter model versus 
that of an 11-parameter model). As a general rule, and always 
bearing in mind the likely robustness of the underlying data, 
substantial improvement in fit is required to justify a more 
complex specification.

For most developing countries, particularly where 
‘retirement’ isn’t concentrated between the ages of 60 and 
65 and there is age exaggeration at the older ages, the data 
are probably not strong enough to fit anything more than 
the 7-parameter version of the model.

Step 3: Fit the model using Solver
Given the number of parameters (between 7 and 13) in the 
multi-exponential model migration schedule, determining a 
best fit ab initio using trial-and-error is not recommended. 
Instead, analytical algorithms have to be employed. The 
one described below uses an algorithm that is provided in 
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Microsoft Excel, Solver. Solver may not be routinely loaded 
by standard installations of Microsoft Excel. To enable its 
use, proceed by selecting “File → Options → Add-ins → 
Manage Excel Add-ins → Go …” and then ensuring that 
the “Solver Add-in” is ticked.

The specifications of the Solver function, and the 
conditions and constraints that should be adhered to, have 
been set up in the workbook associated with the methods 
presented in this chapter. To run the routine on a given 
worksheet, select “Data → Solver → Solve”.

The model is fitted in the associated workbook and is set 
up to allow the user to set the “objective” to be minimized to 
be either the sum of squared differences between the observed 
rates and the fitted rates, or the chi-squared statistic.

The default Solver is set up to fit using all parameters. If one 
wants to fit a curve using only some of the parameters then 
one must specify only these parameters in the “By Changing 
Variable Cells” window, and set the other parameters to 
appropriate constant values (which may, or may not, be zero 
depending on the requirements of the fitting procedure). 
An instance where such constrained optimization may be 
required is mentioned below.

The sum of squared differences is calculated as follows:

( )2

1

1 n

i i
i

O F
n =

−∑
where Oi represents the observed rate at age i, Fi represents 
the fitted value at age i and n the number of age groups.

The chi-squared statistic is calculated as follows:
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The chi-squared statistic is more sensitive to misfitting to age 
ranges where rates are lower (resulting in a proportionately 
larger error) and thus is a better metric to assess goodness-
of-fit when trying to fit the ‘retirement hump’ (the third 
component).

Choosing initial estimates for the fitting procedure

The choice of initial parameter values is the principal 
difficulty in non-linear parameter estimation. Ideally, given 
a set of starting values, the algorithm proceeds through 
an iterative process, producing a revised set of “optimum” 
values. However, the optimum may be merely a local 
optimum, and not the global optimum. A better guess 
of the initial parameter values may produce an improved 

goodness-of-fit and produce a different set of final values. A 
poorer choice of initial parameters may prevent convergence 
to even a local optimum.

Bearing this in mind, the most effective method of 
ensuring that the results from a fitting procedure are indeed 
globally “optimal” is to choose parameter values previously 
reported for a “similar” curve. To this end one might start 
with the values already in the workbook which were used to 
fit the curves in the examples below.

Convergence may be more difficult to achieve with 
the 11- and 13-parameter models. Where such heavily 
parameterized models are justified, one approach that can 
be adopted is to first fit a standard 7-parameter model to the 
data (thereby securing the fit at the peak of the migration 
schedule, and at ages up to mid-adulthood). Then, one 
could proceed by fixing those 7 parameters to their estimates 
that resulted from the initial step (i.e. treat those parameters 
as constant from there on), and then estimate the remaining 
parameters. Another effective procedure is to carry out a 
linear estimation method first, which does not rely on an 
iterative algorithm. That method was first described in 
Rogers and Castro (1981) and later included as one of the 
several alternatives set out in Rogers, Castro and Lea (2005).

Another challenge in finding the optimum solution lies 
in choosing an appropriate stopping criterion for the itera-
tive algorithm. As the iteration process converges on a solu-
tion, the chi-square statistic, which measures the differences 
between the observed and the estimated values, decreases. 
An indication that an acceptable solution has been found 
is when the chi-square value decreases by only a negligible 
amount from one iteration to the next. The level of this 
small difference is called the “tolerance” and is set by the 
user. The temptation is to set it to be a very small value, i.e. 
very close to zero, so that a true minimum chi-square value 
is achieved. However, the risk in this approach is that such a 
low tolerance may not be achievable, even when a solution 
has been found. Press, Flannery, Teukolsky et al. (1986) sug-
gest a tolerance equal to 0.001 is a reasonable setting. If the 
estimation software fails to converge, the convergence crite-
ria could be made less stringent, i.e. increase the tolerance, 
or try new initial estimates.

One trial-and-error method of choosing initial estimates 
makes use of the graphs in the accompanying Excel workbook 
(see website). By substituting your schedule of observed data 
in one of the sheets, initial “guesses” of each parameter can 
be chosen and placed in the cells where the final estimates 
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of each parameter are located. Then, by visual examination 
of the fit, and identification of the parameter values that are 
most out of line, try new initial values for those parameters 
and then re-evaluate the fit visually. Continue this way 
until the fitted schedule is reasonably close to the observed 
schedule. At this point, you will know you have reasonably 
good initial estimates and may proceed to the nonlinear 
least squares estimation procedure.

Step 4: Evaluate the model fit
We evaluate the model fit by calculating the mean absolute 
percent error (MAPE ) statistic:
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The MAPE is prone to overstate inaccuracy, particularly 
when the observed schedule has many values that are very 
close to zero (Morrison, Bryan and Swanson 2004).

In addition to MAPE, we also calculate R2, the square of 
the correlation between the Oi and the Fi values. A heuristic 
that is often employed is that a reasonable fit is achieved 
with a MAPE of 15 per cent or less together with an R2 well 
above 90 per cent.

In addition, since the method assumes the estimated 
Rogers-Castro model schedule represents the true form 
of the migration schedule, the estimated model schedule 
should appear to represent the underlying pattern of the 
observed data.

Step 5: Interpret the results of the fit
If the goal is to describe the pattern of migration and a 
multi-exponential model has been successfully fitted to the 
data, any of the summary measures (e.g. GMR, X, B, and A) 
as well as the parameter estimates can be used to describe 
the schedule. The summary measures and the parameter 
interpretations are given in the Overview presented earlier 
in this chapter.

Worked examples
In the examples below, multi-exponential model migration 
schedules are applied to a variety of data, of varying quality 
and complexity and from a number of different sources. All 
worked examples are provided in the associated workbook 
on the Tools for Demographic Estimation website.

Because iterative methods are required to fit a model 
life table to data on conditional survivorship in adulthood, 

detailed worked examples are not provided in the text. The 
reader is directed to the description provided in the previous 
section on how to use Solver in Microsoft Excel to determine 
optimal fits. The workbook is set up to use Solver to derive 
the results presented.

Census data, one-year migration interval
An example of a schedule based on one-year age migration 
propensities measured over a one-year migration interval 
from census data is shown in Figure 36.3. The data are 
derived from the 2005 American Community Survey (ACS), 
a national survey conducted annually by the US Census 
Bureau. Even for California, a highly populated state, the 
one-year age propensities over a one-year interval are quite 
unstable. The MAPE is 17 per cent and the R2 is 0.92.

Caution must be exercised when using one-year age 
propensities over one-year migration intervals. For each 
single age, the numbers at risk of migrating, as well as the 
numbers of migrants, may be small, resulting in propensities 
that are erratic and unstable. A better option may be to 
derive five-year age propensities, which have proven to be 
more reliable than one-year age propensities (Rogers, Little 
and Raymer 2010). These can be interpolated to yield one-
year age propensities using cubic splines or Beers’ formula 
as discussed in the section describing the application of the 
method.

Census data, five-year migration interval
Figure 36.4 shows an example using census data for the state 
of New Hampshire. The US Census Bureau’s 1 per cent 
Public Use Microdata Sample (PUMS) is a relatively small 
sample taken from the census and New Hampshire is one 
of the least populated states. The one-year age propensities 
appear to be quite unstable with dramatic fluctuations, while 
the model schedule provides a smooth estimate of the true 
schedule form. The MAPE is 52 per cent and the R2 is 0.68.

Figure 36.5 shows the cubic-spline interpolation method 
applied to the five-year age migration propensities for New 
Hampshire, derived from the 2000 Census 1 per cent 
public use microsample data. The schedule interpolated 
from the five-year age rates is much smoother and provides 
more reliable estimates than the observed one-year age rates 
displayed in Figure 36.4, and thus is a better set of estimates 
against which to compare the fitted multi-exponential 
curve. The MAPE was reduced from 52 per cent for the one-
year age propensities to 15 per cent for the rates interpolated 
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Figure 36.3  Out-migration over the 1-year interval, 2004–2005, 
with fitted 11-parameter model schedule, California, 2005 ACS

from the five-year age proportions, and the R2 increased 
from 0.68 to 0.94.

There are several reasons why the levels of the New 
Hampshire schedule, in Figure 36.5, are substantially higher 
than the California schedule, Figure 36.4. The California 
example gives migration over a one-year migration interval 
and the New Hampshire schedule is over a five-year interval. 
In addition, New Hampshire is a much smaller areal region 
than California and the expectation is that the force of 
migration will be more powerful in a geographically smaller 
region.

Diagnostics, analysis and interpretation
Checks and validation
It is important to check visually if the age-specific migration 
rates have a ‘shape’ that is compatible with the Rogers-Castro 
models. If this is not the case then it is unlikely that these 
models will provide a satisfactory fit. Likewise, it is worthwhile 
checking whether there are any extreme values, particularly at 
older ages which might distort the choice of parameters or 
even the choice of the number of parameters to be fitted. If the 

observed estimates are particularly noisy, it would be better to 
group the data into five-year age intervals and then estimate 
a smoothed distribution using either the Beers 6-parameter 
interpolation provided or Spline curve fitting.

Considerations in applying the method
The formulation of the multi-exponential model was 
presented in the Overview presented earlier in this chapter 
and is not repeated here. In this section, we discuss in greater 
detail aspects that should be considered carefully before 
applying the method in practice.

Data preparation
The multi-exponential model is applied to schedules of one-
year age migration rates beginning at age 0 and, typically, 
continuing to age 65 or higher to capture the full pattern of 
elderly migration. The schedules of age-specific migration 
might measure directional migration (i.e. from region i 
to region j ) or total out-migration (i.e. from region i to 
all other regions), or all inter-regional migration with no 
specific origin or destination. Usually, migration data are 
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obtained from national censuses (or, in developed countries, 
population registers). The multi-exponential model can 
be applied to a variety of measures of single-age migration 
propensities derived from either of these sources.

When obtained from national registration systems, the 
migration rate, for persons aged x at the beginning of the 
interval, is the ratio of the number of migrations during 
a given time interval divided by the average number of 
person-years exposed to the risk of moving. Persons can 
contribute more than one migration during the interval. 
These are occurrence-exposure rates, although migrations 
by non-survivors may not be included in the numerator 
(Rogers and Castro 1981).

The observed migration schedule in Figure 36.2 was 
derived from Sweden’s national registry for male migration 
out of Stockholm over a one-year interval. In contrast, 
Figure 36.6 shows the observed and estimated model 
schedule for all male inter-communal migration in Sweden 
over a five-year interval. As expected, the levels are much 
higher in Figure 36.6 due to more migration activity when 

all regions are combined as compared to the Stockholm 
region alone. Similarly, more migrations are expected over a 
five-year interval than over a one-year interval. Rees (1977) 
found migration rates over a five-year interval tend to be less 
than five times (between three and five times) those over a 
one-year interval. The observed schedule is also smoother 
and more similar to the model schedule in Figure 36.6, 
indicating single-age migration rates are more reliable when 
based on a longer interval.

Censuses, on the other hand, count surviving migrants 
(not migrations). Migrants are persons who reported living 
in one region, at the beginning of the time interval, and 
resided in a different region at the time of the census. A 
person registering multiple migrations in a national register 
may be a non-migrant in the census if he returned to his 
initial location during the time interval. In general, counts 
of migrants from censuses understate the number of 
migrations, especially for longer time intervals when there 
are bound to be larger numbers of return movers and non-
survivors. For these reasons, a migration schedule derived 

Figure 36.4  Out-migration over the 5-year interval, 1995–2000, 
and fitted with a 7-parameter model schedule, New Hampshire, 
2000 Census 1 per cent PUMS
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from population register data is not directly comparable to 
one based on census data (Rogers and Castro 1986).

Censuses typically record the location of a person’s current 
residence and ask where the person was living either one 
year ago or five years ago. Given this information and the 
person’s age at the time of census, the numbers of surviving 
migrants, and the numbers of survivors who were at risk of 
migrating are counted. The ratio of the number of surviving 
migrants to the number of survivors at risk for migrating 
is sometimes called a ‘conditional survivorship proportion’ 
because migrants and persons counted as being at risk for 
migrating must have survived the migration time interval to 
be counted by the census (Rogers, Little and Raymer 2010). 
Since these are not occurrence-exposure rates they will be 
called migration propensity here.

Census data, one-year migration interval
To derive single-age migration propensities when the census 
question asks where a person was living one year ago, all 
persons are “back-cast” to the region where they lived one 

year earlier when they were one year younger, which gives the 
number of persons at risk of migrating from that region. For 
example, a person aged 1 last birthday in a census conducted 
in 2010 would have been aged 0 last birthday in 2009. If the 
2010 age values ranged from 1 to 85, they would range from 
0 to 84 in 2009. (Note, only persons aged 1 and older would 
have reported place of residence 1 year ago.) Back-casting 
yields the number of people who survived to be counted by 
the census in 2010 and who were at risk for migrating from 
region i, in 2009. The number of migrants would be the 
count of persons who reported living in region i in 2009, but 
were counted as residing in a different region in 2010. For 
each 1-year age group, the ratio of the number of migrants 
to the number at risk for migrating gives the age-specific 
out-migration propensity for the 1-year interval. When the 
numerator contains directional migrants, i.e. from region 
i to region j, the ratio gives the age-specific propensity to 
migrate from region i to region j.

Caution must be exercised when using one-year age 
propensities over one-year migration intervals. For each 

Figure 36.5  Out-migration over the 5-year interval, 1995–2000, 
and fitted with a 7-parameter model schedule, New Hampshire, 
2000 Census 1 per cent PUMS. (Migration rates in 5-year age 
groups and interpolated)
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single age, the numbers at risk of migrating, as well as the 
numbers of migrants, may be small, resulting in propensities 
that are erratic and unstable. A better option may be to 
derive five-year age propensities, which have proven to be 
more reliable than one-year age propensities (Rogers, Little 
and Raymer 2010). These can be interpolated to yield one-
year age propensities.

Census data, five-year migration interval
When the census question asks where a person was living five 
years ago, it is possible to derive one-year age propensities for 
migrating over a five-year interval as long as single ages are 
reported. It is done by back-casting all persons to the region 
where they lived five years earlier when they were five years 
younger. Persons aged 5 last birthday in a census conducted 
in 2000, for example, would have been aged 0 last birthday 
in 1995. If the age values ranged from 5 to 85 in 2000, they 
would range from 0 to 80 in 1995. The number of migrants 
is simply the count of persons who reported living in region i 
in 1995, but were counted as residing in a different region in 

2000. For each one-year age group, the ratio of the number 
of migrants to the number at risk for migrating gives the age-
specific out-migration propensity over the five-year interval.

Census data, annual migration rates, five-year migration 
interval
When the numbers of migrants who survived a five-year 
migration interval are available from census data, single-year, 
single-age migration rates can be derived through a back-
projecting procedure outlined by Dorrington and Moultrie 
(2009). Their method compensates for the effect of mortality 
by applying the mortality regime of the general population 
to the migrants and for the effect of onward migration by 
applying the annual rates of migration for the most recent 
year to estimate the population by region one year prior to 
the census and using that to estimate the migration rates 
two years before the census, and using that to estimate 
the population two years before the census, etc. It requires 
additional region-of-birth information for those aged 0–4 
at time of census, as well as single-age, yearly estimates of 

Figure 36.6  Swedish male inter-communal migration over 
the 5-year interval, 1968–1973 with fitted 11-parameter model 
schedule
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regional populations. Schedules derived in this manner can 
then be fitted and smoothed with a Rogers-Castro model 
schedule, and used in single-year population projections.

Limitations
Unless one has accurate and well-behaved data the multi-
exponential model will not produce a very close fit and 
thus can be over-parameterized – i.e. many different sets 
of parameters can produce virtually equally good fits to the 
observed values. In such a situation it might help to fix one 
or two parameter values and fit the rest, and parsimony with 
the number of parameters is recommended.

Extensions
Application of the multi-exponential model is not limited 
to schedules of migration rates or propensities. Several 
studies have established that age distributions of migrants 
(and migrations if using registration data) often have a 
multi-exponential form and can be accurately represented 
by a Rogers-Castro model schedule (Little and Rogers 2007; 
Rogers, Little and Raymer 2010).

The single-age numbers of migrants/migrations can be 
derived using any of the data sources and methods described 
above, because these are simply the numerators in the 
migration propensity and rate calculations. The observed 
data fitted by the model schedules are the single-age propor-
tions of the total migrants/migrations. Note, if the numbers 
of migrants are reported in five-year age categories, some 
form of interpolation would be necessary. If cubic spline 
interpolation is used, the numbers associated with each 
node should be the migrants/migrations for each five-year 
age grouping divided by five.

For example, the observed age composition of Swedish 
migrations as a proportion is illustrated in Figure 36.7. 
From this it appears to be very smooth and reliable except 
in the oldest ages. A 7-parameter model schedule fits pretty 
closely, with an R2 of 99 per cent and MAPE of 29 per 
cent. However, this is an example of the how the MAPE 
can exaggerate the model’s lack of fit, as it becomes inflated 
when there is a sequence of small observed deviations.

Two alternative software options for fitting to the Excel 
workbook for fitting the multi-exponential curve are 1) Data 

Figure 36.7  Swedish age composition of inter-communal 
migration, 1968-1973 and fitted with a 7-parameter model schedule
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Master 2003, a free curve-fitting program, which applies the 
Levenberg–Marquardt algorithm; and 2) R (R Development 
Core Team 2012) which is also free, but is a software 
environment for all-purpose statistical computing and 
graphics and as such requires a significant time investment 

before it can be used with confidence. The Appendix to this 
chapter on the Tools for Demographic Estimation website 
gives very basic commands for defining R-functions that 
produce estimates for the 7-parameter and the 11-parameter 
models using the Gauss-Newton algorithm.
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Chapter 37  Log-linear models of migration flows
Jani Little and James Raymer

Introduction to model applications
The log-linear modelling framework provides several 
valuable techniques for studying and estimating migration 
flows within a network of regions. To date, these methods 
have been applied most often to internal migration systems 
where regions are defined as sub-national administrative 
units. However, they need not be restricted to domestic 
migration and may be applied to international systems of 
migration as well (Raymer 2007).

A migration flow is defined as the number of migrations 
from one region to another over the course of a specified time 
frame. There are several different ways to count migrations 
and each one could yield a different result. For example, 
Rees and Willekens (1986) make the distinction between 
registration systems that count the number of inter-regional 
residential moves over a reference period and censuses that 
count persons who reside in a place at the time of the census 
that is different from the place of residence at the beginning 
of the reference period.

Regardless of the method used to count migration flows, 
it is conventional to present them in contingency tables. 
These are square tables that report the flow counts between 
origin and destination regions. The flows in the migration 
table can be perfectly reproduced by the multiplicative 
component model, which is a saturated (i.e., where there are 
as many estimated parameters as there are data points) log-
linear model. It has been used by Willekens (1983), Rogers, 
Willekens, Little et al. (2002) and Rogers, Little and Raymer 
(2010) to represent the matrix of flows between regions, 
and by Raymer and Rogers (2007), Raymer, Bonaguidi and 
Valentini (2006) and Rogers, Little and Raymer (2010) 
to capture the structure of inter-regional flows within age 
categories. The multiplicative components are interpretable 
and conveniently used to define the structure of migration 
between the regions of interest (Rogers, Willekens, Little et 
al. 2002). If calculated for more than one set of inter-regional 

flows, defined for different time periods, for example, 
or for different age, sex or race categories, multiplicative 
components are useful for comparing migration regimes 
across these populations.

Log-linear methods may be used to justify simplified 
representations of migration structure that are more 
parsimonious than the saturated model. The appropriateness 
of a reduced model is determined by fitting the predicted 
flows to the observed flows and by using statistical methods 
to evaluate the goodness of fit. If the reduced form has merit, 
i.e., fits the data well, the model may be used to estimate 
indirectly the flows. The independence model, for example, 
assumes inter-regional flows are distributed according to the 
pattern that could have been predicted based on the marginal 
distributions of flows across origin and destination regions. 
If the independence model is confirmed, inter-regional 
flows are predictable and can be estimated indirectly, but 
accurately, if the total sending and receiving flows of each 
region are given.

Sometimes the structure of migration is hypothesized to 
be invariant with respect to factors such as time, age, sex, 
and race. These hypotheses can be represented and tested 
with log-linear models. Allowing for changes in the level of 
migration, studies have documented remarkable stability 
in migration structures, in particular the rates of migration 
by age, over time (Mueser 1989; Nair 1985; Snickars and 
Weibull 1977). Other studies have shown consistency in the 
age patterns of inter-regional migration over time (Raymer 
and Rogers 2007). Moreover, the migration structure of 
the youngest ages, which can be inferred from birthplace-
specific population stocks, has, in certain contexts, proven 
to be a “proxy” for the level of migration and allowed the 
estimation of migration of the older age groups (Raymer 
and Rogers 2007; Rogers, Little and Raymer 2010)

These studies have set the stage for establishing the 
method of offsets as a successful tool for indirectly estimating 
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migration flows. It is a special application of log-linear 
modelling that forces a known migration structure on to 
a system that may have missing or unreliable inter-regional 
flow data. Using this method, the known migration structure 
of one time period can be borrowed from another period. In 
addition, when flows are disaggregated by age, the structure 
of age-specific inter-regional flows of one time period can be 
applied to another period. Furthermore Raymer and Rogers 
(2007) showed that the level of infant lifetime migration 
can be applied, using the method of offsets, to estimate 
indirectly the migration flows of the older ages.

Applications of log-linear models, and the related 
assumptions, are detailed in the sections that follow, beginning 
with the two-variable case, i.e., origin and destination. In 
this section, the log-linear model is defined in the context 
of two-dimensional flow tables, and multiplicative forms as 
well as additive forms of the saturated model are derived 
and interpreted. The log-linear model of independence and 
the “migrants only” quasi-independence model are set out, 
including illustrations and a brief description of the methods 
for evaluating goodness-of-fit.

The section concludes with an illustration of the method 
of offsets for indirectly estimating the inter-regional flow 
data of one period based on the migration flow patterns of 
another. When flow data are available for two periods, the 
period-invariance assumption can be tested with a log-linear 
model and the method of offsets. Models that disaggregate 
the origin and destination of flows into age categories are 
considered. This is followed by an illustration of how the 
multiplicative model with age can be applied, using the 
method of offsets, to estimate indirectly the age-specific 
inter-regional flows for another period.

Applications of the two-variable model
To illustrate the two-variable log-linear model, consider 
the 1973 and 1976 migrations in the Netherlands between 
types of municipalities categorized into six different groups 
based on degree of urbanization. These were published 
by Willekens (1983) and are presented in Table 37.1. In 
this context, there are two variables, region of origin (O) 
and region of destination (D). Neither is identified as the 
dependent variable. The outcome variable may be either 
the inter-regional migration flow, denoted nij, in the 
multiplicative form of the model, or the natural logarithm of 
the flow, denoted ln(nij), in the additive form of the model.

Decompositions of the saturated model, each one 

perfectly regenerating the observed data, are described in the 
subsections presenting the multiplicative component model 
and the additive linear model, and three indirect estimation 
techniques are illustrated in the three subsections describing 
the independence model, the quasi-independence model 
and the method of offsets subsections that follow.

Application 1: The multiplicative component model
The multiplicative expression of the saturated log-linear 
model, called the multiplicative component model, repro-
duces the elements of the flow table as follows:

	 ( )( )( )( )ij i j ijn T O D OD= .	 (1)

Like all saturated models, it is, strictly speaking, not a 
model but a way of representing the data. nij is the observed 
flow of migration from region i to region j, and the effect 
parameters are T, Oi, Dj, ODij. Therefore, any i to j flow 
found in the interior 6 by 6 sub-matrices of Table 37.1 can 
be expressed by an equation of the same form as Equation 1 
with the corresponding set of parameters. T gives the overall 
effect, Oi gives the effect of origin i, Dj gives the effect of 
destination j, and ODij gives the effect of the association 
between Oi and Dj. Taken together, the parameters of the 
saturated model represent the spatial structure of migration 
(Rogers, Willekens, Little et al. 2002).

Two different sets of parameters that satisfy the 
multiplicative component model have been used in 
migration studies and both are presented here. Each one 
offers a different way of representing and interpreting the 
migration structure. The first is called geometric mean effect 
coding (Knoke and Burke 1980; Willekens 1983) and the 
second is called total sum reference coding (Raymer and 
Rogers 2007; Rogers, Little and Raymer 2010). A third 
multiplicative component model is derived in the subsection 
presenting the log-linear additive model.

Application 2: Geometric mean effect coding
Geometric mean effect coding was the first decomposition 
of Equation 1 used for migration analysis. It was proposed 
by Birch (1963) and is formally equivalent to the gravity 
model of migration (Willekens 1983). Table 37.2 shows the 
multiplicative components resulting from geometric mean 
effect coding of the Netherlands data from Table 37.1. Note 
that the overall component (T ) is set out in the grand total 
locations of the table, the origin components (Oi) are set out 



CHAPTER 37 LOG-LINEAR MODELS OF MIGRATION FLOWS  |  405

in the row-total locations, the destination components (Dj) 
are set out in the column-total locations, and the origin-
destination interaction components (ODij) are set out in the 
cells of the interior sub-matrices.

The overall effect, T, is described as the constant of 
proportionality or the size main effect (Willekens 1983). It 
is the geometric mean of all inter-regional flow values:

1
m m

ij
ij

T n

 
  ×  

=  
 
∏ ,

where m is the number of origin regions (rows) = the number 
of destination regions (columns). T equals 17,168.003 for 
1973 and 16,401.919 for 1976.

For a particular region i, the main effect of that region of 
origin is the ratio of the geometric mean of flows originating 
from i divided by the overall geometric mean:

1

1 m

i ij
j

O n
T
 

=  
 
∏ .

The main effect, Oi, shows the relative importance of region i 
as a source of migrations (Alonso 1986). For example, based 
on the 1973 data, the effect of originating in Category 4 is 
equal to:

1
6

4

23457 14169 44311 0.627.
10209 9386 1097317168.003

O
× × × 

= = × × 

This is the smallest of the origin (row) effects, which suggests 
that Category 4 was the least important source of migrations 
in 1973.

Similarly, the destination main effect, Dj, gives the relative 
importance of region j as an attractor of migrants. It is ratio 

A. 1973 Migration table
Destination

Origin 1 2 3 4 5 6 Total
1 50,498 23,829 8,566 21,846 16,264 18,856 139,859
2 25,005 27,536 6,953 14,326 16,212 18,282 108,314
3 15,675 10,710 13,874 6,266 9,819 19,701 76,045
4 23,457 14,169 4,431 10,209 9,386 10,973 72,625
5 29,548 25,267 11,802 13,160 15,979 20,406 116,162
6 46,815 39,123 42,399 25,012 26,830 23,304 203,483

TOTAL 190,998 140,634 88,025 90,819 94,490 111,522 716,488
B. 1976 Migration table

Destination
Origin 1 2 3 4 5 6 Total

1 14,473 14,327 6,077 11,689 10,618 9,897 67,081
2 14,833 36,258 13,289 17,391 20,899 21,869 124,539
3 8,330 17,764 25,113 10,489 18,171 29,220 109,087
4 11,315 16,498 8,935 10,537 10,762 12,519 70,566
5 11,875 24,370 19,151 12,312 16,724 22,591 107,023
6 16,582 32,336 52,415 22,264 28,182 27,810 179,589

TOTAL 77,408 141,553 124,980 84,682 105,356 123,906 657,885
*1: rural municipalities
  2: industrial rural municipalities
  3: specific resident municipalities of commuters

4: rural towns and small towns
5. medium-sized towns
6. large towns of more than 100,000 inhabitants

Source: Central Bureau of Statistics, The Hague

Table 37.1  Migration between municipalities by degree of 
urbanization,* the Netherlands, 1973 and 1976
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of the geometric mean of column j to the total geometric 
mean and the formula is:

1

1 m

j ij
i

D n
T
 

=  
 
∏ .

For example, for municipalities in Category 4, the 
destination effect in 1973 is equal to:

1
6

4

21846 14326 62661 0.798.
10209 13160 2501217168.00

D
× × × 

= = × × 

All other row and column effects can be derived in the same 
way. Each is the geometric mean of the row (or column) 
elements divided by the overall geometric mean, and they 
are equivalent to the balancing factors in the gravity model 
(Willekens 1983).

The effects can be compared across regions and across time 
periods. For example, Category 6 was the most important 
source of migrations in 1973 (1.903 is greater than the other 
destination effects), and in 1976 (1.712 is greater than the 

other destination effects). Category 1 was less important 
as a destination in 1976 than in 1973 (0.768 is less than 
1.711), and, in 1973, it was less important as a source of 
migrations than as a destination for migrations (1.180 is less 
than 1.711).

Panels A and B in Table 37.2 are sometimes called the 
spatial interaction matrices. The elements are the ODij 
interaction effects in Equation 1 and each one is equal to 
the observed flow between i and j divided by the expected 
flow, which is the product of the other three parameters. The 
formula is:

( )( )( )
ij

ij
i j

n
OD

T O D
= .

Each ODij expresses the departure of the observed flow, 
nij, from the expected flow based on the assumption of no 
association between the destination region j and the origin 
region i, i.e., (T )(Oi)(Dj). They have been interpreted as 
indicators of the accessibility, the ease of interaction, or 
the attractiveness between two regions (Rogers, Willekens, 
Little et al. 2002).

A. 1973 Migration table
Destination

Origin 1 2 3 4 5 6 Total
1 1.457 0.940 0.656 1.352 0.933 0.882 1.180
2 0.885 1.332 0.653 1.087 1.140 1.048 0.962
3 0.771 0.720 1.811 0.661 0.959 1.570 0.692
4 1.275 1.052 0.639 1.190 1.014 0.966 0.627
5 0.943 1.102 1.000 0.901 1.013 1.055 1.067
6 0.838 0.957 2.015 0.960 0.954 0.676 1.903

TOTAL 1.711 1.252 0.644 0.798 0.861 1.056 17,168.003
B. 1976 Migration table

Destination
Origin 1 2 3 4 5 6 Total

1 1.753 0.984 0.571 1.317 0.979 0.787 0.656
2 0.986 1.366 0.686 1.075 1.057 0.954 1.195
3 0.655 0.792 1.533 0.767 1.088 1.508 1.010
4 1.277 1.055 0.783 1.106 0.925 0.927 0.704
5 0.900 1.047 1.127 0.868 0.965 1.124 1.048
6 0.769 0.850 1.888 0.960 0.995 0.847 1.712

TOTAL 0.768 1.354 0.989 0.825 1.008 1.169 16,401.919

Table 37.2  Multiplicative components using geometric mean effect 
coding
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Values equal to 1.0 indicate independence, i.e., no 
association between the origin and the destination. As 
implied by Equation 1, if an ODij parameter is equal to 1.0, 
nij is determined by the values of T, Oi and Dj alone. A 
departure from 1.0 in either direction is an indication of an 
association between the destination and the origin. Values 
greater than 1.0 indicate higher than expected levels of 
accessibility/attractiveness and values less than 1.0 indicate 
less than expected accessibility/attractiveness.

Since the 1973 diagonal effects are generally greater 
than 1.0, it appears migrants were unexpectedly attracted 
to destinations in the same category of municipality. 
Category 6 was an exception. Migrants from large towns of 
more than 100,000 inhabitants (i.e., Category 6) were more 
attracted to commuter municipalities (i.e., Category 3) than 
to other large towns (2.015 is greater than 0.676).

Table 37.2 shows all the parameters necessary for 
reproducing the 1973 and 1976 flows. To verify that any 
flow in Table 37.1 can be reproduced by the multiplicative 
components, take, for example, the 1973 flow from 
Category 2 to Category 3:

n2,3 =6953=17168.003  0.962  0.644  0.653.

The parameter values, however, are not all independent of 
each other. In other words, some parameter values can be 
derived from the others. For one year of data, for all i and j 
combinations, there are 36 interaction effects, 6 origin main 
effects, 6 destination main effects, and one overall effect 
as reported in Table 37.2. However, the 49 parameters, 
reported for each year in Table 37.2, were derived from only 
36 observed flows, implying that 13 parameters must be 
redundant. In other words, 13 of the 49 parameters can be 
calculated from the other 36, and the relationship between 
parameters is determined by the following constraints 
associated with geometric mean effect coding. The first set 
of constraints forces the products of the origin main effects 
(and destination effects) to be equal to 1. This is expressed as

1i
i

O =∏  and 1j
j

D =∏ .

The second set of constraints is imposed on the interaction 
elements of each row and column, making the products of 
the interior elements in each row (and column) equal to 1. 
In other words, if five of the interaction effects associated 

with a particular origin (or destination) are given, the sixth 
interaction effect would be implied.

This is expressed as

1ij
i

O =∏  and 1ij
j

D =∏ .

In general, if there are m regions there are m2 linearly in-
dependent parameters and 1 + m + m +(m × m) multiplicative 
components. For all of the geometric mean effect coding 
computations, see Table 37.2 in the Multiplicative Compo-
nents sheet of the accompanying workbook (see website).

Application 3: Total sum reference coding
Geometric mean effect coding, which uses the geometric 
mean as the reference value, was the earliest log-linear 
decomposition used to describe migration (Rogers, 
Willekens, Little et al. 2002; Willekens 1983). Recently, 
however, total sum reference coding has become more 
standard (Raymer and Rogers 2007; Rogers, Little and 
Raymer 2010). While both decompositions satisfy 
Equation 1, the effects under total sum reference coding are 
more transparent. For example, the main effect, T, is now 
the total number of migrants, denoted n++. Oi is now the 
proportion of all migrants leaving from region i (i.e., ni+/
n++), and Dj is the proportion of all migrants moving to 
region j (i.e., n+j/n++). The interaction component ODij is 
now defined as nij/[(T )(Oi)(Dj)] or the ratio of the observed 
number of migrants, nij, to the expected number, (T )(Oi)
(Dj). All effects taken together provide another way to 
represent the spatial structure of migration.

The multiplicative components derived from total 
sum reference coding are set out in Table 37.3. Consider, 
for example, the 8566 migrations from Category 1 to 
Category 3 in 1973 disaggregated into the four multiplicative 
components:

( )

13 1 3 13
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The interpretations of these components are relatively 
straightforward. The overall component is the reported total 
number of migrations in 1973, i.e., 716,488. The origin 
component represents the share of all migrants from each 
region, i.e., 10 per cent of all migrations originated in the 
Category 1. The destination component represents the 
shares of all migrations to each region, i.e., 19 per cent of 
all migrations had Category 3 as the destination. Finally, 
the interaction component represents the ratio of observed 
migrants to expected migrants; thus there were roughly 48 
observed migrations between region 1 and 3 for every 100 
expected. The expected flow is based on the marginal total 
information, i.e., (T )(O1)(D3).

Like geometric mean effect coding, the decomposition 
based on total sum reference coding gives more parameters 
than original data points. The constraints that define the 
relationships between parameters, and thus allow the 
redundant parameters to be derived, are as follows:

1i
i

O =∑ ; 1j
j

D =∑ ; 1
i ij

i j

O OD

m
=

∑ ∑
;

and

1
i ij

j i

O OD

m
=

∑ ∑
,

where m is the number of regions (Raymer, Bonaguidi and 
Valentini 2006).

For all of the total sum reference coding computations, 
see Table 37.3 in the Multiplicative components sheet of the 
accompanying workbook (see website).

Comparing two multiplicative component models
If the same decomposition scheme is applied to two sets 
of flow data from a given system of regions, all but the T 
parameter are scale free. This means that taking the ratios 
of two sets of components provides a simple method 
for examining stability in migration structure without 
confounding the effects of growth or decline in overall 
levels of migration (Rogers, Willekens, Little et al. 2002). 
In Table 37.4, ratios of the 1976 to 1973 components are 
displayed. Several depart substantially from 1 indicating 
the migration structure changed in the three years between 

A. 1973 Migration table
Destination

Origin 1 2 3 4 5 6 Total
1 1.354 0.868 0.499 1.232 0.882 0.866 0.195
2 0.866 1.295 0.523 1.043 1.135 1.084 0.151
3 0.773 0.718 1.485 0.650 0.979 1.664 0.106
4 1.212 0.994 0.497 1.109 0.980 0.971 0.101
5 0.954 1.108 0.827 0.894 1.043 1.129 0.162
6 0.863 0.980 1.696 0.970 1.000 0.736 0.284

TOTAL 0.267 0.196 0.123 0.127 0.132 0.156 716,488
B. 1976 Migration table

Destination
Origin 1 2 3 4 5 6 Total

1 1.834 0.993 0.477 1.354 0.988 0.783 0.102
2 1.012 1.353 0.562 1.085 1.048 0.932 0.189
3 0.649 0.757 1.212 0.747 1.040 1.422 0.166
4 1.363 1.087 0.667 1.160 0.952 0.942 0.107
5 0.943 1.058 0.942 0.894 0.976 1.121 0.163
6 0.785 0.837 1.536 0.963 0.980 0.822 0.273

TOTAL 0.118 0.215 0.190 0.129 0.160 0.188 657,885

Table 37.3  Multiplicative components using total sum reference 
coding
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1973 and 1976. For example, the ratio of the components 
for OD11 is equal to 1.354, implying that migration within 
Category 1 was more attractive in 1976 than in 1973. In 
contrast, the ratio of the components for OD33 is equal to 
0.816, suggesting migration within Category 3 was less 
attractive in 1976 than in 1973.

Application 4: The log-linear additive model
Another form of the saturated log-linear model, which is an 
alternative to the multiplicative component model, is the 
linear additive model. Whether using the linear additive or 
the multiplicative form of the saturated log-linear model, 
the parameters represent the spatial structure of migration 
(Rogers, Willekens, Little et al. 2002) and each flow value 
can be fully reproduced by the parameters.

Because the multiplicative formation is formally equiva-
lent to the gravity model (Willekens 1983), it is considered 
to be more appropriate than the linear additive model for 
representing spatial migration structures. On the other hand, 
the linear additive form is often found in statistics and when 
a standard statistical package (e.g., SPSS, Stata, R) is used 
to estimate a log-linear model, the parameters are always 
reported in the linear additive form. For that reason, the con-
ventional calculations and interpretations of the parameters 
in the linear additive model are described in this sub-section.

The additive formulation is a linear function of 
logarithms and it makes evident why the model came to be 
called the log-linear model (Knoke and Burke 1980). It is 
mathematically equivalent to the multiplicative component 
model and it results from taking logarithms of both sides of 
Equation 1 as follows:

ln( ) ln( ) ln( ) ln( ) ln( )ij i j ijn T O D OD= + + +

which can be expressed more concisely as:

	
ln( ) O D OD

ij i j ijn λ λ λ λ= + + + .	 (2)

The  values are simply the natural logarithms of the 
parameters appearing in Equation 1. The O, D, and OD 
superscripts are parameter descriptors (not exponents) and 
the subscripts i and j refer to the categories of the origin and 
destination variables, respectively.

Applying natural logarithmic transformations to the 
parameters in Table 37.2 and Table 37.3 would result in sets 
of corresponding linear additive parameters. However, just 
as there are at least two decompositions of the multiplicative 
component model, i.e., the geometric mean reference 
coding and the total sum effect coding, there are multiple 
strategies for arriving at sets of parameters that satisfy the 
linear additive model (Powers and Xie 2008), and the 
approaches taken by the standard statistical packages are not 
simply logarithmic transformations of the multiplicative 
components derived earlier.

Recall that a migration system with m regions has m × m 
linearly independent parameters. The multiplicative compo-
nent models described above give an interpretable value for 
1 + m + m +(m × m) parameters, though they are not linearly 
independent of each other. On the other hand, statistical 
routines in SPSS, Stata, and R calculate and report only lin-
early independent parameters, resulting in 1 value for T, 
m – 1 values for O

iλ , m – 1 values for D
jλ , and (m –1) × (m – 1) 

values for OD
ijλ .

The particular set of parameter values that is calculated 
and reported depends on the contrast coding scheme used 
by the software. Contrast coding blocks out one region by 
fixing all linear additive parameters for that region equal 

Destination
Origin 1 2 3 4 5 6 Total

1 1.354 1.144 0.957 1.099 1.121 0.904 0.522
2 1.169 1.045 1.075 1.040 0.923 0.860 1.252
3 0.839 1.055 0.816 1.149 1.062 0.854 1.562
4 1.125 1.093 1.342 1.046 0.972 0.970 1.058
5 0.988 0.955 1.139 1.000 0.936 0.993 1.003
6 0.909 0.854 0.906 0.993 0.980 1.117 0.961

TOTAL 0.441 1.096 1.546 1.015 1.214 1.210 0.918

Table 37.4  Ratios of 1976 to 1973 multiplicative components
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to 0. SPSS, for example, fixes the parameters for the last 
region, i.e., the region assigned the highest numeric value, 
m, in this case: 0O D OD OD

m m mj imλ λ λ λ= = = = . The parameters 
of the Netherlands data reported by SPSS are displayed in 
Table 37.5. The SPSS commands that generate these results 
for the 1973-migration table, along with the SPSS output, 
are presented in Appendix 1 (available on the Tools for 
Demographic Estimation website). Table 37.5 with the Excel 
formulae for calculation of the parameters is available in the 
Contrast coding sheet of the accompanying workbook (see 
website).

Notice the parameters for the last region are equal to 
0, and, therefore, make no contribution to Equation 2. 
Interpretation of the parameters in Table 37.5 is somewhat 
complicated since they are in logarithmic units. Conversion 
back to the multiplicative components by exponentiation 
gives yet another set of multiplicative components that 
satisfy Equation 1. These are presented in Table 37.6, and 
they are the multiplicative components associated with 
“last region” contrast coding. Generally, these are not used 
to describe the spatial structure of migration, but they 

are useful in describing migration systems because the 
interaction parameters, ODij, are equivalent to odds ratios.

For example, the overall parameter from the 1973- 
migration data reported in Table 37.5, T, gives the natural 
logarithm of the observed migrations for the reference 
region:
•	 ln(n66) = 10.056, and from Table 37.6, the companion 

parameter T gives the n66 migration flow:
•	 n66 = exp(10.056) = 23304.
Another illustration from the 1973-migration table 

in Table 37.5 shows how the origin main effects, O
iλ , are 

added to the overall parameter to reproduce the migrations 
from Category 1 to the reference destination, Category 6, 
reported in Table 37.1. For example:
•	 ln(n16) = 10.056 – 0.212 = 9.845, and the corresponding 

multiplicative component, O1 times T from Table 37.6 
gives:
•	 n16 = 27810  0.356 = 18856.
Using the same approach, the logarithms of all the migra-

tion flows can be reproduced by applying Equation 1 with 
the appropriate parameters from Table 37.6, or the observed 

A. 1973 Migration table
Destination

Origin 1 2 3 4 5 6 Total
1 0.288 –0.284 –1.388 0.076 –0.289 0.000 –0.212
2 –0.384 –0.109 –1.565 –0.315 –0.261 0.000 –0.243
3 –0.926 –1.128 –0.949 –1.216 –0.837 0.000 –0.168
4 0.062 –0.262 –1.505 –0.143 –0.297 0.000 –0.753
5 –0.327 –0.304 –1.146 –0.509 –0.385 0.000 –0.133
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TOTAL 0.698 0.518 0.598 0.071 0.141 0.000 10.056
B. 1976 Migration table

Destination
Origin 1 2 3 4 5 6 Total

1 0.897 0.219 –1.122 0.389 0.057 0.000 –1.033
2 0.129 0.355 –1.132 –0.007 –0.059 0.000 –0.240
3 –0.738 –0.648 –0.785 –0.802 –0.488 0.000 0.049
4 0.416 0.125 –0.971 0.050 –0.165 0.000 –0.798
5 –0.126 –0.075 –0.799 –0.385 –0.314 0.000 –0.208
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TOTAL –0.517 0.151 0.634 –0.222 0.013 0.000 10.233

Table 37.5  Additive linear parameters using “last region” contrast 
coding
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flows can be reproduced by applying Equation 2 using the 
parameters in Table 37.5.

The association parameters in the linear form, OD
ijλ , are 

logged odds ratios (LORs), which are the logarithm of the 
ratio of two odds: 1) the odds of migration to region j rather 
than the reference region, conditional on originating in 
region i; and 2) the odds of migration to region j rather 
than the reference region, conditional on originating in the 
reference region. For example, from the 1973 sub-matrix in 
Table 37.5, 23

ODλ = –1.565, which is calculated as:

23

26
23

63

66

6,953
18,282ln ln 1.56542,399
23,304

OD

n
n
n
n

λ

   
   

= = = −   
   

     

.

In words, the parameter is described as the logged ratio of 
the odds of migration to Category 3, rather than to Cat-
egory 6, between a migrant originating in Category 2 and 
one originating in Category 6.

Odds ratios measure the relative likelihood of one out-
come to another, and because they are more standard than 

LOR, it may be easier to exponentiate the LORs and inter-
pret the association parameters, presented in Table 37.6, as 
odds ratios. For example, the model parameter OD23, for 
the 1973 data, is calculated as:

23

26
23

63

66

exp( 1.565) 0.209

n
nOD n
n

 
 

= − = = 
 
  

.

In words, the odds that a migrant from Category 2 will 
choose Category 3 over Category 6 is approximately 1/5th 
the odds that a migrant from Category 6 will choose Cat-
egory 3 over Category 6. Odds-ratios are always positive and 
always depend on the choice of reference category. An odds 
ratio equal to 1 means a null relationship, i.e., statistical 
independence. Values higher than 1 mean a positive associa-
tion and values less than 1 indicate a negative association.

Stata and R use a different contrast coding scheme 
to SPSS. Both of these statistical packages use the “first 
region” contrast coding as opposed to the “last region” 
contrast coding used by SPSS. In these two programs, the 

A. 1973 Migration table
Destination

Origin 1 2 3 4 5 6 Total
1 1.333 0.753 0.250 1.079 0.749 1.000 0.809
2 0.681 0.897 0.209 0.730 0.770 1.000 0.785
3 0.396 0.324 0.387 0.296 0.433 1.000 0.845
4 1.064 0.769 0.222 0.867 0.743 1.000 0.471
5 0.721 0.738 0.318 0.601 0.680 1.000 0.876
6 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TOTAL 2.009 1.679 1.819 1.073 1.151 1.000 23,304
B. 1976 Migration table

Destination
Origin 1 2 3 4 5 6 Total

1 2.453 1.245 0.326 1.475 1.059 1.000 0.356
2 1.138 1.426 0.322 0.993 0.943 1.000 0.786
3 0.478 0.523 0.456 0.448 0.614 1.000 1.051
4 1.516 1.133 0.379 1.051 0.848 1.000 0.450
5 0.882 0.928 0.450 0.681 0.731 1.000 0.812
6 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TOTAL 0.596 1.163 1.885 0.801 1.013 1.000 27,810

Table 37.6  Multiplicative components using “last region” contrast 
coding
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parameters for the first region, i.e., the region assigned 
the lowest numeric value, are fixed to be equal to 0, i.e., 

1 1 1 1 0O D OD OD
j iλ λ λ λ= = = = . The Stata and R commands 

for generating the linear additive parameters, as well as the 
corresponding output, for the 1973 migration data can be 
downloaded from Appendix 1 to this chapter, (available on 
the Tools for Demographic Estimation website).

All forms of the saturated model and all statistical methods 
for estimating the interaction parameters are in agreement 
and provide substantively similar results. The formulae for 
the calculations of the parameters are available in the Linear 
Additive Parameters sheet of the accompanying workbook 
(see website). Furthermore, tests that each linear additive 
interaction parameter is equal to 0 are done automatically by 
SPSS and Stata. These results are available from Appendix 1 to 
this chapter (available on the Tools for Demographic Estimation 
website) and they show that each non-redundant interaction 
parameter is statistically significant. See Agresti and Finlay 
(2009) and Powers and Xie (2008) for descriptions of the 
standard errors of the estimates.

Application 5: The independence model
All the models presented to this point have been saturat-
ed, and, therefore, perfectly represent the observed flows. 
Generally, the substantively interesting parameters are the 
interaction parameters because they indicate associations be-
tween pairs of regions. The independence model, however, 
hypothesizes that the interaction parameters are uninterest-
ing and unnecessary because all multiplicative interaction 
parameters, ODij, are equal to 1, or, equivalently, all linear 
additive interaction parameters, OD

ijλ , are equal to 0. The in-
dependence model implies that the interaction terms should 
fall out of the model, reducing it to the most parsimoni-
ous form of a two-variable model, i.e., ( )( )( )ij i jn T O D=  or, 
equivalently, ln( ) O D

ij i jn λ λ λ= + + .
Visual inspection of the interaction parameters in the 

saturated log-linear model is one strategy for investigating 
the independence hypothesis. Another method is to 
calculate row or column conditional distributions. If the 
conditional distributions within rows (origins) are identical, 
there is independence between origins and destinations. In 
addition, since independence is a symmetric property, if the 
conditional distributions within rows (origins) are identical, 
the distributions within columns (destinations) also will be 
identical (Agresti and Finlay 2009; Powers and Xie 2008). In 
the Independence sheet of the accompanying workbook, the 

percentages of the Netherlands migrations within columns 
(destinations) are calculated. The column percentages are 
quite varied, suggesting, like the interaction parameters, that 
statistical independence is unfounded in this example.

The independence hypothesis implies that each particular 
inter-regional flow can be determined by the sizes of the 
marginal flows. Let Nij be the expected flow between regions 
i and j if the independence hypothesis is true. Nij is then 
equal to the total number of flows in the migration system, 
n++, multiplied by the proportion of the all migrants leaving 
from region i, ni+/n++, times the proportion of all migrants 
moving to region j, n+j /n++, i.e., Nij = n++(ni+/n++)(n+j /
n++). If independence can be assumed, a good estimate of 
an inter-regional flow is Nij, and the problem of estimating 
inter-regional migration flows is truly simplified.

The differences between the observed flows, nij, and the 
expected flows, Nij, form the basis of the goodness-of-fit 
evaluation and the Pearson Chi-Squared Statistic, denoted 
2, which is widely used to summarize these discrepancies. It 

is calculated as: 2 = 
2( )ij ij

ij

n N
N
−

∑ , where the summation

is taken over all internal cells in the migration matrix. 
When there is perfect agreement between the observed and 
the expected flows, over all cells, the 2 equals 0 indicating 
the independence model fits the data perfectly. Larger 
differences between nij and Nij produce larger 2 values and 
increasingly stronger evidence that the independence model 
is inadequate. In general, smaller values indicate a good fit 
and larger values a poor fit.

If the independence hypothesis is true, the 2 statistic 
is governed by the 2 probability distribution with 
(m – 1)×(m – 1) degrees of freedom. This distribution 
provides the basis for testing the significance of the 2 
statistic (Agresti 2007; Agresti and Finlay 2009). If the 2 
statistic falls in the right-sided extremes of its distribution, 
it signifies a low probability, e.g., p < 0.05, that the 
independence hypothesis is true, and the model is rejected. 
The 2 values associated with independence model applied 
to the Netherlands data in Table 37.1 are calculated and 
reported in the Independence sheet of the accompanying 
workbook. See Appendix 2 (available on the Tools for 
Demographic Estimation website) for the SPSS, Stata and 
R commands for testing the independence model with the 
1973 example data.

The 2 value associated with the 1973 example data 
is 47,623, and the degrees of freedom (df ) are 25. The 
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associated p-value is less than 0.000, and the hypothesis 
of independence is rejected. (However, see the comments 
below about the limitations of this test when the sample size 
is large.) This is not surprising given the three multiplica-
tive decompositions of the Netherlands data, presented in 
Table 37.2, Table 37.3 and Table 37.6. The evidence consis-
tently shows strong associations between regions and many 
of the multiplicative association parameters are not close to 
1. Furthermore, the standard errors reported in Appendix 1 
to this chapter (available on the Tools for Demographic Esti-
mation website) by SPSS and Stata indicate the linear addi-
tive interaction parameters are significantly different from 0.

One alternative to the 2 statistic is called either the 
likelihood ratio statistic, the deviance, or the G2 statistic. 
All are different names for the same test statistic, and which 
name is used is determined by the preferences of authors of 
text books and software packages. For simplicity, G2 will be 
adopted here. It is similar to the 2 in that values close to 0 
indicate a well-fitting model and large values indicate a poor 
fit. If the hypothesized independence model holds, the G2 
statistic also has a 2 distribution.

The G2 statistic has general utility that goes well beyond 
the independence model in log-linear analysis. It is widely 
used for comparing a simpler model to a more complex 
model. The G2 statistic is derived from the ratio of two 
likelihoods: 1) the likelihood that the constrained model 
(here the model of independence) fits the data; and 2) the 
likelihood that the unconstrained model (here the saturated 
model) fits the data. If the ratio is close to 1, the simpler, 
constrained, and more parsimonious model is preferred 
because it represents the data as well as the more complex 
model does.

The ratio of the two likelihoods does not have a 2 
distribution. However, when the ratio is transformed into 
natural logarithm units and multiplied by –2, it becomes 
G2, which is a 2 distributed variable with (m – 1) × (m – 1)
degrees of freedom. If Lc is the likelihood associated with 
the constrained (i.e., independence) model, and Lu is the 
likelihood under the unconstrained (i.e., saturated) model, 
then G2 is calculated as:

2 2 ln 2 ln 2 lnc
c u

u

LG L L
L

 
= − = − + 

 
.

Because the saturated model fits the data perfectly (i.e., 
Lu = 1), G2 = –2ln Lc. The values, based on the example and 
the statistical software, are reported in Appendix 2 (see 

website). The value is reported to be 46,477.63 and it is called 
“Deviance” by SPSS and Stata. It is rounded and reported 
to be equal to 46,480 by R, where it is called “Residual 
Deviance.” With 25 degrees of freedom the probability that 
the independence model holds is effectively 0.

The 2 and the G2 statistics are asymptotically equivalent 
(Powers and Xie 2008) and they form the bases of the Pearson 
Chi-square and the likelihood ratio tests, respectively. As 
with all inferential tests, effective use requires attention to 
underlying assumptions as well as limitations. Both tests rely 
on the assumption that each inter-regional flow count in the 
migration table follows an independent Poisson distribution 
(Powers and Xie 2008) and both tests have important 
limitations that are related to sample size. The 2 statistic is 
inflated by large samples. Therefore, the Pearson Chi-square 
test is not appropriate when the sample size is large. The 
G2 statistic and the likelihood ratio test is preferred in this 
situation (Powers and Xie 2008). The Pearson Chi-square 
test is preferred when the expected frequencies average 
between 1 and 10, but neither statistic works well if most of 
the expected frequencies are less than 5 (Agresti and Finlay 
2009; Powers and Xie 2008).

Criticism has been made of the G2 statistic as well when 
samples are large (Raftery 1986, 1995) and there is growing 
consensus that information measures should be considered 
along with traditional significance tests in assessing model 
fit. The Bayesian Information Criterion (BIC ) is closely 
related to G2, and it is calculated by Stata as: BIC = G2 – df 
ln(m × m), and by SPSS as:

2 ln ln( )cBIC L p m m= − + × ,

where p is the number of parameters estimated in the 
independence model, i.e., 2m – 1. A low value suggests 
choosing the independence model over the saturated model 
(Powers and Xie 2008).

Akaike’s Information Criterion (AIC) is another alternative 
that takes on smaller values for better fitting models, since it 
judges how close the fitted values are to the expected values 
(Agresti 2007). In SPSS and R, it is calculated as:

AIC = –2(lnLc – p)

where p is the number of parameters estimated in the 
independence model, i.e., 2m – 1. In Stata, it is calculated as:

2(ln ) .cL pAIC
m m

− −
=

×
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As shown in Appendix 2 (available on the Tools for 
Demographic Estimation website), SPSS and Stata report 
the BIC and AIC, and R reports only the rounded AIC. As 
previously stated, there are differences in the formulae used. 
The BIC reported by SPSS equals 46,934.237, and the BIC 
reported by Stata equals 46,388.04. R reports only the AIC, 
which is equal to 46,920, the rounded value reported by 
SPSS, 46,916.818. Stata’s AIC value is substantially smaller 
and is equal to 1,303.245. All reported BIC and AIC values 
are large and add to the growing evidence that discredits the 
independence model for this example.

The quasi-independence model
The independence model rarely provides an adequate fit to 
migration data. This is due, in part, to the overwhelming 
tendency to continue to reside in the same region. The 
quasi-independence model allows these “immobility” effects 
(Powers and Xie 2008) to be removed from the model, and 
this often results in improved predictions of inter-regional 
migration flows. The quasi-independence model has been 
applied effectively to migration data obtained from national 
censuses (Agresti 1990; Rogers, Little and Raymer 2010; 
Rogers, Willekens, Little et al. 2002), where persons who 
reported living in the same region at the time of the census 
as at the beginning of the reference period are represented in 
the diagonal elements of a migration table.

To illustrate, United States native-born migration data 
between 1985 and 1990 are reported in Panel A of Table 37.7. 

Clearly, the flows reported in the four diagonal elements 
of the interior sub-matrix are substantially larger than the 
off-diagonal elements, indicating that the propensity to 
maintain residence in the same region is much more typical 
than migration between regions.

The clustering along the diagonal cells contributes sig-
nificantly to the poor fit of the independence model, and 
the dominating influence of the persons remaining in the 
region of origin have caused researchers to favour omitting 
them from the model. If migrants are defined as people 
changing their region of residence, this type of flow matrix 
is sometimes called a “migrants only” matrix. It is particu-
larly useful for studying migration structure since it elimi-
nates people who made no move or moved within the same 
region. Panel B of Table 37.7 displays the flow table with the 
diagonal elements set to 0, and the marginal totals adjusted 
accordingly.

 The multiplicative components, using total sum reference 
coding, for the full migration table and the migrant-only 
table are reported in Table 37.8. The magnitude of the 
multiplicative component model parameters for the full data 
certainly departs from what is expected under the hypothesis 
of independence. They are substantially above 1.0 on the 
diagonal and the off-diagonal components are far below 
1.0. In comparison, the multiplicative components for the 
migrants-only table are constrained to be equal to 0 in order 
to reproduce the structural zeros on the diagonal, and, as a 
result, the off-diagonal components are closer to 1.0.

A. Full migration table
Destination

Origin Northeast Midwest South West Total
Northeast 40,262,319 336,091 1,645,843 479,819 42,724,072
Midwest 351,029 50,677,007 1,692,687 958,696 53,679,419
South 778,868 1,197,134 69,563,871 1,150,649 72,690,522
West 348,892 668,979 1,082,104 37,872,893 39,972,868
TOTAL 41,741,108 52,879,211 73,984,505 40,462,057 209,066,881
B. Migrants-only table

Destination
Origin Northeast Midwest South West Total
Northeast 0 336,091 1,645,843 479,819 2,461,753
Midwest 351,029 0 1,692,687 958,696 3,002,412
South 778,868 1,197,134 0 1,150,649 3,126,651
West 348,892 668,979 1,082,104 0 2,099,975
TOTAL 1,478,789 2,202,204 4,420,634 2,589,164 10,690,791

Table 37.7 United States native-born 
migration flows, 1985–1990
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The quasi-independence model requires that only 
migrations between different regions satisfy the independence 
assumption. This is estimated in two different but equivalent 
ways. The first method takes the full migration table data 
as in Panel A of Table 37.7, and fixes the weights on the 
interactive effects, ODij, to be zero when the regions of 
origin and destination are the same, i.e., i = j, insuring that 
nij = 0. These are called structural zeros. When the origin 
and destination regions are different, i.e., i ≠ j, the interaction 
effects are fixed at 1.0, which is the familiar independence 
model and gives the predicted off-diagonal flows under the 
quasi-independence hypothesis. Implementation of this 
method in SPSS, Stata and R is illustrated in Appendix 3 
(available on the Tools for Demographic Estimation website).

The second method does not use the full migration 
data, but uses the migrants-only data as in Panel B of 
Table 37.7. It is best presented with the additive form: 
ln( ) O D

ij i j in Iλ λ λ δ= + + + , where I is an indicator 
variable taking on values of 1 for the diagonal flows, i.e., 
when i=j, and values of 0 for the off-diagonal flows, i.e., 
when i ≠ j (Agresti 2002). Therefore, an extra parameter, 
i, is necessary to estimate each diagonal flow, and for the 
other inter-regional flows the iI  term falls out and the 
quasi-independence model reduces to the independence 
model. Consequently, just like the independence model, 
the off-diagonal interaction terms are constrained to be 
equal to 0 in the additive form of the model (and equal to 
1 in the multiplicative form). Application of this method in 

Stata is illustrated in Appendix 3 (available on the Tools for 
Demographic Estimation website).

In the first method, the quasi-independence model 
fixes m parameters, ODii, for i = 1 to m, to be equal to 0. 
In the second method, m additional parameters, i , are 
estimated, and when exponentiated will be very close to 0. 
Using either method, the quasi-independence model has m 
more parameters than the full independence model and the 
degrees of freedom are reduced by m.

Appendix 3 (available on the Tools for Demographic 
Estimation website) illustrates how the quasi-independence 
model is estimated with statistical software packages SPSS, 
Stata and R, using the United States native-born migration 
flow data, 1985–1990. When the independence model is 
estimated with the full data, as expected, all goodness-of-
fit indicators are extremely large: 2 = 544,479,395 (df = 9); 
G2 = 461,411,576 (df = 9); Stata values for BIC and AIC are 
461,000,000 and 28,800,000, respectively. When the quasi-
independence model is estimated, all values were reduced 
substantially: 2 = 327,233 (df = 5); G2 = 330,220(df = 5); 
Stata values for BIC and AIC equal 330,207 and 27,535, 
respectively.

The inferential tests remain significant, and the quasi-
independence model must be rejected as the true migra-
tion model. The independence and the quasi-independence 
models should not be compared, inferentially, with the likeli-
hood ratio test because they are not nested models. However, 
the information measures may be compared directly. Both 

A. Full migration table
Destination

Origin Northeast Midwest South West Total
Northeast 4.720 0.031 0.109 0.058 0.204
Midwest 0.033 3.733 0.089 0.092 0.257
South 0.054 0.065 2.704 0.082 0.348
West 0.044 0.066 0.076 4.896 0.191
TOTAL 0.200 0.253 0.354 0.194 209,066,881

B. Migrants-only table
Destination

Origin Northeast Midwest South West Total
Northeast 0.000 0.663 1.617 0.805 0.230
Midwest 0.845 0.000 1.363 1.318 0.281
South 1.801 1.859 0.000 1.520 0.292
West 1.201 1.547 1.246 0.000 0.196
TOTAL 0.138 0.206 0.413 0.242 10,690,791

Table 37.8  Multiplicative components* of 
United States native-born migration flows, 
1985–1990 

*Total sum reference coding
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the BIC and AIC are reduced substantially, favouring the 
quasi-independence model over the independence model.

In addition, the predicted flows from the independence 
model can be contrasted with those from the quasi-
independence model in Table 37.9. Visually comparing 
the predicted flows in Table 37.9 with the observed data in 
Table 37.7 reveals how much closer the quasi-independence 
model comes to representing the data. Two additional 
summary statistics are reported: R2 and Mean Absolute 
Percent Error (MAPE ). A comparison of the R2 values 
shows the independence model explains 10 per cent of the 
variation in the observed data and the quasi-independence 
model explains 95 per cent. Furthermore, the average percent 
error for the quasi-independence model (MAPE = 28) is 
dramatically reduced in comparison to the independence 
model (MAPE = 2,492).

Since the fit of the quasi-independence model is not 
close enough to the observed data, it must be rejected as the 
“true” model. However, without observed migration data, 
the quasi-independence model may still offer a reasonable, 
but course, method for estimating inter-regional flows.

Application 6: The method of offsets
The validity of the independence and quasi-independence 
models can be evaluated with the inferential test statistics 
that accompany the log-linear model output, and, even 
when the models are not supported with significance tests, 
these models may be applied, in some contexts, to produce 

meaningful estimates of migration flows. The method of 
offsets assumes the auxiliary data have an implied structure 
of inter-regional associations that resembles the unknown 
migration structure. The method of offsets borrows the 
structure of the auxiliary data to derive the estimates of the 
missing migration flow data.

In past research, the auxiliary information, typically, 
has been a table of migration flows from another period in 
history (Rogers, Little and Raymer 2010; Rogers, Willekens, 
Little et al. 2002; Rogers, Willekens and Raymer 2003; 
Willekens 1983), but it could be from another age (Raymer 
and Rogers 2007), another sex or race group. It could be 
from another data source all together such as tax return data 
or motor vehicle registration data.

Given the auxiliary flow data, *
ijn , the log-linear-with-

offsets model is specified as: ( ) ( )*ˆln lnO D
ij i j ijn nλ λ λ= + + + . 

This model will estimate flows, îjn , that have a migration 
structure that comes as close as possible to that of the 
auxiliary flow data, and, at the same time, the estimated 
flows are adjusted to sum to the marginal totals pre-specified 
by the researcher. In this way, the method of offsets is similar 
to the independence and quasi-independence models in that 
it provides an expected distribution of the flows such that 
the marginal row and column totals are equal to the a priori 
estimates.

To illustrate the workings of the method of offsets, 
consider the Netherlands 1976 migration flow matrix in 
Table 37.1. Suppose we wish to keep the numerical values of 

A. Independence
Destination

Origin 1 2 3 4
1 8,530,046 10,806,184 15,119,178 8,268,664
2 10,717,328 13,577,116 18,996,052 10,388,923
3 14,512,977 18,385,588 25,723,693 14,068,264
4 7,980,756 10,110,323 14,145,583 7,736,206

R2 = 0.104 MAPE = 2492.322

B. Quasi-independence
Destination

Origin 1 2 3 4
1 0 535,839 1,349,561 576,353
2 442,768 0 1,793,640 766,005
3 720,681 1,159,163 0 1,246,806
4 315,340 507,201 1,277,434 0

R2 = 0.945 MAPE = 27.575

Table 37.9  Predicted United States 
native-born migration flows, 1985–1990, 
under independence and quasi-independence
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the row and column marginal totals, but, at the same time, 
wish to replace the migration interaction effects observed 
during that year by those observed during 1973, using the 
method of offsets. What would be the corresponding set of 
log-linear parameters? Table 37.10 sets out the predicted flow 
matrix obtained by the method of offsets in Panel A, and 
Panel B presents the associated multiplicative components 
derived using the total sum reference coding. Note that the 
T, Oi and Dj values of the predicted matrix, i.e., Panel B of 
Table 37.10, are identical to those reported for the observed 
1976 flow matrix in Panel B of Table 37.3. However, the 
other terms (i.e., the interaction effects, ODij) reflect the 
influence of the migration structure of the observed 1973 
data, Panel A of Table 37.3, as well as the row and column 
totals taken from the 1976 data. Therefore, the method of 
offsets applies the structure of the auxiliary data, the 1973 
data in this case, to the interior flows, and at the same time, 
preserves the total number of flows observed in the 1976 
data.

 The predicted results in Panel A of Table 37.10 were taken 
from the output of the SPSS, Stata, and R commands for 
implementing the method of offsets found in Appendix 4 
(available on the Tools for Demographic Estimation website). 
See the Method of offsets sheet in the accompanying Excel 
spreadsheet (see website) for other calculations.

Since the flows were observed directly in 1976, there 
are several ways to evaluate the suitability of the method 
of offsets for predicting the data. One simple method is to 
inspect visually the ratios of the association multiplicative 
components, as demonstrated in Table 37.4. Another 
method is to use the inferential tests and information 
measures reported by the log-linear procedures. These would 
be testing the hypothesis that the structure of the migration 
flows, i.e., the interaction parameters, did not change from 
1973 to 1976. In the example reported in Table 37.10, the 
corresponding G2 statistic is equal to 5,914 (df = 25), and 
the hypothesis that the auxiliary data represent the same 
migration process as the observed data must be rejected. The 

Table 37.10  Inter-regional migration flows in the Netherlands 
(1976), predicted with the method of offsets from the marginal totals 
(1976) and the migration flow table (1973)

Panel A: Predicted using method of offsets
Destination

Origin 1 2 3 4 5 6 Total
1 12,344 13,769 6,890 12,199 10,361 11,518 67,081
2 13,329 34,695 12,195 17,445 22,522 24,353 124,539
3 9,728 15,711 28,330 8,883 15,881 30,553 109,087
4 11,281 16,107 7,011 11,216 11,764 13,187 70,566
5 12,609 25,486 16,570 12,828 17,770 21,760 107,023
6 18,116 35,786 53,984 22,110 27,058 22,535 179,589

TOTAL 77,408 141,553 124,980 84,682 105,356 123,906 657,885
R2 = 0.966 MAPE = 8.364

Panel B. Multiplicative components using total sum reference coding
Destination

Origin 1 2 3 4 5 6 Total
1 1.564 0.954 0.541 1.413 0.964 0.912 0.102
2 0.910 1.295 0.515 1.088 1.129 1.038 0.189
3 0.758 0.669 1.367 0.633 0.909 1.487 0.166
4 1.359 1.061 0.523 1.235 1.041 0.992 0.107
5 1.001 1.107 0.815 0.931 1.037 1.080 0.163
6 0.857 0.926 1.582 0.956 0.941 0.666 0.273

TOTAL 0.118 0.215 0.190 0.129 0.160 0.188 657,885
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final method, of those suggested here, relies on the standard 
R2 and MAPE statistics to assess the fit between the observed 
and the predicted flows. These are reported in Panel A of 
Table 37.10 and are equal to 0.97 and 8.36, respectively. 
These statistics, as well as the ratios in Table 37.4, suggest 
this application of the method of offsets offers a set of 
estimates for the migration flows in 1976 that may be quite 
satisfactory.

The importance placed on the goodness-of-fit statistics 
depends on the quality of the observed flows used as inputs 
to the method of offsets. If the method is to be useful in 
a practical situation, it must be applicable when the inter-
regional flows are not directly observed. In the absence of 
flow data, the method would still require pre-estimates 
of the marginal totals. Furthermore, if the method is 
implemented as illustrated in Appendix 4 (available on the 
Tools for Demographic Estimation website), initial estimates 
of the inter-regional flows are required. Therefore, the pre-
estimates of the row and column totals would need to be 
distributed across the internal cells of the flow matrix so 
they add up to the respective marginal totals. Table 37.11, 

Panel A, presents a typical scenario, albeit continuing to 
use the marginal totals from the Netherlands 1976 data, 
which were observed. A simple solution is to distribute 
the flows according to the independence model, i.e.,  
ˆ ( )( )( )ij i jn T O D= , which results in the initial estimates of 

the flows displayed in Panel B of Table 37.11.
As long as the initial inter-regional flows add up to the 

marginal totals, the predicted flows are not affected by the 
method used to distribute the flows within the cells. This 
is true because the flows will be predicted, ultimately, from 
the auxiliary data through the method of offsets, using 
the iterative proportional fitting algorithm (Agresti 1990; 
Deming and Stephan 1940). In other words, the initial 
estimates of the 1976 Netherland flows, used as input to 
the offsets log-linear model, could be the internal cells of 
Table 37.1, Panel B, or those in Table 37.11, Panel B. Either 
set of initial estimates would yield the predicted flows that 
are reported in Table 37.10, Panel A.

On the other hand, it is important to note that the 
associated inferential test statistics and the information 
measures that accompany the method of offsets must be 

Panel A. Pre-estimation marginal totals from the Netherlands, 1976
Destination

Origin 1 2 3 4 5 6 Total
1 67,081
2 124,539
3 109,087
4 70,566
5 107,023
6 179,589

TOTAL 77,408 141,553 124,980 84,682 105,356 123,906 657,885
Panel B. Independence model distribution scheme for initial flow estimates

Destination
Origin 1 2 3 4 5 6 Total

1 7,893 14,433 12,744 8,635 10,743 12,634 67,081
2 14,654 26,796 23,659 16,030 19,944 23,456 124,539
3 12,835 23,472 20,724 14,042 17,470 20,545 109,087
4 8,303 15,183 13,406 9,083 11,301 13,290 70,566
5 12,593 23,027 20,331 13,776 17,139 20,157 107,023
6 21,131 38,641 34,117 23,116 28,760 33,824 179,589

TOTAL 77,408 141,553 124,980 84,682 105,356 123,906 657,885

Table 37.11  The inputs to the method of offsets in the absence of 
observed flows
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interpreted with respect to the initial flow estimates. For 
example, if the initial flows were taken from Panel B of 
Table 37.11, the associated 2 and G2 test statistics would be 
testing the hypothesis that the predicted data are distributed 
in a manner that is consistent with the independence model.

It is a simple matter to modify the method of offsets to 
apply it to the problem of predicting a table of “migrants 
only.” The SPSS, Stata and R commands require minor 

modifications that are specified in comments in Appendix 
4 (available on the Tools for Demographic Estimation 
website). A worked example is included in the Method of 
offsets, migrants only sheet of the accompanying workbook 
(see website). It uses the observed US flows, 1985–1990, to 
retrospectively estimate the 1975-80 migrant flows reported 
by Rogers, Willekens, Little et al. (2002).
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